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Abstract—Due to the excessive use of cloud-based machine
learning (ML) services, the smart cyber-physical systems (CPS)
are increasingly becoming vulnerable to black-box attacks on
their ML modules. Traditionally, the black-box attacks are either
transfer attacks requiring model stealing, or score/decision-based
gradient estimation attacks requiring a large number of queries.
In practical scenarios, especially for cloud-based ML services
and timing-constrained CPS use-cases, every query incurs a huge
cost, thereby rendering state-of-the-art decision-based attacks
ineffective in such settings. Towards this, we propose a novel
methodology for automatically generating an extremely fast and
imperceptible decision-based attack called FaDec. It follows two
main steps: (1) fast estimation of the classification boundary
by combining the half-interval search-based algorithm with
gradient sign estimation to reduce the number of queries; and
(2) adversarial noise optimization to ensure the imperceptibility.
For illustration, we evaluate FaDec on the image recognition
and traffic sign detection using multiple state-of-the-art DNNs
trained on CIFAR-10 and the German Traffic Sign Recognition
Benchmarks (GTSRB) datasets. The experimental analysis shows
that the proposed FaDec attack is 16x faster compared to the
state-of-the-art decision-based attacks, and generates an attack
image with better imperceptibility for a much lesser number of
iterations, thereby making our attack more powerful in practical
scenarios. We open-sourced the complete code and results of our
methodology at https://github.com/fklodhi/FaDec.

I. INTRODUCTION

Machine learning (ML)-based modules in smart
cyber-physical systems (CPS) are vulnerable to several
attacks that can generate adversarial examples for
misclassification [1]–[3]. Most of these attacks work under
the white-box settings1 and compute the gradient of the
loss function with respect to the input [4]–[12]. These
gradient-based attacks can potentially be neutralized by
using the gradient masking [13], defensive distillation [14],
pre-processing-based defenses [15], [16], or non-differentiable
classifier [17]. In practical scenarios, an adversary may only
have access to the inputs and outputs of the ML model. For
instance, the cloud-based ML services a offer black-box access
to their trained models to the clients [18]. For such scenarios,
several black-box attacks [19]–[26] have been developed,
which typically perform transfer attacks using model stealing
or score-based gradient estimation using complete/partial
output probability vector [27]–[29]. These attacks can be
nullified either by hiding the probability vector [30] (for
score-based attacks), or by using a few of the defenses

*Faiq Khalid and Hassan Ali have equal scientific contributions.
1Note, all the white-box adversarial attacks can be implemented in black-box

settings by combining it with model stealing attacks.
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Fig. 1: Adversarial Examples generated by the decision-based
attack [31] when the number of queries is restricted to 1000 and
10000. This analysis shows that the perception / visibility of the
attack noise increases significantly by reducing the number of allowed
queries (which is the case of real-world systems, like cloud-based ML
services or resource-constrained CPS). For instance, in case III, the
perturbation norm (d) of the attack noise increases, 1.54 to 293.1.

mentioned above for white-box attacks (for model stealing
attacks).

Recently, decision-based attacks that use the final decision
of the ML model have been proposed [31]–[34]. However,
most of these attacks deploy the random search algorithm with
multiple reference samples, which significantly increases the
number of queries to generate an imperceptible attack noise.
For example, if the number of queries (Q) is restricted to
1000, the decision-based attack [31] generates the adversarial
examples with a highly perceptible noise, as shown by our
experimental analysis in Fig. 1. If the number of queries (Q)
is increased to 10000, it generates the adversarial examples
with imperceptible noise, see Fig. 1. Similarly, other so-called
query-efficient score/decision-based attacks require more than
8000 queries [18]. In a practical scenario, especially in
cloud-based ML services and resource and timing-constrained
CPS systems (like autonomous vehicles), every query incurs
with a huge cost, thereby requiring a much faster attack
compared to the state-of-the-art decision-based attacks. These
observations lead to the following key research question, as
targeted in this paper: how to design a resource-efficient (in
terms of a reduced number of queries) attack methodology to
automatically generate an attack image very fast while ensuring
the imperceptibility2?

2Imperceptibility is ensured by maximizing the Structural Similarity Index
(SSIM) and Cross Co-relation Coefficient (CC), and by minimizing the
Perturbation Norm (d).

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



A. Novel Contributions and Concept Overview

To address the above research question, we propose a novel
methodology to perform a Fast Decision-based (FaDec3) attack
(see Fig. 2), which employs the following two key techniques:
1) To significantly reduce the number of queries, our

methodology employs an iterative half-interval search
for finding a sample image close to the classification
boundary (Section III). The reason for choosing the iterative
half-interval search algorithm is that it requires only one
reference sample, and it converges much faster compared to
the random iterative search.

2) To maximize the imperceptibility, an optimization algorithm
(Section IV) is proposed that combines the half-interval
search algorithm with a distance-based gradient sign
estimation to identify the adversarial example close to the
classification boundary.
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Fig. 2: Overview of our methodology to automatically generate the
FaDec Attack. Novel contributions are shown in “Blue” box.

To illustrate the effectiveness of FaDec, we evaluate it
for the image recognition and traffic sign detection using
multiple state-of-the-art DNNs (see details in the experimental
setup, Section V-A), available in an open-source library
(CleverHans [36]), trained on CIFAR-10 and the German
Traffic Sign Recognition Benchmarks (GTSRB) datasets. Our
experimental results show that the proposed methodology
is 16x faster compared to the state-of-the-art decision-based
attacks [31][37], in successfully generating imperceptible
adversarial examples. Our results show that, on average,
the perturbation norm of the adversarial images w.r.t. their
corresponding source images is decreased by 96.1%, while
their SSIM and CC w.r.t. the corresponding clean images are
increased by 71.7% and 20.3%, respectively.

Open-Source Contributions: We have released our
complete code and configurations, for reproducible research,
at https://github.com/fklodhi/FaDec.

II. PROPOSED METHODOLOGY FOR GENERATING THE
FADEC ATTACK

The goal of our methodology is to generate the minimum
noise perturbation that is required to map an input image to
a targeted “incorrect” class (for a targeted misclassification
attack), or to ensure a “random” misclassification (for an
un-targetted attack) with the minimum possible number of
queries. Fig. 3 shows the complete step-by-step flow of our

3It is the same with renaming RED-Attack [35]

𝐼𝐶 = 𝐼𝐴 ; Iff 𝑓(𝐼𝑐) = 𝑓(𝐼𝐴)
𝐼𝐶 = 𝐼𝐵 ; Iff 𝑓(𝐼𝐶) = 𝑓(𝐼𝐵)
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Fig. 3: Operational flow with detailed steps of our methodology to
perform a fast decision-based attack (FaDec).

methodology to generate the FaDec attack, as explained below,
while Fig. 4 explains the flow with the help of a pictorial
example.
1) It selects a reference image (IB) from the input (i.e., camera)

whose output label is different from the target image (IA) (in
case of un-targeted misclassification), or equal to a specific
label (in case of targeted misclassification). Using IB and
IA, it performs the iterative half-interval search to find a
sample Ii on the classification boundary (see Step 1 in
Fig. 4). Here, “on the classification boundary” means that
the distance of the sample from the classification boundary
is within a tolerable range δmin.

2) Afterward, it introduces perturbations in the sample Ii
such that the output label of updated perturbed image
Iibe is different from the IA (in case of un-targeted
misclassification) or equal to a specific label (in case of
targeted misclassification), see Step 2 in Fig. 4.

3) Then, it computes the gradient sign by comparing the
distance of the perturbed sample Iibe; from the target sample
IA with the distance of the previously perturbed sample
Ii from the target sample IA (see Step 3 in Fig. 4). We
choose to estimate the gradient sign instead of gradient
because it requires only a single query and guides the
half-interval search algorithm to search in the correct
direction. Moreover, estimating the complete gradient just
to guide the search algorithm increases the complexity and
thereby the number of queries.

4) The proposed methodology then again performs the
half-interval search using the target image IA and the
perturbed sample Ii (see Step 4 in Fig. 4).

5) This process is repeated until distance of the perturbed
sample Ii from the target image IA is within the tolerable
range (defined by ∆max), or when the number of queries is
equal to the maximum allowed number of queries (Qmax),
see Step 5 in Fig. 4. The attack flow of our methodology is
formally given by Algo. 1.

A. Mathematical Formulation of FaDec

To determine the adversarial example, we use one of the most
commonly used cost function defined by the CW attack [8].

cost = c× (f(Xadv)− f(Xtarget))
2 +

∑
(X −Xadv)2 (1)
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Fig. 4: An abstract example to show the step-by-step procedure of our
proposed methodology to perform the FaDec attack. Note, in the figure,
IA, IB , and Ii represent the target image from class A, reference image
from targeted label (i.e., class B) and adversarial image, respectively.
In case of an un-targeted attack, IB , represents the reference image
from any other class except the class A.

Where, Xadv , Xtarget and c represent the adversarial image,
targeted image and constant, respectively. The reason behind
choosing this cost function is that it minimizes the difference
from target image ((f(Xadv)− f(target))2) and magnitude of
perturbation (

∑
(∆x)2), simultaneously. However, in our attack

the function (f ) is discrete and differentiable?. Therefore, we
reformulate the above cost function as,

cost = c× (f(Xadv)! = f(Xtarget)) +
∑

(X −Xadv)2 (2)

In the cost function, larger value of c increases the converging
time because it leads to larger value of cost function
that eventually increases the time required to compute the
adversarial example. Therefore, in this cost function the value
of c should be close to 1. For ensuring the convergence of
the cost function, we propose use the following functions to
approximate the gradient of the cost function.

If the current adversarial example does not belong to target
class then the gradient of the cost function is computed as:

∂cost

∂Xadv
= Xadv −Xtarget (3)

However, if the current Ii belongs to the target class, the
gradient of the cost function cost computed as:

∂cost

∂Xadv
= 2× (Xadv −X) (4)

After computing the gradients of the cost function, the new

Algorithm 1 Methodology to perform FaDec Attack
Input:

IA = Target image;
IB = Reference image;
∆max = Maximum Square L2-Distance tolerable;
Qmax = Maximum allowed queries;
n = Number of pixels to perturb;
θ = Relative Perturbation in each pixel;
δmin = Max. Allowed Perturbation;

Output:
Ii = Adversarial Image;

1: Compute Ii = Iibe using Algo. 2;
2: repeat
3: Update Ii = Iige and compute g using Algo. 3;
4: Update Ii = Iieu using Algo. 4;
5: Compute Ii = Iibe using Algo. 2;
6: until (

∑
(Ii − IA)2 > ∆max) & Q ≤ Qmax

adversarial instance is computed as:

Xadv,new = Xadv,old − α×
∂cost

∂Xadv
(5)

In state-of-the-art and above mentioned gradient estimation
function, the gradient is estimated in a linear manner, either
towards the target example or towards the source example until
we reach the boundary. This linear estimation increases the
time required to compute the required adversarial example. To
address this issue, we propose to use the half-interval search,
as shown in Algorithm 2 and Algorithm 3. Moreover, linear
estimation, either towards the target example or towards the
source example, will cause infinite oscillations at the transition
of the boundary. To counter this problem, we redefine our cost
function for the region characterized by the δmin distance of
each pixel to the boundary. The new cost function is defined as

cost =
∑

(Xadv −X)2 (6)

We optimize this new cost function using stochastic
Zeroth-Order Optimization. First, we randomly select n number
of pixels in the Xadv and introduce random perturbations in the

selected pixels to compute
−
Xadv . The zeroth-order gradient is,

∂cost

∂Xadv
=

∑
(Xadv −X)2 −

∑
(
−
Xadv −X)2

Xadv −
−
Xadv

(7)

Xadv,new = Xadv,old − λ×
∂cost

∂Xadv
(8)

The magnitude of “λ” is adjusted efficiently to make a
jump that brings the adversarial examples closest to the source
example.

In the following, we explain the proposed techniques
for “estimating the sample on the classification boundary”
(Section III) and “optimizing the attack noise” (Section IV).

III. ESTIMATING THE SAMPLE Ii ON THE CLASSIFICATION
BOUNDARY

We first formulate the problem of estimating the sample on
classification boundary in the following goal.

Goal: Let IA, IB and δmin be the source image (class: A),
reference image (class: other than A) and maximum allowed
estimation error. The goal of this algorithm is to find a sample



Algorithm 2 Estimating a Sample on Classification Boundary
Input:

IA = Target image; IB = Reference image;
δmin = Max. Allowed Perturbation;

Output:
Iibe = Adversarial Image;

1: Select a sample Adversarial Image (Ii)
2: Iibe = IA+IB

2
;

3: repeat
4: k = f(Iibe); Q = Q+ 1;
5: if f(IA) 6= k then
6: IB = Iibe;
7: else
8: IA = Iibe;
9: end if

10: δ = max(IA − Iibe);
11: until δ ≤ δmin

Ii which has tolerable distance (less than δmin) from the
classification boundary and has a label different from the source
image. Mathematically, it can be defined as:

∃ Ii : f(Ii) 6= f(IA) ∧ max(Ii − IA) ≤ δmin (9)

To generate the appropriate Ii, the proposed algorithm first
finds the half way point Ii between the source image (IA) and
the reference image (IB) by computing the average of the two,
and then replaces IA or IB with Ii depending upon the class in
which Ii falls (see line 2 in Algo. 2). For example, if the label of
the half way point Ii is class A then algorithm replaces IA with
Ii, and if its label is not A then the algorithm replaces IB with
Ii (see lines 4-9 Algo. 2). The algorithm repeats this process
until the maximum distance of Ii from the IA is less than δmin,
and while ensuring the f(Ii) 6= f(IA). The proposed boundary
estimation can be used for targeted attack if we choose the
reference image from the target class.

IV. OPTIMIZE THE ATTACK NOISE

To ensure the imperceptibility of the attack noise on the
sample Ii (output of the boundary estimation), we propose to
incorporate the “adaptive update in the zeroth order stochastic
algorithm”. We first formulate the problem of optimizing the
attack noise in the following goal.

Goal 2: Let IA, IB , δmin and Ii be the source image (class:
A), reference image (class: other than A), maximum allowed
estimation error and perturbed image, respectively. The goal of
this algorithm is to minimize distance of Ii from IA2 while
ensuring that it has label different than the source image.
Mathematically, it can be defined as:

∀ Ii min(Ii − IA) : f(Ii) 6= f(IA) (10)

To achieve this goal, we first identify the gradient sign g
to guide the half-interval search in appropriate direction for
identifying the sample Ii on the local minima (with respect
to the distance from the target image IA) of the classification
boundary. For example, if the gradient sign is negative (as
illustrated by the green arrow in Fig.5) then we continue moving
in the same direction; otherwise we change the direction (as
illustrated by the red arrow in Fig.5), as shown in lines 5-6 of
Algo. 3.

Once the direction is identified, the next key challenge is to
select the appropriate jump size λ. Therefore, to select the λ,

Algorithm 3 Gradient Sign Estimation
Input:

IA = Target image;
Iibe = Output of Algorithm 2;
n = Number of pixels to perturb;
θ = Perturbation in each pixel;

Output:
Iige = Adversarial Image; g = Gradient Sign;

1: Define I0 of size Ii and set all its values to 0;
2: Randomly select n pixels in I0 and set their values to the

maximum value of a pixel;
3: Iige = Iibe + θ × I0; g = −1;
4: Update Iige = Iibe using Algo. 2;
5: if

(∑
(Iige − IA)2

)
>
(∑

(Iibe − IA)2
)

then
6: Compute g = 1;
7: end if

Algorithm 4 Adaptive Update to Find Ii on the Classification
Boundary with Minimum Distance from IA

Input:
IA = Target image;
Iibe = Output of Algorithm 2;
Iige = Output of Algorithm 3;
g = Gradient Sign;
j = Maximum Jump;

Output:
Iieu = Attack Image;

1: ∆ = −g × (Iige − Iibe);
λ = j;

2: repeat
3: Iieu = Iibe + λ×∆;
4: Update Iige = Iibe using Algo. 2;
5: λ = λ

2
;

6: until (
∑

(Iieu − IA)2 >
∑

(Iibe − IA)2) & (λ > 0.004)

we propose an algorithm (Algo. 4) to efficiently find the local
minima on classification boundary. The proposed algorithm first
initialize the jump size λ with the maximum jump size j and
then reduces it by half in each iteration until the distance of
the perturbed sample Iieu from IA is less than or equal to the
the distance of the sample Iibe form IA.

Then to move Iieu on the classification boundary, it applies
Algo. 2 on the sample Iieu and finds the updated perturbed
sample Iibe. Finally, algorithms 3, 4 and 2 are repeated until the
FaDec attack finds the sample Ii on the classification boundary
with minimum distance from IA, as illustrated in Algo. 1 and
also illustrated in Steps 3 to 5 in Fig. 4.

V. RESULTS AND DISCUSSIONS

A. Experimental setup

To demonstrate the effectiveness of the proposed
RED-Attack, we evaluate several un-targeted attacks using the
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Fig. 5: A Pictorial example to illustrate the process of identifying the
gradient sign and Ii on the classification boundary with minimum
distance from IA.



following experimental setup.
1) Datasets: CIFAR-10 (70% Test Accuracy), GTSRB (95.2%

Test Accuracy)
2) DNN for CIFAR-10: Conv2D(64, 3x3) - Conv2D(64, 3x3)

- Conv2D(128, 3x3) - Conv2D(128, 3x3) - Dense(256) -
Dense(256) - Dense(10) - Softmax()

3) DNN for GTSRB: Lambda(lambda p: p/255.0 - 0.5) -
Conv2D(3, 1x1) - Conv2D(16, 5x5, (2, 2)) - Conv2D(32,
3x3) - MaxPool2D( (2, 2), (2, 2)) - Conv2D(64, 3x3) -
Conv2D(128, 3x3) - Flatten() - Dropout(0.5) - Dense(128)
- Dropout(0.5) - Dense(43) – softmax()

4) Training parameters for DNNs: Epoch = 15; Batch Size
= 128; Optimizer = Adam; Learning Rate = 0.0001; Decay
= 1× 10−6.

B. Evaluation Parameters

For comprehensive evaluation, we use the following
parameters. Their value ranges considered in our experiments
are shown in Table I.
1) δmin measures the maximum tolerable error distance

between the actual classification boundary and the estimated
boundary, as illustrated in Fig. 5. We computed it as the
maximum distance between the two samples in half-interval
search (line 10 of Algorithm 2).

2) n defines the number of pixels, randomly selected to be
perturbed in each iteration in order to estimate the gradient
of the distance of the adversarial example from the source
example (Algorithm 3).

3) θ defines the magnitude of the noise added in each of n
randomly selected pixels relative to the maximum value, a
pixel can have.

C. Evaluation Metrics for Imperceptibility

To evaluated the imperceptibility of the adversarial image,
we use the following metrics.
1) Perturbation Norm (d) is defined as the mean square

distance between the adversarial image and the clean image.
Note: for high imperceptibility, the value of the d should be
close to “0”.

2) Cross Co-relation Coefficient (CC) is defined as the
degree of probability that a linear relationship exists between
two images. To compute the CC, we used the Pearson’s
correlation coefficient [38] from python library “skimage”.
Note: for high imperceptibility, the value of the CC should
be close to “1”.

3) Structural Similarity Index (SSIM) is defined as the
perceptual similarity between two images. To compute the
SSIM, we used a built-in function of from python library
“skimage”. This function computes the SSIM based on
contrast, luminance and structure comparison [39]. Note:
for high imperceptibility, the value of the SSIM should be
close to “1”.

TABLE I: Values of Evaluation Parameters for Experimental Analysis

Evaluation
Parameter

Values used in Experiments
Range Values

δmin 1 to 15 1, 5, 10, 15
n 5 to 50 5, 10, 30, 50
θ 0.0196 to 0.1962 0.0196, 0.0392, 0.1176, 0.1962
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Fig. 6: Performing the Targeted and Un-targeted Attacks on the
classifier using only the decision provided by the classifier. (Top 10
rows) Adversarial examples found for the targeted attacks. Correct
labels are shown top in black on top. The target labels are shown in
red on left. (Last Row) Adversarial examples found for un-targeted
attacks. Maximum number of queries = 105

Adversarial examples found for the targeted and un-targeted
attack scenarios against the black-box classifier are shown in
Figure 6. Three images have been highlighted. We find that
these images are similar to the images used as initial targets
for them. In other words, our black-box attack fails to find a
satisfactory adversarial example in these cases. However, we
repeat the experiment for the same source and target image
several times and find that the algorithm never fails again. There
may be many reasons as to why it failed for the first time. The
simplest one being a rare encounter of the local minima or the
saddle point.

D. Evaluation and Discussion

In this section, we evaluate our methodology w.r.t. d, CC
and SSIM, to illustrate different design trade-offs, and impact
of different parameters.

Number of Queries: Figs. 7, 8 and 9 show that the proposed
FaDec attack converges very fast to achieve the desired
imperceptibility. By analyzing these results, we observed
that FaDec requires less than 500 queries to generate the
imperceptible adversarial noise, which is almost 16x less
than the number of queries required by the state-of-the-art
decision-based attack [31]. For comprehensive evaluations, we
also analyzed the effects of different parameters, i.e., δmin, n
and θ, on the convergence of FaDec attack, as shown in Fig. 7
and 8. By analyzing these results, we make the following key
observations:
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Fig. 7: Effects of δmin, n and theta on the convergence of FaDec attack (perturbation norms vs. the number of queries) for state-of-the-art
CNNs trained on the GTSRB dataset. The dotted vertical lines in the figure show the number of queries required to converge the state-of-the-art
decision-based attack [31]. These analyses show that in all the cases, our FaDec attack using appropriate values of δmin, n and theta converges
16x faster than the state-of-the-art decision-based attack [31].

1) As δmin increases, the quality of the adversarial example
at a given query count decreases, due to the increase in its
distance from the source example, as shown in Figs. 7(a) and
8(a). The reason of this behavior is that the larger value of
δmin results in an imprecise boundary point, which in turn
may result in an incorrect value of the estimated gradient
direction, as illustrated in Fig. 5. However, the smaller value
of δmin results in a correct gradient direction.

2) A larger value of n, initially results in a faster convergence,
as shown in Figs. 7(b) and 8(b). The reason is that, we
only need to estimate the overall trend of the boundary at
the initial stages. Estimating the updated direction for the
adversarial example by perturbing a large number of values
at once helps to achieve better results. However, a larger
value of n is highly vulnerable to divergence as the attack
progresses, as shown in Figs. 7(b) and 8(b). This observation
suggests that the attack can significantly be improved by
changing the number of pixels perturbed, as the algorithm
progresses in an adaptive manner.

3) Similar trend is observed with the changes in θ because
large perturbations lead to higher value of δmin. This in turn
helps the algorithm to initially converge faster. However,
small values of θ give a more stable convergence towards
the solution, as shown in Figs. 7(c) and 8(c).

E. Key Insights

1) Generally, the effect of changing evaluation parameters on
the perturbation norm of the adversarial example is almost

similar for the GTSRB and the CIFAR-10 datasets.
2) We observe that the adversarial examples for un-targeted

attack against the GTSRB dataset converge much faster as
compared to the CIFAR-10 dataset, as shown in Figs. 7 and
8. We attribute this to the much larger number of classes in
the GTSRB dataset as compared to that in the CIFAR-10
dataset.

3) As was observed in the case of CIFAR-10, the attack
can significantly be improved by adaptively changing the
evaluation parameters as the attack progresses see Figs. 7(c)
and 8(c).

Imperceptibility: Fig. 9 shows the evolution of the adversarial
example with respect to number of queries. The adversarial
images generated in the first few iterations are not
imperceptible, even not recognizable (see adversarial images
after 20 queries in Fig. 9), but over time the optimization
algorithm achieves the imperceptibility. It can also be observed
that the adversarial noise is not visible after 200 queries, which
shows the efficiency of our methodology.

VI. COMPARISON WITH THE STATE-OF-THE-ART ATTACK

We compare our results with the state-of-the-art
decision-based attack [31] based on its implementation
provided in an open-source benchmark library, FoolBox [37].
We limit the maximum number of queries to 1000 and evaluate
our attack for different values of δmin, n and θ. To compare
our results with the decision-based attack [31], we use three
evaluation metrics, i.e., CC, Perturbation Norm (the squared
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Fig. 8: Effects of δmin, n and theta on the convergence of FaDec attack (perturbation norms vs. the number of queries) for state-of-the-art CNNs
trained on the CIFAR-10 dataset. The dotted vertical lines in the figure show the number of queries required to converge the state-of-the-art
decision-based attack [31]. These analyses show that in all the cases, our FaDec attack using appropriate values of δmin, n and theta
converges 16x faster than the state-of-the-art decision-based attack [31].
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Fig. 9: The adversarial examples generated by FaDec using CIFAR-10
dataset w.r.t. the query count.

L2-Norm) and SSIM of the adversarial image w.r.t the source
image.

Fig. 10 shows that the adversarial examples produced by
FaDec attack are significantly superior to those produced by the
decision-based attack. The reason is the binary stepping while
searching for the boundary point, and the efficient adaptive
update process while computing a new adversarial example.
For example, in the Case C, the perturbation norm after 1000
queries is almost 3 times higher than the different settings of
FaDec attack. Similarly, the achieved CC and SSIM by FaDec
attack is almost 2.5 times higher than that by the decision-based
attack of [31].

Note, in the long run, if the query efficiency is not much
of a concern or the number of maximum queries is limited

to 105 instead of 103, the adversarial examples found by the
decision-based attacks can be better than those found by the
FaDec attack. However, we would like to emphasize that the
goal of FaDec attack is to propose an efficient attack with very
few queries, such that it can be employed in practical scenarios,
e.g., cloud-based ML services and resource-constrained CPS, as
discussed in Section I.

VII. CONCLUSION

We proposed a novel methodology to perform a Fast
Decision-based (FaDec) attack novel. It utilizes a half-interval
search-based algorithm to estimate the classification boundary,
and an efficient adaptive update mechanism to boost the
convergence of an adversarial example for decision-based
attacks, in query limited settings. We evaluated it for
the CIFAR-10 and the GTSRB datasets using multiple
state-of-the-art DNNs. FaDec is 16x faster compared to
state-of-the-art decision-based attack [31]. Furthermore, we
showed that for 1000 queries, the state-of-the-art decision-based
attack is unable to find an imperceptible adversarial example,
while the FaDec attack finds a sufficiently imperceptible
adversarial example. On average, the perturbation norm of
adversarial images (from their corresponding source images)
is decreased by 96.1%, while the values of their SSIM and
CC (with respect to the corresponding clean images) are
increased by 71.7% and 20.3%, respectively. The complete
code and results of our methodology are available at
https://github.com/fklodhi/FaDec.
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Fig. 10: Comparison of FaDec for different cases with the state-of-the-art decision-based attack [31] for different values of δmin, n and θ. The
maximum number of allowed queries Qmax is fixed to 1000. The analyses show that FaDec generates better imperceptibility of adversarial
noise as compared to state-of-the-art decision-based attack [31]. For example, in the case the decision-based attack [31] for Case C, the values
of perturbation norm, CC and SSIM are approximately 2.5 times higher than the different settings of FaDec.
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