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Abstract—Deep neural networks have proven to be efficient
systems for learning complex data representations. However, one
of their main constraints is their inability to deal with changes in
the data distribution. For instance, in real-time facial expression
recognition, the data used to evaluate a model commonly differs
in quality compared to that used to train the model, leading
to poor generalization performance. In this work we propose a
novel Deep Convolutional Neural Network (CNN) architecture
pre-trained as a Stacked Convolutional Autoencoder (SCAE) to
address emotion recognition in unconstrained environments. The
SCAE is trained in a greedy layer-wise unsupervised fashion,
and combines convolutional and fully connected layers and
learns to encode facial expression images as an illumination
and facial pose invariant feature vector. The CNN offers state-
of-the-art classification rate of 99.52% on a combined corpus
of gamma corrected version of the CK+, JAFFE, FEEDTUM
and KDEF datasets. When evaluated on unseen data obtained
in unconstrained environments, our approach achieves 79.75%,
an increase of over 28% compared to a CNN without our pre-
training approach, supporting the methodology proposed in this
work.

Index Terms—Stacked Convolutional Autoencoders, Greedy
Layer-Wise Training, Deep Learning, Emotion Recognition, So-
cial Robotics

I. INTRODUCTION

Emotion recognition is essential for human-robot interac-
tion. Social robots are finding places in everyday activities
industries such as specialized education [1] and care [2]. An
increase in demand for social robots means an increasing
importance in the improvement in human-robot interaction
(HRI), with the development of more effective communication.
One way to improve this communication is through refining a
robot’s ability to recognize human emotions.

Although deep learning (DL) has set many benchmarks in
the domains of computer vision and signal processing, one
limitation of deep models is their inability to generalize on
novel data with non-uniform conditions. For instance, in a real-
life scenario where a social robot is to be used, obtaining good

quality images with a full-frontal view of the user’s face can be
very difficult. This and other factors such as constant changes
in natural and artificial lighting, lead to drastic changes in the
data distribution and poor generalization performance.

In this paper, we propose a novel deep CNN architecture
to address emotion recognition in unconstrained environments
with specific attention to facial pose and illumination in-
variance. The CNN is initially pre-trained as a SCAE that
learns to map facial expression images to a hidden pose and
illumination invariant feature vector, and to a representation of
the faces with zero-degree pose. Unlike traditional autoencoder
models that employ the input image as the target image,
the model presented here employs an image of frontal view
and with good level of image luminance as the target recon-
struction. The encoder element of the SCAE, which produces
a translation, illumination and facial pose invariant feature
vector, is then used to initialize a CNN. The CNN is fine-
tuned for classification and evaluated on a corpus collected by
a Nao robot in uncontrolled environments.

In addition, we propose training the SCAE model using an
improved version of the Greedy Layer-Wise (GLW) algorithm
that: improves training times, reduces error accumulation in
early layers, and improves overall generalization performance.

Although our proposed approach relies on the availability
of multi-illumination images to learn to encode images as an
illumination invariant feature vector, we demonstrate that by
employing gamma correction [3], we can obtain equal or better
results.

II. STATE OF THE ART

We are starting to see social robots being implemented into
real world applications, as we are experiencing an increasingly
aging society that would benefit from the assistance of such.
However, for this transition to be as seamless as possible, these
robots will require the ability to produce empathetic responses
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to the emotions of the humans they assist. Empathy is a key
part in human-human communication, so replication of such
for social robots is important. The development of real time
emotion recognition will aid in the creation of empathetic
robots and possibly an increase in acceptance of robots in
society. This section discusses the recent advances in human
robot interaction in regard to social robots, particularly on
their uses within a care environment [2], [4], [1]. Additionally,
the current state-of-the-art deep learning approaches to facial
emotion recognition are discussed.

A. Social Robots

There is an increasing demand for social robotics in the care
industry. The EU is predicted to be facing a population crisis
by the year 2060, where the percentage of those over 65 is set
to double from 27.8% to 50.1% [5]. In response to this, EU
governments are looking to implement assistive robots into
homes in the upcoming years [6]. The authors of [2] have
evaluated the use of social robots in care homes for those
with mild dementia. Using Silbot3 as the robotic platform,
participants were asked to play through 6 different scenarios
with the robot, such as waking them up, and their responses
were recorded. Most participants gave positive feedback on
their interactions, giving praise to the robot’s reminders and
voice recognition functionality. The use of voice recognition
is helpful as it is easier for participants to interact with the
robot. However, the addition of emotion recognition would
have been beneficial for some of the scenarios, such as if they
are asked why they do not wish to take their medication, so
the appropriate actions can be taken.

A study investigating the effects of social robots on children
with Autism Spectrum Disorder (ASD) was conducted in [4].
The authors investigated the effectiveness of the inclusion of
a socially assistive robot in an intervention for children with
ASD. The experiment involved placing children with ASD and
a supervisor in a room with a robot. The children were left to
interact with the robot in conditions where the robot performed
a simple action randomly, and an condition where the robot’s
actions were prompted by interaction from the child. The total
amount of speech increased in the second condition, as well as
interactions with the robot. The results show how meaningful
interaction from a socially assistive robot can provoke social
behavior from a child with ASD.

Another study into the effects of social robots on children
with ASD was conducted [1]. The authors explored the impact
of social robots on gestural usage, on 13 children with ASD.
The participants were first shown a selection of 8 gestures
by a Nao robot with associated meanings, for example, hands
covering ears to represent ‘noisy’. They were then asked to
act out gesturally the correct response for a given scenario
based on what they had previously learned from the Nao. The
participants were able to better replicate the correct gestures
per scenario, showing how social robots can be a useful tool in
specialized education and development. These studies demon-
strate that emotion perception and replication are essential for
meaningful and engaging human-robot interaction.

B. Emotion Recognition

Emotion recognition can be achieved using facial expres-
sions, speech, body language, or a combination of these. We
look at emotion recognition from facial expressions since in
unconstrained environments it is easier to obtain facial images
than other data, such as audio or full body images. Moreover,
emotion recognition from facial expressions has proven to
yield higher accuracy rates.

Most work into emotion recognition is carried out on images
of a single person. [7] approached facial emotion recognition
at the group level using two types of CNN. Firstly, the authors
used two CNNs for aligned and non-aligned facial images for
emotion recognition of a single face. Secondly, they used a
CNN for the sentiment of the image as a whole, for example,
an image taken from a wedding would denote happiness. They
improve on the baseline for this dataset to achieve 83.9% and
80.9% classification accuracy on the validation and testing sets
respectively.

Concerning emotion recognition on static images, high
levels of accuracy have been achieved on facial expression
corpora collected in controlled environments. For example, [8]
proposed a new CNN architecture for emotion recognition,
which includes two parallel feature extraction blocks. The au-
thors evaluated their proposed method on the Extended Cohn-
Kanade (CK+) Dataset [9] and the MMI Facial Expression
Dataset [10]. On the CK+ dataset, they obtained a result of
99.6%, an increase from the previous bench-mark of 99.2%
using a conventional CNN.

Work into emotion recognition has expanded from recogni-
tion on facial expression corpora collected in static conditions.
[11] trained a deep CNN on a dataset of irregular facial
expression images. The primary dataset used was the EmotiW
dataset, comprised of a series of clips from movies, each
labeled with the 7 basic emotions. In addition, they trained
their CNN on the Toronto Face Database [12], containing
typical frontal, well-lit facial expression images, and images
taken from Google images. They achieved a final classification
accuracy of 41.03%. The usage of a more realistic dataset is
an important step towards true real time emotion recognition.

Another work regarding facial emotion recognition with
irregular images was presented by [13]. The authors trained
multiple deep CNNs on two datasets, resulting in a final
accuracy of 61.29%. The FER dataset was used for pre-
training, with some images undergoing randomized pertur-
bation, subsequently providing more unseen images for the
network. An accuracy of 55.69% was attained. The networks
were then fine-tuned on the Static Facial Expressions in the
Wild dataset, a dataset comprised of labeled movie stills,
which provide more natural facial expressions than standard
facial expression datasets.

[11] approached facial emotion recognition in video using
both audio and visual facial expressions. They used the FER-
2013 Face Database and the Toronto Face Dataset for training
their model and used the Acted Facial Expression in the
Wild (AFEW) dataset for testing. They implemented a deep



CNN for classifying facial emotions from the video footage
and achieved an accuracy of 37.35%. In combination with a
deep belief network on the extracted audio, they achieved an
improved 44.71% rate of classification.

The authors of [14] propose a method to deal with illumi-
nation invariance using an adaptive filter based on temporal
local scale normalization, and pre-training as SCAE on large
amounts of unlabeled data. The authors achieve an accuracy of
90.52% on the CK+ corpus when performing emotion recog-
nition. A similar approach was proposed by [15], in which
the authors employ a SCAE model to deal with illumination
invariance in emotion recognition. The authors used an image
with good illumination as the target reconstruction for images
with poor luminance. The authors report an accuracy rate of
99% on the CK+, Facial Expressions and Emotions (FEED-
TUM) [16], Japanese Female Facial Expressions (JAFFE) [17]
and the Karolinska Directed Emotional Faces (KDEF) [18]
corpora.

The authors [19] propose a novel approach to face frontal-
ization using a Generative Adversarial Network combined with
a 3D Morphable Model. This approach requires a 3d scan of
faces as reference for the GAN to create a frontal representa-
tion. Moreover, the approach proposed by the authors is able
to produce landmarks to localize specific features in a face.
However, the authors do not focus on emotion recognition,
and as such, there is no emphasis on retaining facial features
necessary for emotion recognition.

Although the works discussed in this section achieve re-
markable results, they do not explicitly address some of
the main issue in facial expression recognition: pose and
illumination invariance. Some of the works either address one
or the other, or focus on face frontalization but do not evaluate
their approaches on facial expression recognition.

III. METHODOLOGY

As discussed in the previous section, although many works
in the literature have achieved state-of-the-art results, they
do not address two important problems faced by emotion
recognition: illumination and facial pose invariance. Although
some of the works do address one or the other, they do not
address both concurrently or only focus on face frontalization
but not on emotion recognition. We explicitly address these
two issues, which we have often observed to be the main
cause of poor generalization performance when employing
deep learning models in real life unconstrained environments,
and focus on retaining facial features necessary for emotion
recognition.

Deep CNNs are commonly the preferred choice for image
processing tasks due to their ability to exploit spatial informa-
tion and extract salient features in images. However, because in
this experimental setup we aim to reduce facial pose to zero
degrees, CNNs are not suitable for this task; some features
need to be relocated within image space but convolutional
kernels are unaware of global information and therefore are
unable to shift features around. On the other hand, Mulltilayer
Perceptrons (MLPs) take advantage of global features but

fail to consider spatial information. We address pose and
illumination invariance by exploiting the ability of CNNs to
retain salient features and exploit spatial information, and the
ability of MLPs to exploit global information as discussed in
more detail in section III-B. The approach proposed reduces
the need for very complex and deep architectures with high
computational cost.

Our SCAE model is trained to improve image luminance
and reduce facial pose. Accordingly, we employ the Multi-PIE
dataset [20]. The Multi-PIE dataset captures facial expression
images from a range of poses with 19 differing levels of
illumination for every image. It contains 750,000 images from
337 participants. Pose variant images were taken from a front
facing camera, 0 degrees, to angles of ±90 degrees. Images
were taken at intervals of 15 degrees. Since the images at
pose greater than ±60 do not contain many visual features,
we discard images with a pose greater than this and only
use a total of 580, 907 images covering all 19 illumination
conditions and 13 viewpoints. This corpus is randomly split
into 80% training and 20% validation and because it does not
contain labels for emotions it is only used to train the SCAE
model in an unsupervised manner.

Since the Multi-PIE corpus does not contain any labels
for emotions, and to improve the generalization performance
of our model, we combine four different datasets commonly
used in the literature: the CK+ [9]; the KDEF dataset [18];
the JAFFE dataset [17]; and the FEEDTUM database [16].
Ekman’s six universal emotion categories including neutral are
the emotion categories included in each dataset. The emotion
categories are therefore as follows: angry, disgust, fear, happy,
neutral, sad, and surprise, plus neutral. We consider neutral
states as all other emotions develop from a neutral state.

The CK+ contains 486 images from 97 participants. The
KDEF dataset contains 4900 images from 70 participants with
an even mix of males to females. The JAFFE dataset contains
213 images taken of 10 Japanese female participants. The
FEEDTUM dataset consists of video clips of 18 participants
reacting to stimuli to provoke an emotive response. Due to
every sequence in the FEEDTUM corpus starting and ending
with a neutral face, we discard the first 30% and the last 10%
of every sequence to ensure that there are no neutral faces
labeled as a given emotion.

Every individual corpus is split into 70% training and 30%
testing. The resulting subsets are then combined into a single
large corpus referred to as Combined Facial Expressions (CFE)
hereafter.

To supplement the aforementioned dataset, we collected
additional facial expression images in the uncontrolled envi-
ronments faced by social robots. The pictures were captured
with a 58-centimeters-tall humanoid robot Nao robot, which
possesses a 1.22-megapixel camera with an output of 30fps.
These images were taken in three different sessions with a
differing number of participants in each and in two separate
environments that both contained large windows. The images
were taken over a period of a few hours in each session, which
meant the lighting in the environment was varied throughout



the images. Figure 1 illustrates sample images from this
corpus.

21 male and 7 female participants took part in the sessions,
and consisted of students and university lecturers, ranging
from ages 20-55 and a mix of at least 5 cultural backgrounds.
When participants entered the room, they were asked to seat
facing the Nao robot, which was in the sitting position to
best match the height of participants’ eye line. This resulted
in varying level of tilt in the resulting images. Moreover,
participants were not asked to remove any accessories they
were wearing, or at what distance to sit away from the Nao.
They were given instructions to express seven emotions in a
natural way. This resulted in a total of 196 images.

To validate the images and overcome participant bias, we
asked three independent parties to label each image collected
with the emotion they believed it represented. If an image was
labeled as the same emotion by each person, the image was
put into the final testing dataset. From this, only 121 images
were kept. Note that these images are only used to evaluate
our model.

A. Image Pre-processing

In order to discard background noise, we employ a His-
togram of Oriented Gradients (HOG) face detector [21] to
crop faces on all corpora used in this work. Once the faces
are extracted, and since color does not add any information
necessary for emotion recognition, the images are gray-scaled
for dimensionality reduction and to speed up training times.
Because the resulting cropped images differ in size, we also
scale the images to 224 × 224 using bipolar interpolation.
In addition to this, since unlike the images in the Multi-PIE
corpus the images in the CFE dataset only contain a single
degree of illumination, we employ gamma correction to alter
the training subset of this corpus. Gamma correction changes
an image’s luminance with a non-linear alteration of the input
and output values. Given the input image i, the altered image
x is defined by:

x =

(
i

255

) 1
γ

× 255 (1)

where γ ∈ {0.4, 0.6, 0.8, ..., 3.4}. However, when γ = 1.0 the
input image remains unchanged and since these images were
taken in controlled environments we assume they have a good
level of relative luminance. As a result, the unchanged image
becomes the target reconstruction image, xµ, for every input
image x, including itself, in the SCAE model. Figure 2 shows
a sample image after γ correction.

For the Multi-PIE corpus, because for every image there
exist 19 corresponding copies with varying relative luminance
levels and zero facial pose, we estimate the relative luminance
for each one of these corresponding images and pick the
image with luminance level closest to the mean as the desired
reconstruction target. In effect, this means that the image
with facial pose at zero degrees and with good luminance
level is used as reconstruction target for itself, and all other

images with facial pose at ±{0, 15, 30, 45, 60} and 19 different
degrees of illumination. Relative luminance is defined by
Y = 0.2126R+0.7152G+0.0722B where RGB are the color
channels.

B. Unsupervised Feature Learning

Learning to classify facial expression images with facial
pose as a given emotion can be a challenge difficult to
overcome. This is due to many of the features necessary
for emotion recognition missing from the facial expression
image. As a result, contemporary work in the domain of facial
expression recognition is commonly done on frontal-view
images. However, such scenarios are unrealistic for emotion
recognition in unconstrained environments. Changes in image
luminance also increase the complexity of classifying facial
expression images and often results in poor generalization
performance. In this work we facilitate the task of classifying
facial expression images with varying luminance and facial
pose by reducing the search space for the classifier. This
is achieved by using a SCAE to reduce facial pose to zero
degrees and improve relative image luminance. This results
in a significantly smaller data distribution, and thus, an ex-
ponentially smaller search space for the classifier proposed in
section III-C.

An autoencoder is composed of an encoder and a decoder.
The encoder is a function f that maps an input x to a hidden
representation h(x) in such a way that:

h = f(x) = sf (Wx+ b) (2)

where sf is an activation function that provides the encoder
network with non-linearity. W is a weight matrix and b a bias.
The decoder is a function g that maps h to a reconstruction y
that is an approximation of the input x. It has the form:

y = g(x) = sf (Wx+ b) (3)

However, in our experimental setup we want to map an input
image x to a target reconstruction xµ that lies in a different
distribution. Therefore, the proposed autoencoder maps the
input x to a an approximation of xµ. This is accomplished
by finding the parameters θ that minimize the reconstruction
error between the reconstruction y and the target image xµ:

J(θ) =
∑
x∈Dn

L
(
xµ, g

(
f(x)

))
(4)

where L is the reconstruction error and Dn is the set of training
samples form the training subsets of the Multi-PIE and CFE
corpora.

Although convolutional networks exploit spatial information
in images, they also restrict the freedom of the reconstructions
in our set up. Recall that a convolutional layer is defined as:

C(i, j) = (I∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j−n) (5)

where I is the input image and K is the filter kernel with



Fig. 1. Sample images collected using our Nao robot. Three subjects from three different ethnic backgrounds illustrating a happy emotional states.

Fig. 2. Sample image after γ correction. From left to right: γ = {0.4, 0.6, 1, 1.4, 1.8}.

dimensions m × n. Because the size of the filter kernel only
sees a slice of the input image, also with the dimensions m×n,
the output is constrained to remain within these boundaries. In
our experimental set-up pixel values often need to be shifted
outside of this view. For instance, a facial expression image
with an estimated pose of −60 degrees will contain most of
the salient facial features within the left half, or first 100-pixel
values, of the image space. A representation of the same image
at zero degrees requires these features be placed in the center
of the image, therefore many of the values are shifted over 50
places.

Naturally, convolutional layers can be replaced with fully
connected ones since they do not take spatial information
into account. However, our experiments show that these are
prone to overfitting and fail to generalize on unseen data, i.e.
data from completely different datasets as those used during
training. As a result, we propose a SCAE model that exploits
both convolutional and fully connected layers. The encoder
model in the SCAE employs two convolutional layers with
20 and 40 5 × 5 filters, followed by a fully connected layer
with 1000 hidden units, one more convolutional layer with 80
3× 3 filters, and another fully connected layer also with 1000
hidden units. This setup ensures that existing facial features
are retained through convolutional kernels and repositioned
through fully connected layers.

The decoder element is only made of up four fractional-
strided convolutional layers, often referred to as deconvolu-
tional layers. Two of the layers have 80 3 × 3 filters and the
other two have 40 and 20 5×5 filters. Every layer in the SCAE
is followed by Batch Normalization layers for faster learning
and ReLU layers for non-linearity. The SCAE model is trained
for 20 epochs on the training subsets using Adam [22]. Higher
number of epochs or other network configurations did not
improve the performance of the model. The reconstruction loss
L between y and xµ is measured using the mean absolute value
of the element-wise difference between the desired target and
the reconstruction:

C =

∑n
i=1 |xµi − yi|

n
(6)

where xµ and y are both vectors with a total of n elements.
Learning rate is set to 0.1 and remains constant throughout
training.

Since training deep models can be a challenging task, we
employ GLW [23], which has proven to improve generaliza-
tion performance, as our training algorithm. In GLW unsuper-
vised training, each individual layer is treated as an individual
shallow network and trained individually as an autoencoder.
The trained layers are used to extract features and train the
next layer. Once all the layers are trained, these are stacked
together and trained further as a single network. However,
in previous works [24] we have observed this method to be
prone to error accumulation in early layers. This often leads
to the network learning to learn features that are far from an
optimal solution. As a result, instead of only fine-tuning the
final stack as a deep autoencoder, we fine-tune at every step:
once a shallow autoencoder is trained, we add it to the stack of
trained autoencoders and fine-tune the current stack We refer
to this approach as Gradual Greedy Layer-Wise algorithm.

The objective of the SCAE is to learn a pose and illumi-
nation invariant feature vector. Because it would be compu-
tationally expensive to estimate the luminance level of every
reconstruction, we only evaluate this on a random batch from
the validation subset every two epochs. If the difference
between the relative luminance of the reconstructed images
and that of the input batch is within a certain threshold, then
we stop the training.

However, this does not tell us much about the estimated
pose of the reconstructed image. This is because it would be
very computationally expensive to estimate it for the deeper
layers since we do not have an actual target representation.
Nonetheless, our experiments show that by the time the
training process is halted according to the relative luminance
condition, the facial pose is close enough to zero degrees for
the purpose of this research. Furthermore, the nature of this
experimental setup does not warrant a perfect reconstruction
since we only care about reducing the search space for the
classifier.



C. Facial Expression Classification

Once the SCAE model is trained, the decoder element is
removed and replaced with a classification layer to form a
CNN classifier. This model is fine-tuned for classification on
the training subset of the CFE corpus and evaluated on the
testing subset and the NaoFaces corpus. Note that none of the
images in the NaoFaces are used during the training process
and are only used for testing. The classification loss for this
model is measure using a cross-entropy criterion defined as:

y = −xc + log(
∑
j

exp(xj)) (7)

where c is the class ground-truth for input sample x. Fine-
tuning is done for 50 epochs using Stochastic Gradient Descent
(SGD) and Nesterov momentum. Learning rate is initialized
to 0.001 and remains constant.

For comparison purposes, we also train a ResNet-34 on
the CFE corpus to compare the performance of our proposed
method against a state-of-the-art architecture. We specifically
chose the 34-parameterized layer network since deeper ar-
chitectures did not produce a significant improvement in
performance. Moreover, models with different topologies such
as VGG or Inception did not produce better results. This
can be justified by the complexity of our datasets, which do
not require more layers to learn to extract salient features.In
addition, we compare against the results presented in [15]
which only deal with illumination invariance, whereas here
we deal with illumination and facial pose invariance at once.
To the best of the author’s knowledge no other works in the
literature explicitly deal with both issues at once.

The ResNet-34 model is also trained using SGD with Nes-
terov momentum for 100 epochs, further training did not yield
any better performance. We follow the same training process
as done by [25], which includes several preprocessing steps
such as resizing of images, luminance and color adjustment
and flipping the images. Evaluation was done using five crops:
all corners and center crop, as done by the authors. Without
these pre-processing steps the accuracy dropped marginally.

IV. RESULTS AND DISCUSSION

A. Unsupervised Feature Learning

In this work we have introduced a novel SCAE architecture
that exploits convolutional layers to retain spatial information
and salient facial features through filter kernels, and fully con-
nected layers to relocate these features and reduce facial pose
to zero degrees. The SCAE model also learns to reconstruct
all images with a similar level of image luminance and can
compensate for missing information, e.g. when some of the
facial features are not visible it predicts what they look like.
In addition, the SCAE model is trained using Gradual-GLW,
an improved version of GLW.

As it can be observed in Figure 3 the reconstructions
produced by the SCAE model retain all the facial features
necessary for emotion recognition intact. In cases where the
images have a facial pose and very poor illumination, the

SCAE model can still predict what the frontal view of the
face looks like. Moreover, all reconstructions have virtually
the same level of image luminance. In effect, by reducing
facial pose and improving image luminance, our SCAE model
reduces the complexity and distribution of the input data,
greatly reducing the search space of the CNN classifier,
which only has to deal with frontal view images with good
illumination. The success of the SCAE model in reducing
facial pose and improving image luminance also indicate that
Autoencoders can in fact learn to map a given distribution to
a different distribution.

The proposed training method produces image reconstruc-
tions with significantly less error than when using GLW over
the proposed Gradual-GLW. Gradual-GLW also resulted in
faster convergence of the SCAE. Moreover, much of the
success of the SCAE model in reconstructing facial expression
images with a facial pose as images with zero degree pose
is due to our novel SCAE architecture. The SCAE model
proposed employs convolutional layers to exploit salient fea-
tures and spatial information, and fully connected layers to
reposition these features.

B. Facial Expression Classification

In [15] we proposed a similar approach to address illumina-
tion invariance and reported a state-of-the-art accuracy rate of
99.14% on the test subset of the CFE corpus. The pre-training
approach was similar to the one proposed in this paper; a
SCAE that maps an input image to a representation of the
same with better luminance. However, in this work we have
also addressed pose invariance and trained the SCAE using our
proposed Gradual-GLW training method. The classification
results obtained using the methodology introduced in this
work when evaluated on the CFE corpus are of 99.52%,
marginally improving the state-of-the-art reported in [15] and
significantly outperforming the approach done by [14], who
obtain 90.52% on the CK+ corpus using their illumination
invariant approach which also includes a SCAE. Although not
significantly better, the results achieved in this work support
the proposed methodology.

As it can be observed in Table I, when tested on our data
collected from the Nao robot our accuracy rate is 79.75%.
The proposed method in this research also outperforms the
proposed method by [15] on unseen data. Nonetheless, the
method presented here tries to deal with pose and illumination
invariance, compared to just illumination as done in [15]. Ad-
ditionally, when neither pose nor illumination are considered,
we obtain a significantly lower performance of 50.80% on
unseen data. These results demonstrate the potential of our
pre-training approach which intends to reduce the search space
of the classifier by reducing the data distribution.

In regards to specific classes, Disgust, Fear, Neutral,
were some of the most misclassified emotions by the other
two approaches and for which there was more room for im-
provement. Moreover, because in previous work, these classes
along with Surprise were mostly confused with one another,
by improving the recognition of one of them, the model is



Fig. 3. Sample image reconstructions to zero degree facial pose.

TABLE I
CLASSIFICATION PERFORMANCE COMPARISON ON OUR NAOFACES CORPUS: RESNET-34 —STATE-OF-THE-ART CLASSIFIER; CNN —ILLUMINATION

INVARIANT CLASSIFIER FROM [15]; SCAE+CNN(OURS) POSE AND ILLUMINATION INVARIANT CLASSIFIER PROPOSED IN THIS WORK. NOTE THAT THIS
CORPUS IS ONLY USED FOR TESTING.

Resnet34 CNN [15] SCAE+CNN(ours)
Angry 50.00% 85.14% 85.14%
Disgust 41.16% 66.66% 75.00%
Fear 54.54% 72.72% 81.81%
Happy 64.28% 96.43% 96.43%
Neutral 38.46% 42.3% 57.69%
Sad 54.54% 72.72% 72.72%

Surprise 52.63% 78.95% 89.47%
Total 50.80% 73.55% 79.75%

able to better tell the difference between them. Sad has always
been one of the most difficult emotions to classify as we have
observed in previous works and in the literature. This has
mostly been confused with Neutral, which also explains the
low performance on that particular class. Moreover, Neutral
is the only class to have been confused with most others.
We hypothesize that this is in part due to employing the
FEEDTUM corpus in our training data. This is composed of
transitions from neutral states to peak of a given emotion, and
back to a neutral state. We discarded the first 30% and last
10% of every sequence but every sequence is different and
this did not guarantee that all the neutral faces were removed
completely. As a result, many images with a neutral state were
labelled as a given emotion during training.

Finally, happy is the emotion best classified by the other
two architectures and as such the one with less room for im-
provement. The few remaining misclassifications may be due
to the way people express emotions, since our dataset contains
images from subjects with different ethnic backgrounds. For
instance, in Figure 1, two of the subjects express happiness
with a big smile and illustrating their teeth, whereas the last
one does not. These subtle differences are likely to be seen
as different by the network, given that the CNN will highlight
different salient features to represent each image.

The difference in performance on seen and unseen data
can be attributed to the difference in the distribution of both.
In the NaoFaces corpus, participants were allowed to wear
scarves, glasses, hats, and other accessories. As opposed to
the images in the CFE corpus in which facial features of
all participants are clearly visible. Moreover, other factors
such as facial tilt may have an effect on the performance
of the model. Nonetheless, the proposed methodology does
significantly outperform state-of-the-art classifiers when no

pre-training is done.
These observations demonstrate the robustness of our

method when dealing with nonuniform data or changes in the
data distribution. Moreover, our model is more suitable and
effective for the problem of real time emotion recognition, as
it able to classify images of those who are not looking directly
at the camera. Our model is able to reconstruct the parts of
an image that are not visible, such as when only part of a
face is visible due to high degrees of pose. This implies a
reduced need for training with such large amounts of data, as
the model could compensate for when information is missing
from an image.

To the best knowledge of the authors, this is the first work
in the literature that attempts to jointly address pose and
illumination invariance in the domain of facial expression
recognition. Although other works have focused on pose
invariance, they do not apply it to the domain of emotion
recognition. Similarly, other contemporary works addressing
illumination invariance employ more complex or hard-coded
methods such as noise injection [26], blurring images with
Gaussian filters [27], a combination of histograms, principal
component analysis (PCA) and discrete cosine transforms
[28], or complex and very deep CNN architectures [29]. Our
approach greatly improves on such methods by proposing
a method that learns to adjust both, illumination and facial
pose, and significantly reducing the search space of the CNN
classifier.

Although our method heavily relies on the availability
of multi-illumination data, we have also demonstrated that
gamma correction can be employed when there exists a lack
of data. Moreover, in theory, our approach should reduce the
need for more complex image pre-processing approaches often
employed when training deep networks such as the use of



histograms or adjustment of color [25].

V. CONCLUSIONS AND FUTURE WORK

In this work we have introduced a novel architecture for
pose and illumination towards real time emotion recogni-
tion. Our method exploits convolutional and fully connected
layers to improve image luminance and reduce facial pose
to zero degrees using our training approach Gradual-GLW,
which overcomes some of the limitations of GLW, mainly
error accumulation, and produces remarkable facial pose and
illumination invariant reconstructions. We also demonstrated
that our proposed method offers state-of-the-art classification
performance on unseen data collected in uncontrolled environ-
ments with a Nao robot.

Our method achieves 99.52% classification performance on
a combined dataset of standard facial emotion images. When
evaluated on novel data with nonuniform conditions taken by
a Nao robot we achieve an accuracy of 79.75%. This is an
improvement on previous works on emotion recognition in
uncontrolled environments by 28%. Our method reconstructs
faces with a facial pose and varying illumination as faces with
zero facial pose and good illumination in order to get the most
accurate classification. By training to deal with varying poses,
we improve the accuracy of emotion classification, which
aids in the progress towards real-time emotion recognition in
unconstrained environments for social robots.

To extend on this work in future, considerations could be
made to facial tilt, such as a participant facing upwards.
Similar to pose invariance, facial tilt also results in some
of a participant’s face not being visible, leading to a loss in
information. Future work will also explore using a Generative
Adversarial Autoencoder [30] as these have demonstrated to
produce remarkable reconstructions.
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