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Abstract—In this paper we propose to model high and low
frequencies of segmentation map, based on the observation that
the map can be seen as a mixture of different frequencies.
Based on the sparsity of high frequencies and local similarity
of low frequencies, we design special building blocks and further
a novel High and Low frequency Network (HLNet) with two
branches based on FCN to predict high and low frequencies of
the segmentation map, respectively. Specifically, we design a high
frequency branch with a small kernel size and high-resolution
features to predict a sparse high frequency component. Mean-
while, a low frequency branch with similarity computing and
low-resolution features is employed to predict a low frequency
component. On top of two branches, we combine two different
frequency components to generate final result for scene parsing.
We empirically demonstrate that the designed model achieves
superior performance 44.07% on ADE20K, and 80.14% mloU
on Cityscapes datasets.

Index Terms—Scene Parsing, semantic segmentation, image
frequency, deep convolution neural networks

I. INTRODUCTION

Scene parsing, based on semantic segmentation, is a prob-
lem of assigning a predefined label to every pixel for a image,
and finally, is to get a segmentation map. scene parsing helps
human understand the scene according to the segmentation
map which reflects the label, location, as well as shape of
each element in the image.

With the developments of neural network, it has achieved
remarkable results based on Fully Convolutional Networks
(FCNs) [1]. However, there are two main limitations in FCN
frameworks. First there exists some downsampling operations
such as pooling or convolution striding in the frameworks,
which results in generating low resolution feature representa-
tions and losing an amount of spatial details. Second, due
to subject to the limited valid receptive field [2], [3] in
neural networks, some pixels lack of enough contexts to
discriminate and their classification are ambiguous. Eventually,
these limitations result in that segmentation results predicted
by FCNs usually exist some problems such as rough elements
boundary and misclassification of big objects or stuff.

Various methods have been proposed to overcome above
limitations. Some methods [4]-[6] allow several consecutive
downsampling operation to enlarge receptive field, and then
to remedy the loss of spatial details, middle-layer features
are utilized. Some methods [7], [8] reduce the times of
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Fig. 1: Reconstruction of the segmentation map by combining
predicted high frequencies h and low frequencies [.

downsampling and employ dilated convolution to enlarge re-
ceptive field while maintaining the resolution. However, these
methods apply unified processing to each pixel and overlook
the different processing demand of pixels in different locations.
The pixels on objects boundary should strive to retain their
spatial information and preserve detailed structure [9] in the
processing because of difficulty of recovering, while other
pixels having common feature with local adjacent areas need
not. Besides, these methods lack of being explainable.

In traditional image processing, a natural image can be
decomposed into a low frequency component describing its
slowly changing structure and a high frequency component
describing its rapidly changing structure [10]-[12], and vice
versa, a natural image can be reconstructed from its two
different frequency components. Similarly, we argue that the
segmentation map satisfies the decomposition and reconstruc-
tion, so it motivates us to propose novel approach for modeling
high frequencies and low frequencies of the segmentation map
respectively and combining them as shown in Fig.1. Thus, the
pixels located at different frequency components would go
through different processing. To accommodate the different
frequencies prediction, we design high-frequency branch and
low-frequency branch based on the unique characteristics of
these frequencies. As the separate prediction of high and low
frequencies of the segmentation map, our method enlarges
the receptive field when predicting low frequencies and keeps
high resolution when processing high frequencies, and thus
can alleviate above limitations and improve recognition and
location performance.

In principle, we design different branch to solve the seg-
mentation task based on frequency prior, which is different
from most CNN based model. We design building blocks
for these branches and propose High and Low frequency
Neural Network (HLNet). Our experiments on Cityscapes and
ADE20K demonstrate the effectiveness of HLNet. The main
contributions of this paper are as following:



« We propose to view the segmentation map as the compo-
sition of two different frequencies and predict them with
different branches. As predicting different frequencies,
our method can gain larger receptive field while keep
high resolution.

« We analyse the characteristics of high and low frequen-
cies, design proper building blocks to extract different
frequencies, and further propose a HLLNet to handle scene
parsing task.

« We extensively study the effect of the propose two
branches and achieve superior performance on various
scene parsing datasets without bells-and-whistles.

II. RELATED WORKS

Driven by deep neural networks [13]-[15], pixel-level
prediction tasks like scene parsing have achieved great
success. The FCN [1] first convert the fully-connected layer
in traditional classification network into the convolution
layer to tackle the segmentation task. Following the FCN
framework, there are several works trying to improve scene
parsing task based on the following two aspects.

Context embedding. Context embedding is a hot direction.
U-Net [4] or other variants [16]-[19] use fuse high level
feature and low level feature to enhance context information.
The atrous spatial pyramid pooling (ASPP) [8] is proposed
to capture the nearby context using different dilated rate.
The pyramid pooling module (PPM) [20] is proposed to
exploit context information from different scale regions.
[21]1-[23] stress class-dependent context aggregation. [24] use
semantic correlation to aggregate shape-variant context. The
low-frequency branch in our method can also be viewed as
context aggregation.

High resolution designing. Spatial resolution is important for
scene parsing task to hold spatial details. [7] propose dilated
convolution to avoid reduce the spatial resolution. [25],
[26] propose high resolution neural network with parallel
convolutions to get high resolution feature representations.
[27] focuses lightweight neural architecture and propose two
path method to confront with the loss of spatial information
and shrinkage of receptive field respectively. Our method also
has high resolution branch, however we use it to extract high
frequencies explicitly.

Different from above works, we introduce a method based
on frequency prior, which learns different frequencies of the
segmentation map separately.

III. METHODS

To begin with, we briefly review the concepts of image
frequency [!1] and Laplacian image pyramid [28], which are
the basis for understanding this paper.

A. Background

Image frequency. Image frequency is an important concept in
traditional image processing. Low frequencies in a image mean

pixel values that are changing slowly over spatial dimension,
while high frequency content means pixel values that are
rapidly changing. That is, high frequencies usually encode fine
details and low frequencies usually encode global structure.
We usually use lowpass filter, for example Guassian filter, to
extract low frequencies. Vice versa, high frequencies is the
remaining part after extraction. The extraction procedure can
be formulated as:

ligw = I % G (D
Ihigh =1 —Tiow
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where I, Ijo, and Ipgn indicate the original image, low
frequencies and high frequencies of the original image respec-
tively, G denotes a Guassian filter, * represents convolution
operator, and unit — G stands for the difference of Gaussian
kernel, which approximates the Laplacian of Gaussian (LoG)
kernel [28].

Our method is the inverse process of the above decom-
position. We try to predict the low frequencies and high
frequencies of the segmentation map, and then reconstruct it,
ie.: A R R

L = up(Liow) + Lhign 3

Here the superscript * means that the variable is predicted by
the model, L denotes the final segmentation map, and up(-)
is an up-sample function. Note that it is also the first order
Laplacian image pyramid reconstruction procedure, in which
the low frequencies will be up-sampled and then added to the
high frequencies.

B. High-Frequency and Low-Frequency branch

In this subsection we will firstly clarify the characteristics
of high frequencies and low frequencies, and then introduce
our designed building blocks.

The high frequencies are obtained by applying LoG kernel
on the image. The LoG of an image highlights regions of
rapid intensity change, so if a local area feature in the image
changes, the high frequencies in this area will also change.
However, the changes does not effect the high frequencies in
other area. So the high-frequency representations are sensitive
to local area feature, but insensitive to non-local feature.
Besides, high frequencies are sparse and contain critical spatial
information. Based on above analysis, we design the basic
block of the high-frequency branch to capture high frequen-
cies. The basic block is illustrated in Fig. 2(a), which has small
kernel size to avoid non-local effects and keep high resolution
to preserve the spatial information. Besides, because of the
sparse representation, slim channels is leveraged to relieve
memory Cost.

The low frequencies are obtained by smoothing the local
area, which determines that low frequencies are robust to the
changes of the local area. Besides, the low frequencies contain
common information between adjacent locations, so it is safe
to reduce the spatial resolution by sharing information between
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Fig. 2: The building blocks of this work. (a) the basic high-frequency branch unit; (b) the basic low-frequency branch unit;
(c) the low-frequency unit with spatial down sampling (2x). DWConv: depthwise convolution.

adjacent locations. Therefore, in the low-frequency branch,
we adopt ResBlock [15] with large kernel convolution [0] to
extract the low frequencies and lower resolution to reduce
feature redundancy. The basic blocks of the low-frequency
branch is illustrated in Fig. 2(b, ¢), which shows that we
employ the combination of K x14+1x K and 1 x K+ K x 1
convolutions to approximate a large kernel convolution to save
computation cost.

To enforce these two branches to learn different frequency
components of the segmentation map, the high/low frequencies
of the ground truth are utilized to supervise these two branches
respectively. We will give more detail in next subsection.

C. Overall Framework

Architecture. Based on the designed basic building blocks,
we propose the High-Low frequency Network (HLNet) for
scene parsing as illustrated in Fig. 3. HLLNet consists of three
parts, including base network, high-frequency branch and low-
frequency branch. We adopt pretrained dilated ResNet [6]
as the base network, and high-frequency branch containing
two basic blocks (H1 and H2) and low-frequency branch
containing three basic blocks (SA [29], L1 and L2) are
following in parallel after the base network, which are used to
generate different frequency components of the segmentation
map respectively. In the base network, we employ dilated
convolutions with rate = 2 in the last ResNet blocks and re-
move the subsampling operation, which is a trade-off between
computation cost and spatial resolution. The following is low-
frequency branch, where we employ spatial attention (SA)
module as the first block to compute the feature similarity and
enhance feature representations, then two basic low-frequency

blocks, L1 and L2 is following. Towards L1 and L2, the
former is enabled sub-sampling operation with stride = 2 to
reduce spatial redundancy, the latter is enabled skip connection
to reuse low-frequency feature map. Low-frequency branch
also helps model harvest a larger receptive field. In parallel
with the low-frequency branch, high-frequency branch consists
of two basic high-frequency block, H1 and H2. Considering
the sparsity of the high frequencies, which only responses to
some area, so dense features in every stage are aggregated
after transformation, then subtract the feature map from low-
frequency branch which contains sufficient dense information,
and finally as the input of the high-frequency branch.

Loss. To enhance the learning ability of branches and learn
different things explicitly, we attach loss supervision to these
two branch and the final result. The cross entropy loss is
employed for these three places. The supervisions are as
following,

Yiow_frequencies — Y * G (4)

Ynhigh_frequencies — Y — Ylow_frequencies (5)

Here y denotes the mask representation of the ground truth,
x denotes convolution operator, the G denotes the Gussian
kernel. Yiow_frequencies and Yhgih_frequencies are utilized to
supervise low-frequency branch and high-frequency branch
respectively. Note that Ynigh_frequencies € (—1,1], we use
a trivial transformation to convert its value domain to [0,1),
that iS, (Ynigh_frquencies + 1)/2. So the supervisory signal
of high-frequency branch is (Ynigh_frquencies + 1)/2. After
predicting low frequencies and high frequencies, the final
result of the HLNet is the combination of these two branches.
Same as Laplacian pyramid reconstruction procedure, where
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Fig. 3: (a) Overview of High-Low Frequency Network (HLNet). Each box is a computation block in the HLNet. Low frequency
network branch is marked by pink dashed box, and high frequency network branch is marked by purple dashed box. The
numbers next to boxes indicate the scale of the feature map in that block. up or down indicates a up-sampling or down-
sampling operation. L1 is a low frequency branch unit with down-sampling shown in Fig.2(c), and L2 is shown in Fig.2(b).
H1 and H2 are the high frequency branch unit shown in Fig.2(a). The pink circle and the purple circle stand for outputs of
the low frequency branch and high frequency branch, respectively. The double arrow presents that there exists supervision.
The detail of Spatial Attention block (SA block) is illustrated in (b), where ¢3x3br stands for 3x3conv with BN and ReL.U,
T means matrix transposition, and bmm means batch matrix multiplication. Because of low resolution and reduced dimension,

the computation of SA module is fast.

high frequencies are added with upsampled low frequen-
cies, we transform the output of high-frequency branch to
ghigh_frequencies = fghigh_frequencies_out *2—1, and add with
Ylow srequencies directly to get the final result, that is,

.@ = @low—frequencies + @high—frequencies *2—1 (6)
supervised by normal ground truth. Following PSPNet [20],
to improve the performance and make the deep neural net-
work easier to train, auxiliary loss is enabled. We use four
parameters Ap, A;, Af and A, to reweigh high-frequency loss
lhigh, low-frequency 10ss {jo, final 10ss lf;nq and auxiliary
loss lyuz, as shown in Eq.7:

Loss = /\h * lhigh + /\l * llow + /\f * lfz'nal + )\a * laux (7)

D. Compare with dual path method

BiSeNet [27] proposes a dual path network, one is Spatial
Path, and another is Context Path. The former is to preserve
the spatial information, while the latter is to obtain sufficient
semantic information with fast downsampling strategy. How-
ever, our method is different from it. The way we design the
neural network depends on our observation on the high/low
frequencies. Just as in image processing, the pioneers designed
convolution block based on the fact that each pixel has a
relationship to the surrounding pixels, we analyze the char-
acteristics of the high and low frequencies and design specific
basic blocks to fit the high and low frequencies, which try
to decrease the difficulty of fitting problem. Besides, we give
explicit supervision to enhance these two branch.

IV. EXPERIMENTS

To evaluation the proposed high/low-frequency modeling
approach, we conduct extensive experiments on the Citycapes
dataset [30] and the ADE20K dataset [31].

« Cityscapes. The Cityscapes dataset is urban scene parsing
dataset which involve 19 valid classes and 2975, 500,
1525 images in train, val, and test set, respectively. We
only use the fine annotated data in our experiments.

« ADE20K. ADE20K dataset is used in ImageNet scene
parsing challenge 2016 which contains 150 classes and
20K/2K/3K images for training, validation and testing.

In this section, we firstly describe implementation details,
and then show ablation study on the Cityscapes dataset to
verify the effectiveness of the proposed modeling approach.
Comparisons with state-of-the-art on Cityscapes and ADE20K
also would be reported at last.

A. Implementation Details

We employ ImageNet pretrained ResNet as our base net-
work with dilated rates in the last ResNet block is set
to (2,2,2). During training phrase, following prior works,
We employ the polynomial learning rate policy with factor
(1 — 55727%55)"?, and enable the auxiliary loss if we adopt
the backbone ResNet101. Momentum and weight decay co-
efficients are set as 0.9 and 0.0001, batch size is 16. For
the data augmentation, random flipping horizontally, random
scaling in the range of [0.5, 2], and random rotating in the
range of [-10, 10] are adopted. We use distributed training
in Pytorch v1.3 with synchronized batch normalization across
multiple GPUs enabled to conduct experiments. We set the
coefficients of the losses A\, = 1.5, \; = 0.8, Ay = 1.
and A\, = 0.4 in empirical manner. The mean of class-wise



TABLE I: The comparison with baseline on Cityscapes. The
HL Branch is the high-frequency and low-frequency branch,
and -SA means that HL Branch excludes the SA block.

Base Network Block mloU(%)
None 72.35
ResNet-50 +HL Branch (-SA) 76.11
+HL Branch 78.05
None 74.32
ResNet-101 +HL Branch (-SA) 77.28
+HL Branch 79.38

Intersection over Union (mloU), which can be formulated as
mloU = + va W, where N denotes the total of
different classes, |C;| is the number of pixels of class i, and ¢},
indicates the number of pixels of class j predicted to class i,
is employed as the evaluation metric in our experiments. And
multi-scale inference scheme with scales 0.5, 0.75, 1.0, 1.25,
1.5, and 1.75 will not be used unless specifically stated. For
private setting on these benchmark datasets we will show the
following.

Cityscapes: we set crop size as 713x 713, initial learning rate
as 0.01 and training epoch as 200.

ADE20K: we set crop size as 473x473, initial learning rate
as 0.005 and training epoch as 150.

Before feed into SA block shown in Fig.3(b), a 3x3 con-
volution layer with BN, ReL.U is applied on the outputs of
ResBlock-4 to reduce the number of channels to 512, then the
output of the SA block is also reduced to 512 dimensions. We
set the kernel size of low-frequency branch as 7, but we would
give ablation study on it later. In addition, we also reduce
the dimension of output of every stage in base network to
128 before feeding into H1 block. Here if it needs to down-
sample, then stride = 2 is enabled during reduction, and if
it needs to up-sample, bilinear interpolation operation would
be employed after reduction. In the every layer of the low-
frequency branch except SA block and high-frequency branch,
we set the numbers of channels to 1024 and 128 respectively.

B. Ablation Study

In this subsection, we conduct a series of experiments to
verify the effectiveness of the proposed modeling approach
and reveal the effect of each branch in our proposed method
step by step. First, we give the comparison between HLNet
and baseline network which will be introduced later. Then
the ablations for which stages high-frequency branch should
take as input and for which kernel size low-frequency branch
should adopt would be explored. Next, some studies to
analyse the function of these losses of two branch in our
method would be presented.

Compare with the baseline. To verify the effectiveness of
our method, we remove high-frequency branch and low-
frequency branch and then get the baseline network. Also, the
base network of baseline network is initialized by ImageNet
pretrained model. The final result of the baseline are obtained

TABLE II: The effects of the different input of the High-Freq
Branch.

Base Network  Input mloU(%)
stage3 76.24
ResNet-50 stage3,2 77.90
stage3,2,1 78.05
Base Network  Low-freq Interaction ~ mIoU(%)
None 74.25
ResNet-50 Add 77.75
Subtract 78.05

TABLE III: The effect of kernel size in low-frequency branch.

Base Network  Kernel Size  mlIoU(%)
3 77.93
5 77.95

ResNet-50 7 78.05
9 71.57
11 78.01

by directly upsampling the output. We also consider the
effect of SA block. As shown in Tab. I, our HLNet improves
the performance from 72.35% to 76.11% based on ResNet50
and from 74.32% to 77.28% based on ResNetl01. And
after using SA block to utilize low-frequency similarity, we
will get higher performance with 78.05% on ResNet50 and
79.38% on ResNet101, which shows that our improvement is
significant.

Which stages should be used to aggregate for high-
frequency branch? Tab. II presents the results when
aggregating different stages as input of high-frequency
branch. As can be seen from Tab. II, the network performance
consistently improves with lower stages being used as input.
It is intuitive because higher stage has more semantic cues
while lower stage contains more local details which is helpful
to predict high frequencies. The maximum gap between the
default setting with stage3,2,1 as input and other setting with
only stage3 as input is up to 1.81% based on ResNet50
backbone.

Which kernel size should be used to extract in low-
frequency branch? Large kernel size is benefit to extract
low frequencies. Considering different kernel size causing
different receptive fields, large kernel size will boost neural
network performance. As shown in Tab. III, the network
fluctuates slightly and gradually reaches top performance
when kernel size reaching 7, and larger kernel size afford
no more contribution. We guess the reason is that sufficient
receptive field is aggregated, considering output stride of base
network and function of SA block.

Empirical analysis of multiple losses. We firstly analyse the
effect of multiple losses on the network shown in Tab. IV.
Enabling these three losses is better than other settings. Own
to design of two branches, other setting also can achieve



TABLE IV: The effect of supervisions.

good performance. In addition, these three losses are all cross
entropy loss, however, the final loss is using per-class mask
(hard label) to supervise, while, the high-freq and low-freq
loss using soft label to supervise, shown in Fig. 5. After
above analysis, besides advantage of building block in the
network for different frequencies, we guess that our model is

Base Network | Loss | mloU(%)
| Final Loss | High-Freq Loss | Low-Freq Loss |
v v v 79.38
v X v 78.06
ResNet-101 v v X 78.83
v X X 78.57
X v v 71.73
0 0.25|0.375| 0.375| 0.25
0 0.375]| 0.563| 0.563| 0.375
0 0.5] 0.75| 0.75| 0.5
0 0.375]0.563| 0.563] 0.375
0 0.25/0.375| 0.375| 0.25
(a) Ground truth: mask of (b) Ground truth of low fre-
this object. quencies.

also benefiting from label smoothing [32], [33].

We also give qualitative result toward the output effected by
these multiple losses. We show the visualization of outputs of
low frequency branch. Shown as in Fig. 4, the output of low
frequency branch more focus on big stuff or objects and the
main components of elements, while the final result contains
the fine details of the boundaries. This is an expected result
since the low frequency branch has low resolution feature
and large kernel size, while the final result utilize the help of
final supervision and output of high frequency branch. This
demonstrates our network has better interpretability.

Output of low-freq branch Final result

Ground Truth

Fig. 4: Visualization of output of low frequency branch and
final result. The boundaries of the former is more smooth. The
latter contains more fine details.

Discussion. The visual method is found in the mammalian
visual system, which decomposes the visual scene into a
central high-resolution (foveal) area and a lower resolution
surrounded, with attentional shifting to bring the fovea to
bear on regions of interest in a visual scene. This biology
visual method is highly efficient and motivates many works
[29], [34] to introduce attentional mechanism into neural
network to focus on a some patch in a image. Same as
above biology visual method, our method in this paper also
introduces low and high resolution, but is different from it in
practice. Considering the characteristic of scene parsing task

Fig. 5: An example to illustrate the multiple supervision sig-
nals. (a) is the normal ground truth of some object with mask
representation. (b) is generated by smoothing the (a). Here
the Gaussian blur with kernel 3 is adopted. Correspondingly,
ground truth of high frequencies is (a) subtracting (b). The
depth of the color indicates the degree of supervision.

TABLE V: Comparisions with other state-of-the-arts results on
Cityscapes val set and ADE20K val set. We adopt ResNet101
with output stride 16 as our base network. Our method outper-
forms most previous methods in mloU on these benchmarks.
Red represents that the result outperforms ours.

mloU(%) mloU(%)

Method Base Network on Cityscapes  on ADE20K
Dilation10 [7] VGG16 68.7 -
LRR [35] VGGI16 70.0 -
DeepLabV2+CRF [§] ResNet-101 71.4 -
DUC [36] ResNet-152 76.7 -
DSSPN [37] ResNet-101 77.8 43.68
PSPNet [20] ResNet-101 79.2 44.15
PSANet [38] ResNet-101 79.4 44.14
CFNet [39] ResNet-101 79.5 44.89
RefineNet [18] ResNet-152 - 40.7
UperNet [40] ResNet-101 - 42.66
HLNet(Ours) ResNet-101 80.14 44.07

is per-pixel prediction, we introduce parallel high and low
resolution performing over the entire image area, instead of
separately over different small patches.

C. Comparisons with State-of-the-Art

Cityscapes. We evaluate HLNet on the Cityscapes dataset
with multi-scale inference scheme. The Tab. V shows that
our comparison with other existing leading algorithms on val
set. Our proposed method, which uses only train-fine data,
achieves 80.14% mloU. Compared with other algorithms, our
method reaches superior performance based on ResNet101
without bells-and-whistles.

ADE20K. We also evaluate HLNet on the ADE20K
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Fig. 6: Visualization of the baseline and HLNet base on ResNet-101 on Cityscapes val set. Improved areas are marked with

yellow dashed boxes.

dataset with multi-scale strategy being adopted. As shown in
last column of Tab. V, our method achieves 44.07% mloU
on ADE20K val set, which is a competitive performance
compared with most of the previous approaches. The methods
marked as Red in Tab. V are slightly better than ours.
However, our method has less computation than them since
they all adopt ResNetl01 with output stride 8 as base
network. For example, given a single scale 473 x 473 input
and same base network ResNet-101, the FLOPs of PSPNet,
PSANet and our method are 230.29G, 235.48G, and 89.38G,
respectively (We can not calculate FLOPs of CFNet due to
the source code is not available). The comparison shows our
method has big advantage.

Qualitative Results. We provide the qualitative result
in Fig. 6 on Cityscapes benchmarks. We use the yellow
dashed boxes to mark those challenging regions that are
mis-labeled by the baseline easily but corrected by HLNet.
We also note some new errors being introduced in our result,
for example, in Fig. 6 the large gray area (its semantic label
is building class) superimposed on the green area (train class)
under the tree at mid-left in the lower frame, which does not
appear in baseline result. We guess that it may be caused by
the low weight of low-frequency loss.

V. CONCLUSION

In this work, we analyse the characteristics of different
frequency components and propose two branches to capture
high and low frequencies of the segmentation map for scene
parsing problem. Different from most existing methods,
the proposed approach predicts high frequencies and low
frequencies respectively utilizing their characteristics, which
results in larger receptive field to extract low-frequency
component and higher resolution to keep high-frequency
component. The experiments has proved the effectiveness
of the proposed approach and analysed the effects of each
branch. Experiments on Cityscapes and ADE20K prove the
superiority of the proposed approach on scene parsing. More
potential application using frequency prior (e.g., lightweight

CNN design and neural architecture search) and efficient
imitating mammalian visual system remain to be explored in
the future.
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