
Performance analysis of neural network topologies
and hyperparameters for deep clustering

Muhammed Kucuk
Department of Electrical Engineering

University of South Florida

Tampa, USA
mkucuk@mail.usf.edu

Ismail Uysal
Department of Electrical Engineering

University of South Florida

Tampa, USA
iuysal@usf.edu

Abstract—Deep learning found its initial footing in supervised

applications such as image and voice recognition successes of

which were followed by deep generative models across similar

domains. In recent years, researchers have proposed creative

learning representations to utilize the unparalleled generalization

capabilities of such structures for unsupervised applications

commonly called deep clustering. This paper presents a com-

prehensive analysis of popular deep clustering architectures

including deep autoencoders and convolutional autoencoders to

study how network topology, hyperparameters and clustering

coefficients impact accuracy. Three popular benchmark datasets

are used including MNIST, CIFAR10 and SVHN to ensure data

independent results. In total, 20 different pairings of topologies

and clustering coefficients are used for both the standard and

convolutional autoencoder architectures across three different

datasets for a joint analysis of 120 unique combinations with

sufficient repetitive testing for statistical significance. The results

suggest that there is a general optimum when it comes to choosing

the coding layer (latent dimension) size which is correlated to an

extent with the complexity of the dataset. Moreover, for image

datasets, when color makes a meaningful contribution to the

identity of the observation, it also helps improve the subsequent

deep clustering performance.

Index Terms—Deep clustering, neural networks, k-means,

autoencoder, convolutional autoencoder

I. INTRODUCTION

Clustering [1], the unsupervised process that groups similar
data examples together based on some distance measures,
is one of the primary problems in various research fields,
such as machine learning, computer vision, pattern recogni-
tion and, data analysis. Many clustering methods have been
proposed including k-means [2], [3], [4] and Gaussian Mix-
ture Models (GMM) [5]- [6], however, traditional clustering
methods do not perform well with high-dimensional data,
due to the inadequacy of distance measures applied in these
methods. Besides, these clustering methods are affected by
high computational complexity on large datasets. Therefore,
dimensionality reduction and feature mapping methods have
been studied extensively to represent the original data in a
feature (latent) space where original data is separated more
effectively by a clustering algorithm. However, the complexity
of the latent space still remains a challenging problem. Recent
progress in deep learning [7], led to deep neural networks
(DNN) being used as non-linear and rich mappings of the data
input space into a lower dimensional feature space. In other

words, DNNs integrate representation learning with clustering
using raw data with a high accuracy rate. This new method of
grouping is generally referred to as Deep Clustering (DC).

Researchers have previously considered feature mapping
and data grouping (clustering) as two different processes.
First, high dimensional input examples are transformed into a
generally lower dimensional feature space. Then, the clustering
algorithm is applied to the transformed data. DC on the other
hand aims to combine these two processes as first introduced
with the Deep Embedding Clustering (DEC) [8] which im-
plements feature mapping via a fully connected deep auto-
encoder [9] with a k-means back-end for clustering. Variations
of DEC have been proposed in recent years including, the
Discriminatively Boosted Clustering (DBC) which replaces
the feature mapping auto-encoder with a convolutional auto-
encoder (CAE) for image analysis [10], a joint dimension-
ality reduction technique with k-means based on DNN [11],
the Deep Embedded Regularized Clustering (DEPICT) using
logistic regression with CAE for joint clustering assignment
[12], the Variational Deep Embedding (VaDE) based on a
variational auto-encoder (VAE) and Gaussian Mixture Model
(GMM) [13],the Joint Unsupervised Learning (JULE) pro-
posed as a recurrent perspective with convolutional neural
network (CNN) activated data on agglomerative clustering
[14], and a CNN-based joint clustering method which brings
an iterative solution with feature drift compensation [15].
While deep clustering remains a popular research field with
such recent advances in algorithm design and clustering ac-
curacy [16], the process of choosing many of the hyper -
parameters, such as the code size, network topology and
clustering coefficient, still remains an inexact science.

The purpose of this analysis paper is to address this gap in
our knowledge of deep clustering methodologies and conduct
a comprehensive analysis study on how DC hyperparameters
affect the clustering performances of deep embedding net-
works. The DNNs used in this study are auto-encoders (AE)
[17] and convolutional auto-encoders (CAE) [18] applied to
different image datasets with varying complexities. For a clear
perspective, we choose popular image benchmark datasets
MNIST, CIFAR10, and SVHN for a two-phase experiment
where each phase implements a change in either topology or
hyper-parameter set. In summary this paper has the following

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

contributions:
1) When using deep unsupervised feature extraction, more

complex datasets require a higher dimensional latent
space to achieve the best subsequent clustering perfor-
mance.

2) Color information can be useful in statistically signif-
icantly improving the deep clustering performance for
datasets where color makes a meaningful contribution
to the identity of the observation.

3) General trends need to be further evaluated on a wider
variety of datasets and clustering domains to make more
definitive conclusions.

The rest of this paper is organized as follows: Section II
provides general information about the Autoencoder and the
Convolutional Autoencoder structures and their applications to
deep clustering. Section III describes the experimental setup
used in the study and along with the hyperparameters, the
datasets, evaluation metrics, and implementation. The results
and discussions are presented in section IV whereas section V
concludes the paper.

II. METHODS

A. Autoencoder

ENCODER

INPUT

DECODER
CODE LAYER

OUTPUT

Fig. 1. Autoencoder Network Structure

Autoencoder is a particular artificial neural network topol-
ogy which has the same input and output layers where the
training is performed by presenting the same input data to
both layers simultaneously. The general structure of the auto-
encoder consists of a visible input layer x, a number of hidden
layers h and the reconstructed output layer y with a family
of nonlinear activation functions f applied at different layers.

During training, the auto-encoder maps the input x"Ry to
the hidden layers with lesser dimensions than the input data
which produces a compressed representation of the original
data in which its dimensionality is reduced to the code(latent)
layer size H"R

h. This first step is called the “encoder” and
is shown on the left side of Fig.1. Later, the compressed
information is mapped to the output layer via the “decoder,”
through a process called “reconstruction.” Mathematically,
these two steps are formulated as follows:

H ⌘ fWH(x) = f(WHx+ bH)

(1)

z ⌘ gWz(x) = g(WzH + bZ)

Where WH and WZ define the encoding weight and decoding
weight, respectively, bH and bZ define the corresponding
encoding bias vector and the decoding bias vector, and f(.)
and g(.) are encoding and decoding activation functions such
as a sigmoid function or a rectified linear unit, respectively.
As previously mentioned, the primary purpose of the auto-
encoder is to learn useful latent information on the code
layer by minimizing the reconstruction error. For a given N
input data samples, the following loss function is used to
determine the parameters “WH ,WZ , bH , and bZ” through a
back-propagation algorithm commonly used in feed-forward
neural networks:

LAE = min
1

N

NX

k=1

||xk � zk||2 (2)

In this paper, we constructed several auto-encoder networks
with different topologies and four different code layer sizes
to simulate a variety of scenarios and study the impact of
topology on reconstruction and clustering performance.

B. Convolutional Autoencoder (CAE)

K=32
DeConv1 DeConv2 DeConv3

2x2x8 8x8x16 16x16x32 32x32x64

DeConv4

32x32x64 16x16x32 8x8x16
Conv1 Conv2 Conv3

2x2x8
Conv4

INPUT OUTPUT

Fig. 2. Convolutional Autoencoder Network Structure

The convolutional auto-encoder (CAE) is similar to the
standard auto-encoder except the input layers are replaced
with convolutional layers to present a powerful technique
specifically for image-processing tasks. CAEs borrow ideas
from the Convolutional Neural Networks (CNN) much like
how AEs implement standard fully - connected networks.
Similar to the equations defined in section II-A, we define
the CAE encoding part as follows where multiplications are
replaced with 2D convolutions:

H ⌘ f(WH ⇤ x) (4)

z ⌘ gDZ(H) = g(H ⇤DZ) (5)

where H represents the input image samples as the latent
variables in the code layer which then feeds into the fully
connected AE hidden layers, WH and WZ are encoding and
decoding weights, ‘*’ is the 2D convolution operation. The
CAE’s primary purpose is finding the latent layer representa-
tion, sometimes called the coding layer, through minimizing a
cost function such as the mean squared error (MSE) between
original and reconstructed images where the corresponding
loss function is defined as:

LCAE = min
WH ,DZ

1

N

NX

j=1

||gDz(fWH(xj))� xj ||2 (6)

where N is the number of input images in the dataset, xj"R
2

is the j
th image.

As shown in Fig.2, each convolutional layer at the encoder
includes filters with a certain size and stride, image normal-
ization followed by max pooling to transform and compress
the information included in the original image. The decoder
structure is similar but in reverse order which includes up
sampling to obtain the reconstructed image at the output layer
of the autoencoder.

C. K-means Clustering

Clustering is performed on unlabeled observations in a
dataset with the objective to group similar data samples in
an unsupervised fashion. One of the most popular clustering
algorithms is k-means which stands out from others with the
guaranteed convergence property [19]. The hyper-parameter
k defines the number of randomly assigned centroids which
would be used to identify the center location for each similarly
grouped data cluster. The training is done via minimizing
the within-cluster sum of squares (WCSS) metric which uses
squared Euclidean distances between the assigned centroid
locations and observations. The centroid locations are then
updated by calculating the new centroid location based on the
observations assigned to the initial centroid assumption.

While k-means is easy to implement and its training is
straightforward, it suffers from scalability issues where higher
dimensional observations have poor clustering accuracy com-
pared to the other methods. However, the advance of deep
feature learning such as the autoencoder and convolutional au-
toencoder allowed for rich statistical representation of the input
space at the code layers of deep neural networks which can
be used with a k-means backend negating its drawbacks with
high dimensional data. In this paper the latent representation
of the input images at the code layer of both the autoencoder
and convolutional autoencoder structures are used as inputs to
the k-means algorithm.

III. EXPERIMENTAL SETUPS

A. Datasets

space whose dimension is less than X. As mentioned earlier, encoder and decoder parts are both
the same procedure on AE and CAE network structure. The extracted feature at encoder part,
which is obtained as Z, applies it to the input of clustering (k-means). Then, the network is fine-
tuned according to cluster assignment hardening loss. At the same time, the clusters are refined
in turn by converging to minimum reconstruction loss of k-means between target data points
and latent representations.

3 Experimental Setups

Figure 3: MNIST, Cifar10, and SVHN Images Dataset Representation

3.1 Datasets

We assessed two different kinds of artificial neural network structures which are Autoencoder
and Convolutional Autoencoder on the three different datasets, MNIST, Cifar10, and SVHN to
analyze the effect of hyper-parameters on clustering performances and associated
reconstructions losses.

MNIST: Mnist (1) is a set of black and white handwritten image examples between 0 and 9 that
are commonly using for training and testing for various tasks on deep learning, machine
learning, image processing, data science, etc. It has 60,000 images for training and 10,000 for
testing with a 28x28 pixel boxes.

CIFAR10: Another dataset that has extensive use of the area is Cifar10. Unlike the Mnist, in
Cifar10, there are 10 classes and 6000 image samples per each class in which 60,000 colorful
image examples with a 32x32 pixel box size that are separated by 50,000 images for training
and 10,000 for testing.

SVHN: It consists of Google Street View images which are real-world image examples that are
widely used in various tasks. The SVHN is similar to Mnist, but it has colorful digits character
level covered image examples different from Mnist with 32x32 pixel box format. It also has 10
classes with numbers from 0 to 9.

(1) http://yann.lecun.com/exdb/mnist/
(2) https://www.cs.toronto.edu/~kriz/cifar.html
(3) http://ufldl.stanford.edu/housenumbers/

Fig. 3. MNIST(a), Cifar10(b), and SVHN(c) Images Dataset Representation

We implemented the AE and CAE based neural network
structures on three different datasets; MNIST, CIFAR10, and
SVHN to analyze the effect of hyper-parameters on clustering
performances and associated reconstruction losses.

• MNIST [20]: MNIST is a set of black and white hand-
written image examples between 0 and 9 used as a

popular benchmark dataset for deep learning applications
in image classification. It has 60,000 images for training
and 10,000 for testing where each image contains 28x28
pixels. Fig.3a shows a collection of representative exam-
ples from this dataset.

• CIFAR10 [21]: Another popular benchmark dataset, CI-
FAR10, includes 10 classes with 6000 image samples
per class to constitute 60,000 colored images of size
32x32 pixels where 50,000 images are used for training
and 10,000 images are used for testing. The 10 different
classes that are represented in the dataset include air-
planes, cars, birds, cats, deer, dogs, frogs, horses, ships,
and trucks. Fig.3b shows a collection of representative
examples from this dataset.

• SVHN [22]: Google’s Street View House Numbers
dataset consists of real-world images and includes 73,257
digits for training, 26,032 digits for testing with an image
size of 32x32 pixels. The SVHN is similar to MNIST
as it has 10 classes with numbers ranging from 0 to 9
except the images have color. Fig.3c shows a collection
of representative examples from this dataset.

B. Hyperparameters

The main hyper-parameters used in this study are the
network topologies (both in terms of network size and input
layer structure), size of the code layer (latent space) and
clustering coefficients. In AE, the general network topology
is 784-128-64-32-16. Four different code sizes are defined as
128, 64, 32, and 16 with five different clustering coefficients
K = 10, ..., 50 for every 10 incremental of K. Unlike AE,
we used a different network topology for different code sizes
for the CAE as shown in Fig.4 with the same five clustering
coefficients.

C. Evaluation Metrics

There are different clustering performance (evaluation) met-
rics defined in the literature separated as internal and external
metrics such the Davies–Bouldin index [23] and Dunn index
[24] for internal metrics, and Purity [25], Rand Index [26], F-
measure [27], Jaccard Index [28], Dice Index [29], Fowlkes-
Mallows Index [30], and Confusion Matrix [31] for external
metrics for a variety of applications. We use the purity
evaluation metric in this study to find the clustering accuracy
for both algorithms for a fair comparison of the effect of
hyper-parameters. To calculate the purity metric, each cluster
is labeled as the group with the most frequent samples in
that cluster, and the accuracy of this assignment is measured
by finding the ratio of correctly assigned observations to the
general population in that cluster for each group. Its formal
definition is,

Purity(⌦,C) = 1

N

X

k

maxj |! \ cj | (8)

Where ⌦ = !1,!2, ...,!k is the set of clusters and
C = c1, c2, ..., cj is the set of groups, N is the total number
of data points.

D. Implementation

All implementations are done using the Keras [32] library
on Google’s Colab platform. There are differences in how
the input data is represented based on the specific network
topology being used. In the case of the autoencoder, the fully
connected network topology for the encoder is D-128-64-32-
16 where D is the input space dimension (feature space) size of
784 for the MNIST and 3072 for the CIFAR10/SVHN datasets
and 16 is the code size (latent space). For a fair comparison
of the datasets, CIFAR10 and SVHN are converted to gray-
scale like MNIST (1D) prior to training on the autoencoder.
After training the autoencoder, the latent representations of
each observation in the dataset are collected in a transformed
dataset (such as 60,000 x 16 for the MNIST dataset when using
a code size of 16) on which the k-means clustering algorithm is
applied to find the associated purity metric for each clustering
coefficient (i.e., K = 10 through 50). The centroids are initial-
ized randomly 20 times and the purity metrics are averaged
to find statistically meaningful results. A similar process is
repeated for the convolutional autoencoder except the colored
images in CIFAR10 and SVHN are represented via the three
RGB channels available at the convolutional front layer of this
topology. In order to represent the samples from the MNIST
dataset, the same image is presented to each channel creating a
pseudo 3D representation for a fair comparison of the network
structures. Fig.4 shows the detailed overview of each topology
to obtain the desired bottleneck size for each experiment. We
repeat the same procedure of applying k-means using different
clustering coefficients on the transformed datasets for each
code size.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

The clustering performances of different network topologies
on different image datasets for both autoencoder and convo-
lutional autoencoder are presented in tables 1 and 2 below
respectively.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Cluster
Size

(K)�

Cifar10(CAE) Mnist(Grey-Scaled-CAE) SVHN(CAE)

Latent Space(k) Latent Space(k) Latent Space(k)

k=16 k=32 k=64 k=128 k=16 k=32 k=64 k=128 k=16 k=32 k=64 k=128

Accuracy Accuracy Accuracy

Standard Deviation Standard Deviation Standard Deviation

K=10 22.97 24.90 26.28 25.27 52.10 51.40 45.69 42.54 20.31 20.44 20.43 20.06

+/- 1.57 1.15 0.92 0.67 3.47 4.26 3.81 2.69 0.65 0.59 0.53 0.23

K=20 26.43 27.70 29.13 28.42 63.74 64.51 62.31 57.50 21.31 21.47 21.66 20.34
+/- 1.80 0.74 0.73 0.51 3.94 4.05 2.17 2.63 0.72 0.68 0.66 0.37

K=30 27.54 28.66 30.01 29.46 71.24 72.81 71.63 67.22 21.60 21.87 22.36 21.22

+/- 1.29 1.17 0.73 0.51 3.41 1.95 2.45 2.02 0.58 0.67 0.83 0.42

K=40 28.77 29.98 31.39 30.47 73.44 75.56 73.94 71.94 22.23 22.64 23.03 21.31

+/- 0.88 0.78 0.79 0.73 2.98 1.91 1.98 2.73 0.54 0.66 0.76 0.44

K=50 29.16 30.46 31.92 31.49 76.07 77.18 75.97 74.36 22.39 22.95 23.83 21.69

+/- 1.19 0.87 0.70 0.74 2.87 2.21 2.92 1.40 0.49 1.02 0.81 0.37

Table 1: Convolutional Autoencoder for MNIST(Replicated), Cifar10, and
SVHN

In Table 1, the following observations can be made. The
highest clustering accuracy values are obtained pretty con-
sistently at two different code sizes for the three different
datasets. Where the maximum accuracy is observed at the code
size of K = 32 for the MNIST dataset, a higher code size of

K = 64 is needed for both CIFAR10 and SVHN datasets to
achieve the highest clustering accuracy. This is expected due
to the inherent complexity of the images of these two datasets
when compared to MNIST. A similar trend is observed for
supervised classification applications where the performances
reported in the literature for MNIST are significantly higher
than the ones reported for CIFAR10 and SVHN. Assuming that
the back-end K-means algorithm perform similarly between
different datasets; a larger code size is better able to capture
the latent statistics of the more sophisticated images in CI-
FAR10 and SVHN. Another observation is that the clustering
accuracy also increases as the K factor increases for the back-
end clustering algorithm. This is also expected due to the
performance metric used in this study (purity) which dictates
that as the number of clusters increases, the probability of
samples falling into a wrong cluster decrease. For instance,
at the limit, when K is equal to the number of observations,
the clustering accuracy would be 100% which would have no
practical meaning. A standard practice in comparing clustering
accuracies is to choose the K value to be either the same or
twice the number of classes in the dataset.

Cluster
Size

(K)

Cifar10(AE-Grey-Scaled) Mnist(AE) SVHN(AE-Grey-Scaled)

Latent Space(k) Latent Space(k) Latent Space(k)

k=16 k=32 k=64 k=128 k=16 k=32 k=64 k=128 k=16 k=32 k=64 k=128

Accuracy Accuracy Accuracy
Standard Deviation Standard Deviation Standard Deviation

K=10 20.42 20.71 20.90 20.95 64.04 66.57 66.52 59.23 20.05 19.86 19.92 19.83
+/- 0.93 0.74 0.59 0.45 3.39 1.76 1.06 2.21 0.47 0.23 0.32 0.23

K=20 23.24 24.31 23.49 23.81 73.23 74.99 73.56 70.06 20.90 20.94 20.72 20.46

+/- 1.12 0.53 0.86 0.45 2.20 2.04 1.53 2.63 0.68 0.70 0.65 0.30

K=30 24.71 24.31 24.84 24.74 78.09 79.80 77.86 76.47 21.74 21.68 21.87 21.48

+/- 1.05 0.74 0.57 0.45 2.16 1.40 1.17 1.83 1.16 0.66 0.60 0.31

K=40 25.33 25.13 25.58 25.70 81.46 82.47 81.27 79.26 22.68 22.49 22.47 22.11

+/- 0.99 0.65 0.79 0.48 1.53 1.14 1.03 1.65 1.53 0.52 0.64 0.28

K=50 26.39 26.69 26.57 26.49 82.21 83.52 83.27 81.05 23.21 23.44 23.47 22.53

+/- 0.86 1.65 0.59 0.62 1.67 0.73 1.19 1.61 1.12 0.86 0.95 0.37
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Table 2: Autoencoder for MNIST, Cifar10(Greyscale), and
SVHN(Greyscale)

In Table 2, a similar result is obtained for the MNIST
dataset where the code size of k = 32 provides the highest
clustering accuracy. In fact, the accuracy for the autoencoder
in this case is greater than the accuracy reported for the
convolutional autoencoder on the same dataset (as in table
1). This can be explained by the fact that MNIST images
have been replicated at the convolutional input layers designed
for an RBG colored image which increases the number of
parameters to be trained in the case of CAE which may
have in turn reduced the maximum possible accuracy from
the network topology due to a lesser ratio of observations to
weight parameter comparatively. On the contrary, the cluster-
ing accuracies are lower for CIFAR10 and SVHN when using
the regular autoencoder which suggests that the convolutional
layers can properly utilize the additional information coming
from the colored images. This effect is more significant for
the CIFAR-10 dataset where color also signifies a meaningful
feature of the observation (for instance a dog or a cat, as
the two classes in the dataset, can only have a specific range
of color values) compared to the SVHN dataset where color

K=12832x32x128
Conv1

4x4x8
DeConv1

16x16x64 32x32x128
DeConv3 DeConv4

16x16x64
Conv2

8x8x16
Conv3

4x4x8
Conv4

K=6432x32x128
Conv1

16x16x64
Conv2

8x8x32
Conv3

4x4x16
Conv4

2x2x16
Conv5

32x32x128
DeConv1 DeConv2 DeConv3 DeConv4 DeConv5

2x2x16 4x4x16 8x8x32 16x16x64

K=3232x32x64
Conv1

2 x2 x8 8x8x16 16x16x32 32x32x64
DeConv1 DeConv2 DeConv3 DeConv4

16x16x32
Conv2

8 x 8 x 1 6
Conv3

2x2x8
Conv4

K=1632x32x64
Conv1 DeConv2 DeConv3 DeConv4 DeConv5

8x8x16 16x16x64 32x32x644 x4 x8 1x1x16
DeConv1

1x1x16 4x4x8

INPUT OUTPUT

*K is Code Size

16x16x64 8x8x16
Conv2 Conv3 Conv4 Conv5

8x8x16
DeConv2

Fig. 4. Implementation Representation of Convolutional Autoencoder Structures

Fig. 5. Convolutional Autoencoder Accuracies Across Different Settings and
Datasets

is not as relevant. However, there is no standard code-size
which provides the highest accuracy for all K values – which
indicates that the lack of convolutional layers affects the
code size required for maximum performance. In fact, for the
CIFAR10 dataset, a code size of 128 (twice that of table 1)
is generally required which may suggest that the information
encoded in the convolutional layers is now represented (and
compensated) in the increased bottleneck layer size. However,

Fig. 6. Autoencoder Accuracies Across Different Settings and Datasets

the results for SVHN do not support this conclusion where
some of the high accuracies have been obtained at even lower
code sizes such as 16. This is a very interesting observation
which indicates that further research is required to understand
such behavior and how removing convolutional layers could
impact the training of the rest of the network for different
datasets and how data is subsequently represented in the code
layer. Figures 5 and 6 summarize the best performance curves

for each topology as the latent space dimensions change.

V. CONCLUSIONS

This paper presents a comprehensive study in deep unsu-
pervised learning to observe the effect of hyper-parameters
including network topology and clustering coefficients on deep
clustering accuracy. Popular autoencoder and convolutional
autoencoder architectures are used to obtain clustering friendly
features in the latent space where a standard k-means back-
end algorithm implements the clustering. The experimental
results show that the hyper-parameters influence clustering
accuracy performance in both expected and unexpected ways.
For instance, more complex datasets require a higher dimen-
sional latent space to achieve the best subsequent clustering
performance. For the image datasets, color can help improve
the clustering performance but only when it signifies relevant
information on the identity of the observation. Additional
studies need to be conducted to truly understand the complex
relationship between the hyperparameters, network topologies
and the statistics and complexities of the datasets when it
comes to deep clustering applications.

REFERENCES

[1] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,”
ACM computing surveys (CSUR), vol. 31, no. 3, pp. 264–323, 1999.

[2] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding,” in Proceedings of the eighteenth annual ACM-SIAM sym-

posium on Discrete algorithms. Society for Industrial and Applied
Mathematics, 2007, pp. 1027–1035.

[3] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means
clustering algorithm,” Journal of the Royal Statistical Society. Series

C (Applied Statistics), vol. 28, no. 1, pp. 100–108, 1979.
[4] K. Wagstaff, C. Cardie, S. Rogers, S. Schrödl et al., “Constrained k-

means clustering with background knowledge,” in Icml, vol. 1, 2001,
pp. 577–584.

[5] D. Reynolds, “Gaussian mixture models,” Encyclopedia of biometrics,
pp. 827–832, 2015.

[6] C. M. Bishop, Pattern recognition and machine learning. springer,
2006.

[7] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural networks, vol. 61, pp. 85–117, 2015.

[8] E. Aljalbout, V. Golkov, Y. Siddiqui, M. Strobel, and D. Cremers,
“Clustering with deep learning: Taxonomy and new methods,” arXiv

preprint arXiv:1801.07648, 2018.
[9] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,

“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,” Journal of machine

learning research, vol. 11, no. Dec, pp. 3371–3408, 2010.
[10] F. Li, H. Qiao, and B. Zhang, “Discriminatively boosted image clustering

with fully convolutional auto-encoders,” Pattern Recognition, vol. 83, pp.
161–173, 2018.

[11] B. Yang, X. Fu, N. D. Sidiropoulos, and M. Hong, “Towards k-
means-friendly spaces: Simultaneous deep learning and clustering,” in
Proceedings of the 34th International Conference on Machine Learning-

Volume 70. JMLR. org, 2017, pp. 3861–3870.
[12] K. Ghasedi Dizaji, A. Herandi, C. Deng, W. Cai, and H. Huang,

“Deep clustering via joint convolutional autoencoder embedding and
relative entropy minimization,” in Proceedings of the IEEE International

Conference on Computer Vision, 2017, pp. 5736–5745.
[13] Z. Jiang, Y. Zheng, H. Tan, B. Tang, and H. Zhou, “Variational deep

embedding: An unsupervised and generative approach to clustering,”
arXiv preprint arXiv:1611.05148, 2016.

[14] J. Yang, D. Parikh, and D. Batra, “Joint unsupervised learning of
deep representations and image clusters,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2016, pp.
5147–5156.

[15] C.-C. Hsu and C.-W. Lin, “Cnn-based joint clustering and representation
learning with feature drift compensation for large-scale image data,”
IEEE Transactions on Multimedia, vol. 20, no. 2, pp. 421–429, 2017.

[16] X. Peng, I. W. Tsang, J. T. Zhou, and H. Zhu, “k-meansnet:
When k-means meets differentiable programming,” arXiv preprint

arXiv:1808.07292, 2018.
[17] C. Song, F. Liu, Y. Huang, L. Wang, and T. Tan, “Auto-encoder based

data clustering,” in Iberoamerican Congress on Pattern Recognition.
Springer, 2013, pp. 117–124.

[18] X. Guo, X. Liu, E. Zhu, and J. Yin, “Deep clustering with convolutional
autoencoders,” in International Conference on Neural Information Pro-

cessing. Springer, 2017, pp. 373–382.
[19] J. MacQueen et al., “Some methods for classification and analysis of

multivariate observations,” in Proceedings of the fifth Berkeley sympo-

sium on mathematical statistics and probability, vol. 1, no. 14. Oakland,
CA, USA, 1967, pp. 281–297.

[20] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[21] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” Citeseer, Tech. Rep., 2009.

[22] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,”
2011.

[23] D. Davies and D. Bouldin, “A cluster separation measure, ieee transac-
tions on patter analysis and machine intelligence. vol,” 1979.

[24] J. C. Dunn, “Well-separated clusters and optimal fuzzy partitions,”
Journal of cybernetics, vol. 4, no. 1, pp. 95–104, 1974.

[25] M. Sanderson, “Christopher d. manning, prabhakar raghavan, hinrich
schütze, introduction to information retrieval, cambridge university
press. 2008. isbn-13 978-0-521-86571-5, xxi 482 pages.” Natural Lan-

guage Engineering, vol. 16, no. 1, p. 100–103, 2010.
[26] W. M. Rand, “Objective criteria for the evaluation of clustering meth-

ods,” Journal of the American Statistical association, vol. 66, no. 336,
pp. 846–850, 1971.

[27] Y. Sasaki, “Power control unit for high power hybrid system,” in
SAE2007World Congress, 2007, pp. 1–5.

[28] R. Real and J. M. Vargas, “The probabilistic basis of jaccard’s index of
similarity,” Systematic biology, vol. 45, no. 3, pp. 380–385, 1996.

[29] L. R. Dice, “Measures of the amount of ecologic association between
species,” Ecology, vol. 26, no. 3, pp. 297–302, 1945.

[30] E. B. Fowlkes and C. L. Mallows, “A method for comparing two
hierarchical clusterings,” Journal of the American statistical association,
vol. 78, no. 383, pp. 553–569, 1983.

[31] J. T. Townsend, “Theoretical analysis of an alphabetic confusion matrix,”
Perception & Psychophysics, vol. 9, no. 1, pp. 40–50, 1971.

[32] F. Chollet et al., “Keras,” 2015.

