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Abstract—Privacy preserving and data security is one of the
major concerns of our world. In this study we deal with one
aspect, namely shoulder surfing, where sensitive information may
be accessed by looking at the display or keyboard of the user. We
propose a method of hiding information in color images so that
it can not be perceived by the naked eye and requires a spectral
filter to be seen. We term such images Spectral Hiding Images.
In this work we developed a system which can automatically
generate Spectral Hiding Images. We focus on a basic class of
images containing a single numeric digit. We train three deep
networks to determine the salient digit in an image, determine
the hidden and masked digits in a spectral hiding image and
to generate diverse spectral hiding digit images. Mass producing
such Spectral Hiding Images using our system will allow for
screen content hiding and password hiding. Additionally we show
that several Gestalt principles of human perception, are expressed
in the trained networks’ behavior.

Index Terms—Data hiding, color images, spectral filtering,
shoulder surfing, user privacy, deep neural networks.

I. INTRODUCTION

A main concern in privacy protection is known as ”shoulder
surfing”, in which a hostile agent looks over the shoulder of
a legitimate user and acquires sensitive information. This may
be passwords or any other displayed information (e.g. when
using computer displays in public locations). We introduce an
approach to data hiding which may be used to prevent shoulder
surfing. It is user friendly and requires no complex technology.
The approach is based on exploiting the color spectra of the
display, together with simple color filter glasses that can be
worn by the users.

The notion of hiding information using spectral filtering
is not new. However, in most previous methods, the hidden
data can be seen without any filter or image quality, when
viewed with a filter, is poor. Additionally in most existing
solutions, the image is manually created therefore cannot be
mass produced. The novelty of our approach is in using deep
learning architectures. This allows the following advantages:

• The hidden data can not be seen without the filter, even
with prior knowledge of the hidden data.

• The hidden data, when viewed through the filter, is clearly
seen.

This research was supported by grant no 1455/16 from the Israeli Science
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• Creation of these spectrally hidden images is performed
automatically so that they can be mass produced.

To achieve our goal we train several deep neural networks
on data labeled by human subjects and on manually created
data. The networks perform the following tasks:

• Recognize the visible data and the spectrally hidden data
in a specific image.

• Create new synthetic images in which visual data is
spectrally hidden from the illegitimate user.

Finally, we show that the trained neural networks have learned
principles from the laws of human visual perception, namely
Gestalt principles.

II. BACKGROUND

A. Spectral Filtering

The Spectral Power Distribution (SPD) of a light signal
is a function I(λ) that defines the energy at each spectral
wavelength (Figure 1a). A spectral filter attenuates the power
at every spectral wavelength and is represented by a function
f(λ) that defines the attenuation factor for each spectral
wavelength (Figure 1b). The outcome of applying spectral
filtering with filter f(λ) on input SPD I(λ) is given by:

If (λ) = I(λ) · f(λ)

An example is shown in Figure 1.
Although SPDs represent high dimensional data, the space

of perceived colors has been shown to be three dimensional
[1]. Specifically, it has been shown that almost all perceived
colors can be produced as a linear combination of three SPDs,
often referred to as Primaries, which can be viewed as the

Fig. 1. Spectral Filtering. a. Spectral Power Distribution (SPD) of light signal.
b. Filter transmission function. c. Resulting spectrally filtered SPD.
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Fig. 2. Top: An RGB image viewed without the spectral filter. Bottom:
The image viewed through a red spectral filter. The filter attenuates the
Green channel and blocks the Blue channel. Pixels with high red content
are perceived past the filter as bright, while pixels with low Red content are
seen as dark. (Best viewed in color).

basis of a 3D color space. The typical 3D color space is the
RGB color space with R,G,B representing the Red, Green and
Blue components of the color signal. These spaces have been
standardized e.g. the CIE-RGB standard [2]. Thus the color
of every point in a scene, an image or any viewed object
can be represented as 3 values (e.g R,G,B), representing the
intensity of the three primaries composing the color. This
property allows to present spectral data in digital technologies
(monitors, printers etc.).

In this study we use a ”red” filter that strongly attenuates all
short and middle spectral wavelengths. Since the filter will be
used to view an image displayed on a color monitor, we model
the effect of the spectral filter as transmitting all R channel
content, and a small fraction of the G channel of the image.
The filter completely blocks the B channel of the image. The
results in this study are robust under different variants of ”red”
filter transmission functions. An example of the red filter’s
effect on a displayed RGB image is shown in Figure 2. We
represent the filtered image as a gray scale image.

B. Gestalt Principles

Gestalt principles [3] are a set of laws that govern which
elements of an image are perceived as grouped. There are
numerous principles of Gestalt, however, in this work we
consider only the following four factors: proximity, similarity,
closure and continuity (see Figure 3):

1) Proximity - objects which are close to each other will
usually be grouped together, whether they have or do

a. b.

Fig. 4. Gestalt conflict (a) and interaction (b). a) Elements may be grouped
into rows, according to color similarity or into columns, according to shape
similarity. b) Due to color similarity and proximity, all circles are viewed as
a single group.

not have a defined relationship (e.g. in terms of color,
size or texture).

2) Similarity - objects which are visually similar to each
other (e.g. in terms of color, size or texture) will usually
be grouped together.

3) Closure - objects tend to be grouped together when they
are perceived as a whole object or might complete a
whole object, even when parts of that object do not exist.

4) Continuity - objects tend to be grouped together if they
align and form a continuous line or curve.

The strength of grouping under these principles is affected
by several factors, including the number of segments, their
distance, and their similarity in terms of color, shape or other
characteristics. In many cases conflicts may arise between
Gestalt principles. An example of a conflict between shape
and color similarity is shown in Figure 4. Many studies have
investigated Gestalt principles and have attempted to model
these principles, their conflicts and interaction [4] [5], but
a clear model or set of rules determining how and when
these principals interact together is still ongoing research.
Furthermore, current studies typically focus on binary (black
and white) shapes and often do not take color into consider-
ation. Research in the direction of this paper, may assist in
understanding the role of color in Gestalt principles.

III. RELATED WORK

The study presented here is strongly related to Steganogra-
phy (see [8] for a summary) in which secret data is hidden
in some media. Automatic visual hiding of data in images
has been previously suggested, based on spatial image content
and textures. Several methods such as [9] [10] require highly
textured backgrounds, in order to hide the visual data. Other
methods [11] create a highly textured image which includes
a tailored highly textured background in which the desired

a. b. c. d. e.

Fig. 3. Gestalt principles. Elements are perceived as grouped into columns due to a) proximity b) shape similarity, and c) color similarity. d) The 2 elements
in the middle are grouped due to closure rather than to the closer elements on the sides. e) Elements are grouped into a horizontal and a vertical line due to
continuity although the left most element is closer to the top element.
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Fig. 5. Previous spectral hiding methods. The original image (left) and the
image viewed through the spectral filter (right). Image source [6]. The hidden
data can be seen without a filter (top). Image quality after filter is poor
(bottom). Image source [7].

object is hidden. These methods were developed to impede
automatic detection by a bot, but are not immune to detection
by humans. Our proposed method, using spectral hiding, does
not use background texture to hide the content. Additionally,
when the legitimate user views the image via the filter, the
hidden data is clear and can be perceived without effort.
The illegitimate user will not be able to see the hidden data,
regardless of the time spent observing the image beforehand.

IV. SPECTRAL DATA HIDING

In this research we introduce a method of data hiding in
which data is ”spectrally hidden” in an image and can be
viewed only with a spectral filter. An example is shown in
Figure 6. The original color figure is shown on the left and
the hidden image as seen through the red-pass spectral filter
is shown on the right.

We denote by hidden data, the data which is visible only
with the spectral filter and by masking data the data which
is visible without the spectral filter. The image is designed
such that image elements that compose the masking data
distract the viewer’s attention from the hidden data in the
image. Considering the characteristics of the spectral filter,
the relationship between image components creating masking
data and hidden data may take several forms:

Fig. 6. Spectral hiding image. Original image (left) and image viewed through
the spectral filter (right). Corresponding RGB channels are shown below.
(Best viewed in color using a ”red” filter).

• Remaining component: an image component may remain
visible in the hidden data, such as the green and cyan
components in Figure 6.

• Disappearing component: an image component may dis-
appear in the hidden data because it was blocked by
the filter. For example, the pink, red, orange and yellow
elements in Figure 6.

• Appearing component: an image component barely vis-
ible in the masking data may appear more pronounced
in the hidden data. For example, the gray circle in
the middle of Figure 6 and segment 5 in Figure 9.
The Appearing component becomes more visible in the
hidden data because the filter projects the data from
RGB color space to grayscale thus losing some of the
color difference between segment and background. In
the hidden image, the contrast between the appearing
component and the background is similar to that of the
remaining components and thus it becomes more visible.

V. DATA REPRESENTATION AND CREATION

In this research we restricted our data (visible and hidden)
to seven-segment digit images. This type of data has a clear
structure, therefore, there is a compact representation for each
data sample. Instead of a W × H × 3 representation of a
natural color image (where W and H represent width and
height respectively), we represent each seven-segment digit
using a vector of 24 integers ∈ [0, 255] representing the RGB
values of the 7 digit-segments and the background. In order
to represent digits with less than 7 visible segments (all digits
except 8), we set the color of the relevant segment to have the
same color as the background. Denote by digit segments the
seven segments that compose the digit numbered 1 to 7, and
by background segment, the background of the image which
is numbered 8. See example in Figure 7.

This representation of the digit-image is memory efficient
and therefore advantageous for computation and specifically
in training neural networks. However, our proposed method is
not limited to seven-segment digits and can be applied to any
structured data.
The digit images can be divided into two types (see Figure 8):

Fig. 7. A digit image is composed of 8 segments: 7 digit segments and
a background segment. Each segment is numbered (1 to 8) and is colored
(R,G,B). In this example digit segment 6 shares the same color as the
background segment and is therefore not visible.



a. b.

Fig. 8. Simple (a) and ambiguous (b) data samples. Subjects disagree on the
most salient digit in the ambiguous data sample: 6 or 8.

• Simple data: the most salient digit in the digit image is
consistent across all viewers. Simple data can be colored
digit images as well as grayscale digit images.

• Ambiguous data: viewers disagree on the most salient
digit in an image.

To determine the most salient digit perceived in each digit-
image of our data-set, a user study was conducted (Section VI).

In our research we aim to hide information in an image.
Specifically, we wish to create digit images such that the
most salient digit in the image is different when viewed with
a spectral filter and without. We will term such images as
Spectral Hiding Digit Images.

Each such digit image is associated with two labels: the
masking digit perceived when viewing the image with no
spectral color filter, and the hidden digit which is perceived
when looking at the image with a spectral color filter.

In this study we consider images in which the hidden digit
image has only one possible salient digit, in contrast to the
masking image, which can be associated with more than one
salient digit. An example of a spectral hiding digit image is
shown in Figure 9. The most salient hidden digit is 9 and
masking digit is not 9 (either 5, 6 or 8).

The possible pairings between masking digit and hidden
digit is constrained due to the physical characteristics of the
spectral filter. Not all pairings are possible (e.g. digit ”1” can
not mask digit ”0”). The possible parings are shown in Table I.
The digit pairing can be divided into two types, according to
masking principles used to create it:

• Disappear Only (DO): in this type, several digit segments
that are visible in the masking image ”disappear” and

Fig. 9. Spectral hiding digit image example. A digit image viewed without
the spectral filter (left) and viewed through the filter (right). The most salient
hidden digit is 9 and masking digit is not 9 (either 5, 6 or 8).

are no longer visible in the hidden image. The remaining
digit segments are visible both in the masking and hidden
images. For example, with the digit pair ”3-1”, segments
number 1,2,3 ”disappear” and segments number 5,7 re-
main. Samples of this type are easily seen with the filter
due to high color contrast both in the masking and the
hidden images.
Trivial Disappear Only (TDO): pairs of digits are such
that there is only one possible digit that can be hidden
using Disappear Only segments. Thus the observer may
deduce the hidden digit from the masking image. For
example, with the pair ”7-1”, the only digit obtainable
from 7 by removing segments is 1.

• Appear and Disappear (AD): in this type, several digit
segments that were visible in the masking image ”dis-
appear” and are no longer visible in the hidden image.
Several other digit segments that were almost invisible in
the masking image become clearly visible in the hidden
image. The remaining digit segments are visible both in
the masking and hidden images. Samples of this type are
less clearly seen with the filter but are more private due
to their compatibility only with a narrow range of color
filters.

Due to the characteristics of the spectral filter described in
Section IV, it is not possible to create ”Appear Only” (AO)
hiding data samples. Table I shows all possible pairings of
masking and hidden digits.

VI. DATA COLLECTION - USER STUDY

To train the networks used in this research, we required
labeled data. Thus we performed a user study in which
subjects reported the most salient digit perceived in digit-
images. Subjects also had the option of reporting ”not-a-digit”.
Data for the user study was created in Lab color space [12]
then mapped to RGB color space and displayed on a calibrated
monitor. The Lab color space is a perceptual color space in
which Euclidean distance correlates with visually perceptual
differences. Thus we could control the perceptual distances in
the digit-images used in the user study.

The data-set chosen for the user study was composed of
four different types of data. Each data type was chosen to
represent ambiguous samples due to different factors. These
factors include the following:

0 1 2 3 4 5 6 7 8 9
0 X DO AD AD AD AD AD DO AO AD
1 AO X AD AO AO AD AD AO AO AO
2 AD AD X AD AD AD AD AD AO AD
3 AD DO AD X AD AD AD DO AO AO
4 AD TDO AD AD X AD AD AD AO AO
5 AD AD AD AD AD X AO AD AO AO
6 AD AD AD AD AD TDO X AD AO AD
7 AO TDO AD AO AD AD AD X AO AO
8 DO DO DO DO DO DO DO DO X DO
9 AD DO AD DO DO DO AD DO AO X

TABLE I
MASKING-HIDDEN DIGIT PAIRS.



• Determining the minimal perceptual color distance be-
tween digit segments and background segment which
enable to perceive a digit in the digit image (Type 1).

• Evaluating the effect of the number of different colors on
the ability to perceive a digit in a digit image (Type 2).

• Determining the boundary between classes of digit im-
ages which are geometrically similar to each other (e.g
”5” and ”9”) (Type 3).

The fourth data type included images with the goal of spanning
the space of ambiguous samples.

A total of 2500 samples were created and used in the
study. Every sample was evaluated by at least 4 subjects.
Every sample was shown twice to each subjet. For each
sample shown in the user study, the response given by the
majority of subjects was considered as the ground-truth label
of the sample. Samples marked with ”not-a-digit” according
to the majority were discarded. The total number of remaining
samples with a consistent salient digit was 249, 247, 150, 1477
for the four data types respectively. For further details on the
user study, including the experimental setup, creation of the
data samples, and resulting statistics of user responses see [13].

VII. DIGIT-IMAGE CLASSIFICATION AND GENERATION
USING MACHINE LEARNING

The goal of this study is to create several Deep Learning
based systems to perform the following:

1) Given a digit-image, determine the salient digit ([0,9]).
2) Given a spectral hiding digit-image, determine the mask-

ing digit and the hidden digit.
3) Given a masking-hidden digit pair, synthesize a spectral

hiding digit-image.

A. Digit-image classification

To determine the salience of each possible digit [0, 9] within
a given digit-image, we used our user study data-set to train a
fully connected neural network with architecture as detailed in
Table II. We will term this network the Salient Digit Classifier
(SDC) . Each linear layer, except the last, was followed by a
ReLU activation function. The output layer was followed by
a Softmax operator. The input corresponded to the 24 RGB
values representing the digit image, as defined in Section V.
The output layer produced a vector representing the probability
of each digit ∈ [0, 9] appearing in the image. Hyper-parameter

Layer id Layer type Layer parameters

0 input size = (24)
1 FullyConnected size = (24,98)
2 Dropout (p=0.25)
3 FullyConnected size = (98,98)
4 Dropout (p=0.25)
5 FullyConnected size = (98,49)
6 Dropout (p=0.25)
7 FullyConnected size = (49,10)
8 Softmax size = (10)

Total 4 layers

TABLE II
NEURAL NETWORK ARCHITECTURE FOR DIGIT-IMAGE CLASSIFICATION

Data type Total Training Validation Test Test
size set set set accuracy

Data type no. 1 249 179 40 30 100%
Data type no. 2 247 178 38 31 96.8%
Data type no. 3 150 109 21 20 85%
Data type no. 4 1477 1037 221 219 90%
Simple samples 1877 1306 280 300 96.3%

Total 4000 2800 600 600 94%

TABLE III
DATA SET FOR DIGIT-IMAGE CLASSIFICATION AND TEST ACCURACY

values were optimized by random search. Training consisted of
40,000 epochs with learning rate 0.01 and batch size 100. The
input data for the network included 4000 samples consisting
of the 4 data types of samples labeled in the user study
(Section VI) and additional grayscale simple digit images (see
Section V). The division of the data-set into training, validation
and test sets for each data type is given in Table III. The
loss function was the KL-divergence metric [14]. Stochastic
Gradient Descent (SGD) [15] was used as optimizer.

Results and discussion: Using 5-fold cross validation, the
network achieved on average 96% (std 0.007) accuracy over
the validation set and 94% (std 0.008) accuracy over the test
set. Accuracy per data type is given in Table III. Confusion
matrix per digit is given in Figure 10. Shown values refer to a
specific fold with 94% accuracy over test set. These accuracy
measures are competitive considering that human subjects did
not always agree on the most salient digit.

B. Spectral-hiding digit-image classification

Our second goal was to determine the masking digit and the
hidden digit of a spectral-hiding digit-image. To achieve this
goal, the trained SDC classification network (Section VII-A)
was extended and a transfer learning approach [16] was used.
The network’s last layer was restructured, to output two labels
instead of one. Thus the last layer of the new classifier
produced 20 values. The saliency probability distribution of
the masking digit was represented in the first 10 values and
that of the hidden digit in the remaining 10 values.

The Hyper-parameter values were optimized by random
search. Training consisted of 10,000 epochs with a learning
rate of 0.005 and batch size 100. The network was trained
on spectral-hiding digit image samples that were created
following the principles described in Section V. The data-set

Fig. 10. Confusion matrix of predicted vs ground truth for each digit [0,9].
Total accuracy is 94%.



of 3000 samples was divided into training, validation and test
sets with 2000, 500, and 500 samples respectively. SGD [15]
was used as the optimizer.
The accuracy measure and the loss function for this network
were defined as follows:
Denote by y the true hidden digit and by ŷ the network’s
prediction for the hidden digit. Denote by yM the true masking
digit and by ŷM the network’s prediction for the masking digit.
y, ŷ, yM , ŷM are all vectors of size 10 representing the proba-
bility of each digit. ŷ, ŷM are the outputs obtained by applying
Softmax after the last layer of the network. According to the
assumptions on spectral-hiding image samples (Section V),
the hidden digit is well defined and has only one possible
salient digit, thus y takes the form of a 1-hot-encoding vector.
However the masking digit, yM , may be perceived as any num-
ber of possible salient digits, but must differ from the hidden
digit y. Thus the objective function used during training is
constructed to concur with these constraints, and is composed
of three components:

LH(ŷ, y) = min(KL(ŷ, y))

where KL is the Kullback–Leibler divergence metric [14].
LH ensures that the predicted hidden digit ŷ is similar to the
ground truth hidden digit y.

LM1 = min(KL(ŷM , ȳ)))

where ȳ is the complement vector of y. LM1 ensures that
the predicted masking digit ŷM differs from the ground truth
hidden digit y, thus we want to maximize the distance between
ŷ and y or minimize the distance to ȳ.

LM2 = min(Entropy(ŷM ))

LM2 ensures that the predicted masking digit ŷM has low
entropy. This is introduced to prevent the network from
converging to a system which predicts ŷM vectors drawn from
a uniform distribution.
The final loss function is the sum of all three components:

L(ŷM , ŷ, y) = LH + LM1 + LM2

Results and discussion: The trained network achieved
99.8% accuracy over the validation set and 99.8% accuracy
over the test set. These measures are high due to the similarity
between the original task performed by the SDC Neural
Network and the task performed by this network which was
trained using transfer learning. Additionally, our relaxed as-
sumption that the masking digit may be classified as any digit
except the hidden digit allowed relatively many classification
options to be considered as correct.

C. Spectral Hiding Digit Image Generator

The third goal of the research was to build a system
that generates spectral-hiding digit-images. To do this, an
Auxiliary Classifier GAN (ACGAN) [17] architecture was
used. Due to the mode collapse problems in training GAN
networks [18] [19], we trained separate ACGAN networks
to generate different classes of spectral-hiding digit images.

Generator
Layer id Layer type Layer parameters

0 input size = (120)
1 FullyConnected size = (120,hidden size)
2 FullyConnected size = (hidden size,hidden size)
3 FullyConnected size = (hidden size,24)

Total 4 layers

Discriminator
Layer id Layer type Layer parameters

0 input size = (24)
1 FullyConnected size = (24,hidden size)
2 FullyConnected size = (hidden size,hidden size)

3 real/ fake FullyConnected size = (hidden size,1)
3 class FullyConnected size = (hidden size,20)
Total 4 layers

TABLE IV
DETAILED ARCHITECTURE OF THE GENERATOR AND DISCRIMINATOR
NETWORKS OF THE ACGAN. HIDDEN SIZE WAS EITHER 200 OR 300.

The separate ACGANs were chosen based on the criterion of
pairing digits as described in Section V. Tables V and VI list
the different generators (one per row of the table) and the digit
pairs that are synthesized by the network.

In all the ACGANs, both the Generator and the Discrimi-
nator were fully connected networks. The architecture of the
Generator and the Discriminator are detailed in Table IV.
Each layer, except the last of both the Discriminator and
Generator, was followed by a LeakyReLU activation function
with slope of 0.2. The last layer of the Generator network was
followed by a Tanh activation function and the last layer of the
Discriminator was followed by a Sigmoid activation function
for determining the real/fake output and a Softmax activation
function for the class output. Input to the generator consisted
of a latent noise vector of size 100 sampled from a binary
distribution, and two vectors of size 10 representing the hidden
digit and the masking digit (represented as one-hot vectors).
The hidden layer size was either 200 or 300 dependent on the
specific paired digit network. The output of the generator, as
well as the input to the discriminator was a vector of size 24
representing a digit-image. The discriminator output included
a binary discrimination value (real/fake) as well as two vectors
of size 10 representing the predicted hidden digit and masking
digit.

The data-set consisted of 7000 spectral-hiding digit images
for each pairing option as mentioned in Table I. The number of
samples in the training, validation and test set was 5500, 1000
and 500 respectively. These samples were created as described
in Section V. Hyper-parameter values were optimized by
random search. Training consisted of 1,000 epochs with batch
size 100 and learning rate 0.001, β1 was 0.5 and β2 was 0.999
for both the Generator and the Discriminator.

Denote by y, ŷ, yM , ŷM the ground-truth and predicted class
of hidden digit and masking digit respectively. All are vectors
of size 10. Denote by yRF the true source of the digit image
(real data sample / fake generated sample) and by ŷRF the
network’s prediction for the source of the digit image. yRF is
a binary value (yRF ∈ {0, 1}) and ŷRF is the output of the
sigmoid function that follows the last layer of the network.



Generated digit pairs Loss Prediction Accuracy Loss Prediction Accuracy
(masking - hidden) G G G D D D
0-1, 3-1, 8-1, 9-1 1.351 0.387 100% 1.084 0.564 100%
8-3,9-3 1.033 0.428 100% 1.170 0.565 100%
8-4, 9-4 0.921 0.462 100% 1.312 0.522 100%
8-5, 9-5 0.959 0.456 100% 1.231 0.559 100%
0-7, 3-7, 8-7, 9-7 1.262 0.399 100% 1.123 0.622 100%
8-0, 8-2, 8-6, 8-9 1.033 0.426 100% 1.125 0.561 100%
4-1, 7-1, 6-5 1.100 0.409 100% 1.136 0.586 100%

TABLE V
DISAPPEAR ONLY NETWORK RESULTS.

Generated digit pairs Loss Prediction Accuracy Loss Prediction Accuracy
(masking - hidden) G G G D D D
2-0, 3-0, 4-0, 5-0, 6-0, 9-0 0.843 0.489 100% 1.299 0.568 100%
2-1, 5-1, 6-1 0.758 0.483 100% 1.296 0.529 100%
0-2, 1-2, 3-2, 4-2, 5-2, 6-2, 7-2, 9-2 0.963 0.442 100% 1.128 0.550 100%
0-3, 2-3, 4-3, 5-3, 6-3 0.910 0.435 100% 1.200 0.558 100%
0-4, 2-4, 3-4, 5-4, 6-4, 7-4 0.961 0.440 100% 1.164 0.532 100%
0-5, 1-5, 2-5, 3-5, 4-5, 7-5 0.863 0.501 100% 1.234 0.603 100%
0-6, 1-6, 2-6, 3-6, 4-6, 7-6, 9-6 0.906 0.405 100% 1.199 0.532 100%
2-7, 4-7, 5-7, 6-7 0.863 0.464 100% 1.230 0.562 100%
0-9, 2-9, 6-9 0.992 0.478 100% 1.085 0.550 100%

TABLE VI
APPEAR & DISAPPEAR NETWORK RESULTS.

The loss function used for training is given by:

Lacgan = min (Cross Entropy(ŷ, y))

+ min (Cross Entropy(ŷM , yM ))

+ min (Binary Cross Entropy(ŷRF , yRF ))

Adam [20] was used as an optimizer.

Results and discussion: Examples of the generators’ outputs
are shown in Figure 11. DO type digit-pairs are shown on
the left and the A&D type are shown on the right. Our
trained generative networks achieved very good results both in
terms of loss, prediction and class accuracy (see Table V) for
both generator and discriminator. Further details and network
analysis can be found in [13].

VIII. NETWORK PROPERTIES AND PRINCIPLES OF
GESTALT

In this section, we show that the trained fully connected
SDC neural network detailed in Section VII-A applies some
form of Gestalt Principles (see Section II-B) when classifying
a digit-image. We do so by running the network on specially
designed input samples, chosen to show a specific principle,
and analyzing the network output on these samples.

We adopt a perturbation-based approach [21], [22] where
perturbation (changes) are applied to an input and the effect on
the predicted output is evaluated. We apply perturbations that
exemplify specific Gestalt Principles. Consider the example
in Figure 12 used in testing for the principle of closure.
A digit image (Figure 12a) is perturbed by systematically
removing a single digit-segment. The perturbations b-c show

Fig. 11. Samples created by the spectral-hiding digit-image generator. Samples are of type DO (left pair) and of type A&D (right pair). For each pair, images
viewed without the spectral filter (left) and the same images as viewed with the spectral filter (right).



I. II.

Fig. 12. Perturbation example for closure. I) a) Original digit-image. b-e) Perturbations of image (a) by removing a single digit segment. The closure of the
segments in b-c is stronger than in d-e. Due to the lack of closure in d-e, the saliency of digit ”9” is weaker. II) SDC prediction of class ”9” for images in I.

greater closure between segments than the perturbations d-
e. We consider the effect of the perturbation on the output
produced by the SDC network. Specifically we consider the
change in strength of the prediction for digit ”9” as given by
the output layer of the SDC (Section VII-A). Figure 12-II plots
the prediction strength of the SDC network for the 5 examples
of Figure 12-I. Indeed, the samples, b-c, displaying closure
show higher prediction values for digit ”9” than samples d-e.

Figure 13 shows pairs of perturbation samples associated
with different Gestalt properties. In each pair, Gestalt rules
dictate a stronger prediction of the relevant digit for the right
sample than for the left sample. This is shown to be true in
Figure 14 that plots the strength of the prediction, averaged
over 40 digit-image samples of varying color for different
digits per each property. Bars show SDC prediction values
averaged over samples that show high value of the property
(red) and samples with low values of the property (blue).
The average relative difference between SDC predictions for
high value of the property and low values of the property are

19%, 12% and 39% for proximity, similarity and continuity,
respectively, with std of 0.01, 0.088, and 0.036. It is clearly
seen that for the examples tested, the network is affected
by the Gestalt properties such that the stronger the Gestalt
characteristic in the digit-image, the higher the network’s
prediction value for the relevant digit.

IX. DISCUSSION

This study deals with hiding data in images using spectral
filtering. We developed a system to automatically generate
Spectral Hiding Images in which a numeric digit is perceived
only when viewing the image using a spectral filter (which
attenuates high and mid level spectral wavelengths). The
hidden digit is masked and can not be seen without the filter.

To achieve this goal three deep neural networks were
trained. A classifier was trained to determine the salience of a
digit in an image and then extended using transfer learning to
evaluate the masking digit and the hidden digit in a spectral
hiding image. Finally, a generative model was trained to create
diverse spectral hiding digit images. The networks were shown

a. b. c. d.

Fig. 13. Inputs to test for network properties. a) Proximity b) Closure c) Continuity d) Color similarity. Gestalt principles dictate that for pairs, the right
sample should produce a stronger prediction for the relevant digit than the left sample.

a. b. c.

Fig. 14. Concluding graph for network properties. For each digit, network output for samples demonstrating a gestalt principle (Proximity(a), closure(b),
continuity(c) and similarity(d)) in comparison to network output for samples demonstrating non-existent relevant gestalt principle are averaged for all test sets.



to perform at a high rate of success. Additionally we showed
that several Gestalt principles are expressed in the trained
networks’ behavior.

Spectral data hiding and the system presented in this study,
can be exploited as an added layer of privacy protection, in the
case of shoulder surfing, for example when using passwords
or in departmentalized environments. A major benefit of the
suggested approach is in the ability to mass produce spectral
hiding images.

Future work will involve extension of the approach to
other types of structured images, which are not necessarily
alpha-numeric symbols. In addition, it would be interesting
to develop adaptive spectral hiding images that are tuned to
different spectral filters and that can be personalized to the
individual’s visual system.
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