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Abstract—In the past two decades, radar-based human sensing
has become a topic of intense research. Unlike vision-based tech-
niques which require the use of camera, radars are unobtrusive
and privacy preserving in nature. Further, radars are agnostic
of the lighting conditions and can be used for through-the-wall
imaging thereby making them hugely effective in many situations.
Compact, affordable radars have been designed that can be
easily integrated with remote monitoring systems. However, the
classical machine learning techniques currently used for learning
and inferring human actions from radar images are compute
intensive, and require large volume of training data, making them
unsuitable for deployment on the network edge. In this paper,
we propose to use the concepts of neuromorphic computing and
Spiking Neural Networks (SNN) to learn human actions from
data captured by the radar. To the best our knowledge, this is
the first attempt of using SNNs on micro-Doppler data from
radars. Our SNN model is capable of learning spatial as well
as temporal features from the data and our experiments have
resulted in 85% accuracy which is comparable with the classical
machine learning approaches that are typically used on similar
data. Further, the use of neuromorphic and SNN concepts make
our model deployable over evolving neuromorphic edge devices
thereby making the entire approach more efficient in terms of
data, computation and energy consumption.

I. INTRODUCTION

Radar-based human sensing has become a topic of in-
tense research in last two decades. Special radar designs
are being investigated for unobtrusive detection of human
physiology [1] as well as recognizing gestures/activities [2].
These radars are compact in size, affordable and can be
easily integrated to remote monitoring systems. Using radar for
human sensing has certain advantages over vision technologies
in that this is privacy preserving, independent of lighting
conditions, usually does not require background subtraction
(static background is defined as ‘Clutter’ in radar terminology)
and can be used for through-the-wall imaging. Amongst the
radar technologies, ‘Continuous Wave’ (CW) or ‘Frequency
Modulated Continuous Wave’ (FMCW) radars are preferred
for short range (upto 15 metres) and indoor applications like
elderly care [3]. For CW radar, one measures motion directly
in terms of Doppler frequency while for FMCW or Pulse
radars, Doppler frequency is derived through pre-processing.
However the disadvantage of CW radar is that it can not
measure the distance of the target from the radar. Therefore,
FMCW radars are usually considered for such applications. It
is to be noted that human movements constitute articulated

motion vide linkages through flexible joints. When a rigid
body moves in the field of view of the radar, the return
signal displays doppler frequency by taking the difference
between transmitted and received frequencies. But when a
person performs some action, even while standing still, the
radar return displays time varying doppler frequency patterns.
This is known as micro-Doppler effect. Thus, the radar signal
is usually processed by generating spectrogram or joint time-
frequency plots. The classification and detection of different
actions from such radar signals is complex and we observe a
shift of research from radar system design to designing new
signal processing algorithms. The signatures due to human
motion displays complex pattern. While attempts have been
made to create simulators through approximate modeling
approach [4], machine learning techniques are usually applied
for action detection. But the investigations are continuing and
new insights are required for accurate and reliable detection
of human gestures from radar returns.

Insofar, in the state of the art research works, classical
machine learning techniques, including Artificial Neural Net-
works (ANN) and Deep Learning models have been used on
data from vision sensors for identifying actions. However,
apart from the privacy concern, the classical approaches suffer
from another great disadvantage in that the methods are not
tailored for end-to-end execution on edge devices. In various
industrial domains, such as Internet of Things (IoT), robotics,
healthcare, retail etc., an abundance of low powered devices
exist at the edge of the network and there is a drive to
utilise the available compute cycles on such devices. The
advantage this approach has over the prevailing methodology
is that the data need not be sent upstream to the computing
infrastructure over the network, thereby reducing the latency
and communication cost. However, the classical approaches
mentioned above require a large volume of data for training
and are highly compute/memory intensive making them too
heavy-weight for edge devices. Pre-trained compressed models
can however be deployed on constrained devices - but that does
not avoid the cost incurred during training, the requirement of
a large volume of training data, and being compressed, they
often sacrifice accuracy.

At the same time, the concept of neuromorphic comput-
ing [5], [6] has evolved, that, unlike classical von Neumann ar-
chitectures, mimicks mammalian sensing and data processing
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mechanism. In this form of computing architecture, memory is
collocated with processor and the data flow is in the form of in-
herently sparse spike trains thus reducing computation cost and
time. The architecture typically runs networks designed using
spiking neurons which are energy efficient due to their sparse
and asynchronous communication in form of spikes [7]–[9].
Being energy efficient, the neuromorphic architecture is highly
suitable for large-scale deployment as edge devices and hence,
the neural network models designed to take advantage of
the underlying neuromorphic hardware, have become prime
candidates to run at the edge. During the last few years, the
Spiking Neural Network (SNN) approach has increased in
popularity with their computational capabilities being formally
proven [10].

In this paper, we propose to leverage the paradigm of
neuromorphic computing and apply it over radar data for
learning and identifying human actions. The neuromorphic and
SNN paradigm have been successfully used on image, speech
and video data; but to the best of our knowledge, this is the
first application of SNN on micro-Doppler data from radars,
which in our opinion has a high degree of similarity with
event-based data typically used within the SNN paradigm. We
have implemented a novel convolution-based spiking neural
network that is capable of learning both spatial and temporal
features of the actions. We have created a dataset of 8 action
classes performed by 5 persons in front of a radar and then
have trained the SNN network with a training set from therein
and tested the performance. We have observed 85% accuracy
on test data which is comparable to the results obtained by
applying classical techniques that are used in similar scenarios.
The benefit of our approach lies in the use of the neuromorphic
concept and SNN, making it deployable over a neuromorphic
edge attached to the radar so that the data need not be sent over
the network for inferencing, thereby decreasing the inference
latency. Also, as mentioned above, the system is efficient in
terms of computation and energy usage.

The paper is organised as follows: Section II provides details
of existing works in the area of action recognition while
Section III gives a brief background on the functionality of
radars as well as SNN and the associated learning mechanism.
Section IV explains components and functionalities of our
proposed spiking network and Section V presents the imple-
mentation and discusses results. We conclude with our future
plan of work in Section VI.

II. RELATED WORKS

A. Traditional Action recognition techniques

The multi-disciplinary research of action recognition has
been attempted by vision and pattern-recognition experts,
using cameras and surveillance videos [11]. Wearables such as
inertial sensors [12] are used to indirectly measure activities
or gestures. The need for presence and action recognition in
vision impaired, off-body detection scenarios such as defense,
disaster and rescue operations has propelled interest in other
sensors such as PIR sensors [13], piezo sensors [14], radars
and many more.

B. Action recognition using micro-Doppler

Due to the non-intrusive nature of radar sensors, they
are being explored for action recognition. Detailed analysis
of the micro-Doppler phenomenon was done by Chen et
al. in [15]. Following this, in [16], expanded understanding
was provided, with applications ranging from rigid bodies
like pendulum motion and rotating helicopter blades to non-
rigid bodies like humans walking, bird flapping its wings,
quadrupedal animal motion, etc. The work contains simula-
tion study along with mathematical conceptualization. Con-
sequently, researchers started working on utilizing this to
detect human activity and falls. For instance, authors of [17]
use a deep learning network on the data collected from two
pulse-Doppler RCRs to detect falls in elderly. Unaided and
aided activity recognition using radars and deep convolutional
autoencoder was attempted by Mehmet et al. in [18]. Google
went ahead to develop ’Project Soli’, which identifies various
finger based gestures [19]. Despite these developments, the
research community is yet to agree on a benchmark technique
to handle radar signals for action recognition.

C. Action recognition using DNN

In the last few decades, different types of deep learning
techniques have been applied to learn the human activities.
The ability to learn visual patterns directly from the pixels
without any pre-processing step makes the Convolutional Neu-
ral Network (CNN) suitable for learning human actions. Ji et
al. [20] proposed a 3D CNN architecture that applies multiple
convolution at one pixel to identify different features at that
position and using multiple channels to learn from different
video frames. The final feature is generated as a combination
of all those extracted features. Tran et al. [21] proposed a
deep 3-D convolutional network (ConvNet) that tries to learn
the spatio-temporal activity from a video. Simonyan et al. [22]
improved the methodology by training a temporal ConvNet on
optical flow instead of raw frames of a video. Another group
of researchers used the recurrent neural network for classifying
the action sequences. Baccouche et al. [23] exploited the
capability long-short term memory (LSTM) [24] cells to learn
dynamics of the spatial features extracted by a convolutional
neural network (CNN). Shi et al. [25] used a 3D-ConvNet
to capture 3D features and attached an LSTM network to
capture the temporal pattern of those 3D filter features. Later
works [26], [27] showed improvements by fusing different
streams of features along with the above techniques. As learn-
ing methods and inference frameworks of the conventional
deep networks need large amount of training data and are
typically computation intensive, these models are not the most
efficient solutions.

D. Action recognition using SNN

The task of recognizing human actions using SNNs has
been explored by a group of researchers. Escobar et al. [28]
proposed a bio-inspired feed-forward spiking network for
action recognition using mean firing rate of every neuron and
synchrony between neuronal firing. However, this model does



not take into account the property of action-selective neurons,
which is essential for the decoding the observed pattern. A
variation of the feed-forward network is also showed in [29],
[30] which is a recent work by the present authors. Yang
et al. [31] used a two layer spiking neural network to learn
human body movement using a gradient descent based learning
mechanism by encoding the trajectories of the joints as spike
trains. This inherently brings in the question of biological plau-
sibility. Wang et al. [32] proposed a novel Temporal Spiking
Recurrent Neural Network (TSRNN) to perform robust action
recognition from a video. The SNN model provides reliable
and sparse frames to the recurrent units using a temporal
pooling mechanism. Also a continuous message passing from
spiking signals to RNN helps the recurrent unit to retain its
long term memory.

The other idea explored in the literature is to capture
the temporal features of the input that are extracted by a
recurrently connected network of spiking neurons, called the
”liquid” or ”reservoir”, the output of which is trained to
produce certain desired activity based on some learning rule.
Using this idea of reservoir computing Panda et al. [33] applied
a ”Driven/Autonomous” approach for reservoir creation that
can learn video activity with limited examples. We observed
that driven/autonomous models are good for temporal de-
pendency modelling of a single-dimensional pre-known time
series but it cannot learn spatio-temporal features together
needed for action recognition. Soures et al. [34] proposed a
deep architecture of a reservoir connected to an unsupervised
Winner Take All (WTA) layer, that captures input in a higher
dimensional space (by the reservoir) and encodes that to a
low dimensional representation (by the WTA layer). All the
information from the layers in the deep network are selectively
processed by ”attention based neural mechanism”. They have
used ANN-based spatial feature extraction using ResNet but
it is compute intensive.

The following section provides a background of related
radar physics and SNN learning mechanisms which are im-
portant for this work.

III. BACKGROUND KNOWLEDGE: RADAR AND SNN
A. Radar Physics - Doppler and Micro-Doppler Effect

Human motion shows complex patterns. When a person
walks, there are micro-motions like arm swing associated with
the movement of the body. When electromagnetic wave is
scattered from human bodies (under motion), the resultant
signal displays both Doppler effect as well as modulation of
Doppler frequency. While Doppler frequency arises due to the
target, i.e human body moving towards (or away) from the
radar, micro-Doppler signatures are seen due to the micro-
motions. Doppler frequency is visible in the frequency domain
of a signal. Distinct micro-Doppler effect for different kinds
of movements is examined in the joint time and Doppler
frequency domain of a signal. Spectrogram plots, which are
intensity plots of STFT (Short Time Fourier Transform), are
used to visualise spectro-temporal plots from radar returns.
These plots help in analysing the change of frequency with

time and thus characterize the unique micro-Doppler signa-
tures of different activities performed by a human.

The STFT of a time domain signal x(t) is given by equation
1.

X(t, ω) =

∫ ∞
−∞

x(t+ τ)w(τ)exp(−jωτ)dτdx (1)

where w(τ) is the selected time window. Magnitude squared
of the STFT gives the spectrogram (SP), shown by equation
2.

XSP (t, ω) =| X(t, ω) | 2 (2)

A narrow time window results in better resolution in time
axis, a poor one in frequency domain and vice versa. Thus,
a unique trade-off point has to be achieved between time-
frequency resolution as both these information are important
for the analysis of time-frequency plots. Figure 1 shows
a spectrogram for bow action. Zero Doppler frequency is
observed when the person is still.

Fig. 1: Spectrogram of bow action

Positive and negative Doppler frequencies are observed
when different body parts move towards or away from the
radar. Together, all these frequencies constitute the micro-
Doppler signatures for a particular action. Since different
body parts move at different frequencies for multiple actions,
their micro-Doppler signatures are different in time frequency
domain.

B. SNN and its Learning Mechanism

Mammalian brains are composed of hugely connected neu-
rons and synapses which maintain a stability via mutual
excitation and inhibition unless external stimuli affect the
status-quo. When a neuron receives a stimulus, the membrane
potential rises due to intra-cellular activity, and if a threshold
is breached, the neuron generates a spike which is carried
forward to the subsequent neuron via the synapse. Spikes
can assume the form bursts (repeated spikes within a short
duration) or a single time event depending on the stimuli and



the nature of the receiving neuron. Further, the biological fea-
tures like composition of the synapse, the conductance of the
cell body, and related chemical reactions play important roles
in generation and processing of spikes. For the computation
aspects and its adaptation in neural networks, the two most
important factors are the rate at which spikes occur and the
temporal relations of spike response between the pre- and post-
synaptic neurons, i.e. whether the post-synaptic neuron fired
after the pre-synaptic neuron, or after it, the latter affecting the
synaptic bond between the neurons by making it stronger or
weaker. In the language of Neuroscience, especially Hebbian
learning, this is called ”fire together, wire together.”

Unlike classical ANNs, the SNNs use biologically plausible
neuron models and are thus closer to mammalian brains.
Spikes offer inherent sparsity and massively parallel asyn-
chronous communication [7]–[9], and resulting in spiking neu-
ron mmodels being energy efficient. However, ANNs operate
on continuous valued input, whereas SNNs require the input
data to be encoded in spike format for subsequent processing.
SNNs are considered as the third generation of neural networks
with formally proven computational capabilities comparable to
that of regular ANNs [10].

1) Spiking Neuron Model: There are various mathemati-
cally modelled spiking neurons with different levels of com-
plexity and granularity with the Hodgkin-Huxley model [35]
being the most detailed one. However, for our purposes, we
use the simplest and most popular Leaky Integrate and Fire
(LIF) model [36]. An LIF, with a membrane potential V at any
point in time, can be described by the differential equation 3.

τ
dV

dt
= (Vrest − V ) + ge(Eexc − V ) + gi(Einh − V ) (3)

To achieve stability, the membrane potential always tend
to evolve towards the resting potential, Vrest. Hence, in
the absence of any stimulus from pre-synaptic neurons, the
membrane potential of a particular neuron remains at Vrest.
Similarly, the equilibrium potentials of the excitatory and in-
hibitory synapses are represented by Eexc and Einh. Synapses
are modelled as conductance values, namely, ge, the excita-
tory conductance, and gi, the inhibitory conductance. Exci-
tatory pre-synaptic neurons increase the membrane potential,
whereas, inhibitory pre-synaptic neurons tend to decrease it.
As mentioned before, a spike is generated when the membrane
potential breaches a threshold (Vthresh). A spike in the pre-
synaptic neuron increases the conductance of the synapse in
magnitude. The dynamics of excitatory and inhibitory conduc-
tance are modelled as per equations 4 and 5 respectively.

τe
dge
dt

= −ge (4)

τi
dgi
dt

= −gi (5)

2) Learning Rule: The mathematical function used to
model a spike is the well known Dirac Delta function1. As this

1https://en.wikipedia.org/wiki/Dirac delta function

model is non-differentiable (which is logical for a spike which
occurs at a time instance only), the gradient based learning
algorithms popular in ANNs, cannot be applied in case of
SNN. Learning and memory in SNNs are thus modelled using
Spike Time Dependent Plasticity (STDP) [?] which takes into
account the strengthening of synaptic bonds due to positive
temporal correlation between pre- and post-synaptic spiking
neurons. The STDP protocol modifies classical Hebbian learn-
ing rule [37] by improving it with temporal asymmetry. It has
been proven that a spiking neuron with STDP can learn a
linear dynamical system with minimum least square error [38].
A pre-synaptic trace, xpre, for each synapse keeps track of
the activity of the pre-synaptic neuron, and likewise a post-
synaptic trace xpost, keeps track of the activity of the post-
synaptic neuron. Each trace decays exponentially with time
as shown in the equations 6 and 7 with synaptic trace decay
constants τpre and τpost.

τpre
dxpre
dt

= −xpre (6)

τpost
dxpost
dt

= −xpost (7)

At the occurence of a spike at a pre- or post-synaptic
neuron, the trace is incremented by a constant value a. For
each pre-synaptic firing, the synaptic weight is reduced with a
value proportional to the post-synaptic trace (the phenomenon
is called depression) and for each post-synaptic firing, it is
increased with a value proportional to the pre-synaptic trace
(the phenomenon is called potentiation. The learning process
of an arbitrary synapse is shown in Figure 2.

Fig. 2: Synaptic depression and potentiation in STDP

The complete learning rule can be described by equations
8 and 9.

∆wdep = ηdep(xpost × spre) (8)
∆wpot = ηpot(xpre × spost) (9)

spre and spost represent spike of the pre- and post-synaptic
neurons. In practice, equations 8 and 9 are vector equations
where spre and spost denote the spike vectors of a population
of neurons and × is an outer product operation.



3) Lateral Inhibition and Homeostasis: A popular biolog-
ically plausible approach adopted in neural networks in order
to enhance competition between neurons is called Lateral
Inhibition or Winner-Take-All [39], [40]. The first excited
neuron to produce a spike attempts to stimulate other neurons
or directly inhibits one or more of them. In a learning scenario,
a pattern to be learnt excites one or more neurons, which in
turn try to deactivate other neurons with the help of lateral
inhibition, preventing them from learning the same pattern. In
SNN world, this mechanism helps multiple neurons to compete
and learn different patterns. In our network, we use a softer
form of Lateral Inhibition like that of k-WTA, which is proven
to be computationally less power intensive than a hard Lateral
Inhibition [41] and leads to better shared feature selectivity in
cortical pyramidal cells [42].

The process of maintaining a stable internal state, prevalent
in many biological systems (e.g. maintaining body tempera-
ture, pressure, blood sugar etc.) is known as homeostatis. In the
context of SNNs, homeostasis of neuronal firing rate is meant
to prevent the dominating effect of any particular neuron. We
employ a rate homeostasis similar to that used in Diehl et
al. [43], where threshold of neuronal firing is adapted so that
continuous firing by the same neuron can be discouraged.
Our membrane threshold, Vthresh is a combination of a static
threshold value, Vthresh−static and a dynamic memory based
component, θ which increases with each firing by a constant
value and decays exponentially with time. The complete
spiking mechanism is described by equations

S(t) =

{
1, V (t) > Vthresh

0, V (t) ≥ Vthresh
(10)

Vthresh = Vthresh−static + θ(t) (11)

θ(t+ 1) =

{
θ(t) + C, S(t) = 1

θ(t), S(t) = 0
(12)

τθ
dθ

dt
= −θ (13)

In the following section, we describe the network that we
have designed and implemented for action recognition.

IV. NETWORK ARCHITECTURE

The proposed spiking network architecture for detecting
human actions from radar data (refer Figure 4) consists of
mainly three main components: (i) Data pre-processing layer
(ii) Convolutional Spiking layer (CSNN) (iii) Classifier layer

The first component performs compression and encoding
on radar data in order to make the computation faster, while
the second component, whose design and action is inspired
from CNN, contains multiple spiking layers and they extract
the spatial features from the input spiking data. A special
technique as detailed below is used to capture the temporal
signature of action while the data is being processed in
this layer. The spatial feature extraction is hierarchical in
nature, with first layers capturing low level features like edges
with complexity keep on increasing till the last layer. The

convolutional features of a layer along with it’s temporal
spiking signature become an enriched feature set and is then
passed to a classifier for finally recognising the actions. Each
of the components are described below in details.

A. Data pre-processing layer

A pre-processing layer as shown in Figure 3 processes the
radar data to allow its use with SNN.

Fig. 3: Block diagram of data pre-processing module
For the current work, a 24 GHz Continuous Wave (CW)

radar is used with I(in-phase) and Q(quadrature i.e. shifted
by 90 degrees) channels at a sampling frequency of 2 KHz.
Data is collected for 5 seconds for all actions. Thus, for each
activity we have quadrature time domain data of length 10000.
From the dataset, spectrogram for each action is computed,
which is a time-frequency domain representation of the time
series data obtained from radar. We have used 1024 point Fast
Fourier Transform (FFT) with a 256 length Kaiser window
with 75% overlap to compute the spectrogram [4]. The number
of time bins for a spectrogram is calculated by the formula in
equation14

T (No. of time bins) =
N −Woverlap

Wlength −Woverlap
(14)

where N is the total sample data(5×2000), Wlength is the
window length used for STFT computation(256) and Woverlap

is the overlapping no of data points(75 % of 256 = 192). Thus,
we obtain 153 time bins (T = 153). (±1 KHz) 2000 Hz data
is represented by 1024 data points(owing to 1024 point FFT).
Hence

Frequency Resolution = 2000/1024 Hz = 1.953Hz

A 5 second data have 153 samples leading to time resolution,

(5/153) s = 32.68 ms

.
Thus, from 2-D radar data (I and Q channel), we obtained a

time frequency data in -1 KHz to 1 KHz range for 5 seconds
and this led to time-frequency dataset of 1024×153 size matrix
(representing spectrogram).

As shown in Figure 3, Time domain data from the two
channels is converted into Time-Frequency domain using
STFT(eq 1). STFT provides a complex matrix. Modulus
operation is performed on this STFT matrix to obtain a real
valued matrix. A binary matrix is obtained by consecutively
converting this real matrix into a grayscale image and later
into a binary matrix using appropriate threshold. This binary
matrix is the input to the spiking neural network where each
column becomes an input at i-th instance of time, i = 1...T .
Thus input to the network is a 1-D binary image (aka vector).



Spectrogram and the corresponding binarized images for three
different activities - Throw, Kick and Bow respectively are
depicted in three rows of Table I.

TABLE I: Visualisation of data at pre-processing stage (a)
Throw action (b) Kick action (c) Bow action

Raw
Input

Spectrogram
of radar data

Binarised
spectrogram

B. Convolutional Spiking Layer (CSNN)

The overall architecture of the network is shown in Fig-
ure 4. A set of class-wise filter blocks with lateral inhibition
with competition mechanism make up the the Convolutional
Spiking layer which takes in pre-processed data as input.
The network may consist of multiple such CSNN layers
following a CNN-like connectivity between consecutive layers.
Every spike-frame of an action sequence is connected to
the convolutional layers via a sliding window of an initial
dimension of w × h pixels (w=1 in this case), with each
pixel being connected to a single neuron of the filter-block of
the first convolutional layer. The window is slided vertically
by a stride (s) to connect each pixel of the new window to
the second neuron. The process is repeated till every pixel
within the spike-frame is connected to the neurons in the filter.
Similar connections are made for further input spike-frames to
the neurons within the same filter. Once the input frames are
connected to the first CSNN layer, consecutive layers can be
connected in a similar fashion. The number of layers depends
on the complexity of the spatial features of the dataset and
hence remains a design choice.

In order to enable the CSNN layers to capture spatially
collocated patterns within the same spike frame of a single
action class, multiple filters are created within each filter block

which are connected via a switcher node, which in fact is a
special LIF neuron. This lets us avoid learning 3D spatio-
temporal filters from consecutive spike frames by activating
only one filter at a given time. The switcher applies inhibition
to force all but one filter in the block to inactive state, the
duration of which depends on the strength of inhibition, which
is a configurable parameter. After the period of inactivity,
all filters start competing again and the one which causes
the maximum spike is considered as the winner - which is
an effective way of utilising the winner takes all concept
explained in Section III-B3. The process repeats depending
on the decay time constant during the training time of the
convolutional filters. That all filters get a chance during the
training phase is ensured by the switching mechanism, and this
also ensures that spatially collocated but temporally separable
features appear on different filters.

To guarantee activation of only one filter block at a given
point of time for a given action frame sequence, we apply an-
other level of long-term inhibition which additionally ensures
that multiple filter blocks are not trying to learn the same
redundant pattern. Instead, the lateral inhibition among filter
blocks allows them to compete for classes. We initialise the
weights in the filter blocks randomly and one block wins for
the first time for a particular action class. This win ensures
that the filter block will provide the maximum spike only for
that particular class during further training. Once a filter block
wins due to maximum initial spiking, an inhibition signal of
higher strength is sent to other filter blocks preventing them
form being activated.

This filter-block-wise inhibition mechanism provides two
distinct advantages:

(i) Since all the filter blocks are not active at a given time,
the number of active convolutional neurons of a CSNN
layer during training time for each action is reduced.

(ii) It allows us to set different periodicity (i.e. different decay
time constant) for switcher nodes of different filter blocks
according to its associated action. Switching periodicity is
dependent on the total duration of the action and different
spatial patterns present therein. If multiple repetitive pat-
terns occur within a short duration, switching periodicity
for that particular filter block can be set to a small value.

During testing time, both long term inhibition between filter
block as well as switching of filters within a block are removed
as they are useful during training only.

Temporal features are extremely important for action recog-
nition as these enable the system to capture the sequence
of events by which a particular action is performed. This
is especially useful for the cases where actions are spatially
overlapping (for e.g. doing sit-up and jumping, right hand
clockwise rotation and anticlockwise rotation etc.) but tem-
poral sequence of events within the actions are different. The
radar signature of whole action will look very similar for those
spatially overlapping actions and spatial features as extracted
by above CSNN layer would not be sufficient to accurately
classify them.



Fig. 4: Network architecture

In spiking domain, events are usually characterised by the
timing of spike and by the number of spikes caused by an
event. For spatially overlapping actions, the total number of
spikes for two such actions will be nearly same and hence
cannot be used for identifying the classes distinctly. Instead,
if the entire action sequence is divided into multiple equal
sized time-windows and if one logs the individual spike-count
during each such time-window then chances are more that the
count will be different for same time-window of two spatially
overlapping actions. For example, Sit up and Jump are spatially
overlapping actions and when their binarized spectrograms
are fed into the network, they create almost same number
spikes (6253 & 6479). As shown in Figure 5), if binarized
spectrograms of Sit up (top) and Jump (bottom) are divided
into 4 equal time windows, then spike count of each time
window for those two classes are found to be different. In our
case, all the action classes are of same time duration (i.e. 5
seconds) and we sliced the duration of each action into equal
sized time-windows. These time-window-wise spike counts
which capture the temporal signature of the action were used
(along with spatial features) for classification in next layer.

C. Classifier layer

The spatial features and temporal features (in the form
of time-window-wise spike counts) from CSNN layer corre-
sponding to respective actions are input to the classifier layer.
A simple logistic regression based classifier is used here.

Fig. 5: Time window based temporal feature extraction.

V. DATA COLLECTION, IMPLEMENTATION AND RESULTS

A. Datasets

5 people were asked to perform 8 actions, each 10 times.
Subjects stood at 2 meter away from the radar sensor. The
experimentation was done on 3 males and 2 females. 24 GHz
Quadrature channel CW radar [44], along with NI DAQ USB
6001 and LabView 2016 were used to collect data.

Actions performed in front of radar are - 1) Bow with upper
torso, 2) Slide right hand horizontally, 3) Kick with right leg,



4) Front foot batting with a cricket bat (right handed), 5) Ball
throwing, 6) Wearing & removing glasses, 7) Sit up, and 8)
Jump .

Data processing: The data captured by the system was
cleaned using the pre-processing module algorithm in Matlab,
as discussed in Section IV-A and fed into SNN.

B. Implementation

The network described in Section-IV is implemented using
BindsNet 0.2.4 [45], a GPU based open source SNN simulator
in Python. It had some bugs (as it is still in development
stage) but those have been handled. BindsNet is used because
it supports parallel computing unlike other available simulators
like Brian, Nest etc.

Table II summarizes the parameters used for implementation
of the neuron model and learning mechanism. Many of these
parameters are consistent with the values of their biological
counterparts. Also, the learning rate parameters ηdep & ηpot
(as in Eqns. 8 & 9) are set to those values so that CSNN layer
can learn features best. Value of Eexc & Einh (as in Eqn. 3)
are kept same as Vrest. Also value of τe and τi (as in Eqns. 4
& 5) have been kept same as that of τ .

TABLE II: Parameters for neuron model & learning mecha-
nism

Parameter Value Parameter Value

Vthresh−static -55.0 mV Vrest -65.0 mV
τ 100 ms τθ 107 ms
τpre 3 ms τpost 5 ms
ηdep 10−3 ηpot 5 × 10−3

C. Results & Discussion

Entire pipeline is used to train and classify on binarized
radar spectrograms of aforesaid dataset. The dataset is split
into a ratio of 4:1 for training and testing. As mentioned
in Section IV-A, all the 1-D binary images (aka vectors),
also referred as spike-frames, corresponding to an action are
fed into the CSNN layer sequentially. By varying the stride
length of the sliding window (of size w=1, h=5) on the input
spike-frame, three different experiments E1, E2, and E3 were
conducted with stride length(s) being 3, 5 and 7 respectively.
Width of sliding window is taken as 1 so that we do not loose
time resolution. These experiments were performed in order
to find the highest classification accuracy that can be achieved
by processing the least amount of data. Lesser amount of data
will excite lesser number of spiking neurons and consequently
lesser computation effort will be required thus reducing power
consumption. Detailed results of the experiments are provided
in Table III. It can be observed that, E1 and E2 have the same
classification accuracy (85%) while it decreases to 81.25% for
E3. For the stride length 3, the system processes almost 66%
more data per spike-frame compared to the case with stride
length 5, however the accuracy remains same. When stride
length is 7, 27% less data is processed but accuracy drops.
Thus, it can be concluded that, for binarized spectrograms,

one cannot afford to loose further information than is already
lost during the pre-processing stage. For action recognition,
Precision and Recall values for each action are important to
look at. As can be seen from Table III, action specific recall
values & precision shows slight variation for different stride
lengths - highest values obtained for both being 1, lowest being
0.6 (precision) for Sit Up and 0.64 (Recall) for Bow.

As we cannot afford loosing data in frequency domain (Y-
axis of spectrogram), it is to be investigated whether we can
afford to do same in time domain (X-axis of spectrogram).
Based on experiment E2 mentioned above, we investigated
further on the effect of downsampling of data in time domain
on accuracy. Downsampling of data essentially means reducing
simulation time (aka training time) for the spiking network
thus reducing time & data to learn. As shown in Table V,
downsampling of data results in quick loss of accuracy. Hence,
we proceeded with experimental set up of E2 without any
downsampling for arriving at the final results.

The final results are presented in the form of a confusion
matrix (refer Table IV). While the action classes Bow, Bat &
Jump are correctly classified with precision 1, highest recall
values have been obtained for action classes Bat & Kick.
Average precision obtained for all classes in 0.85 with a
standard deviation of 0.15 while those values for recall is 0.86
and 0.1 respectively. It is to be noted that instances of Hand
slide & Throw have been misclassified between themselves: 2
instances of Throw were classified as Hand slide and 1 instance
of Hand slide as Throw. This can be explained as a result of
overlapping in these two actions with respect to radar owing
to the fact that CW radar recognises object speeds towards and
away from it, making their spatial signature partially similar.
Worst result is obtained for Sit up with precision and recall
values being 0.6 and 0.75 respectively. 2 instances of Sit ups
have been classified as Bow and another 2 as Jump. These
misclassifications are the results of very similar upper and
lower torso movements in all the three actions.

Overall, we can conclude that using spiking neural network
(with experimental set up of E2), we can distinctly classify 8
human action actions performed in front of radar with accept-
able accuracy of 85%. In a comparative analysis, the accuracy
obtained on radar spectrogram data using computationally
intensive deep learning techniques like auto-encoder [46], [47]
is ∼ 90%. If logistic regression [48] technique is tried on same
binarized image data, an accuracy of 81.25% is achieved but
computation cost and training time of logistic regression is
higher compared to SNN. Thus SNN appears to be a more
suitable candidate for learning and classifying radar data and
can exploit the evolving neuromorphic edge devices.

VI. CONCLUSION

In this paper we have discussed a novel way of using spiking
neural network to classify human actions as captured by using
a single CW radar. The network has been tested on a varied
action dataset and is found to be capable of classifying the
actions with acceptable high accuracy. In a continuation of this
work, we plan to replace the logistic regression classifier in the



TABLE III: Effect of stride length (s) on Precision & Recall

Experiment Metrices Bow Hand slide Kick Bat Throw Wear glasses Sit up Jump Accuracy
Precision 0.9 0.8 0.9 1.0 0.7 1.0 0.6 0.9E1 (h=5, s=3) Recall 0.82 0.73 1.0 1.0 0.78 0.91 0.75 0.82 85%

Precision 1 0.8 0.8 1.0 0.7 0.9 0.6 1.0E2 (h=5, s=5) Recall 0.83 0.73 1.0 1.0 0.88 0.82 0.75 0.83 85%

Precision 0.9 0.7 0.9 1.0 0.7 0.9 0.6 0.8E3 (h=5, s=7) Recall 0.64 0.78 1.0 1.0 0.78 0.82 0.75 0.80 81.25%

TABLE IV: Test results: Confusion matrix

PredictedAction
Class Bow Hand slide Kick Bat Throw Wear glasses Sit Up Jump Precision Recall

Bow 10 0 0 0 0 0 0 0 1.0 0.83
Hand slide 0 8 0 0 1 1 0 0 0.8 0.73
Kick 0 0 8 0 0 1 1 0 0.8 1.0
Bat 0 0 0 10 0 0 0 0 1.0 1.0
Throw 0 2 0 0 7 0 1 0 0.7 0.88
Wear glasses 0 1 0 0 0 9 0 0 0.9 0.82
Sit Up 2 0 0 0 0 0 6 2 0.6 0.75

Actual

Jump 0 0 0 0 0 0 0 10 1.0 0.83

TABLE V: Effect of down-sampling the radar data on classi-
fication

Down sampling Factor Accuracy

1/2 71.25%
5/8 77.5%
3/4 75
7/8 77.5
1 85%

last layer of the architecture with a SNN based classifier so that
the whole architecture becomes compatible with neuromorphic
paradigm. We also intend to use a heterogeneous multi radar
setup to collect data and train with SNN.
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