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Abstract—Dynamic predictor selection has been applied to time
series context to improve the accuracy to forecast. A crucial
step in dynamic selection methods if the definition of the region
of competence, which is composed of the most similar patterns
to a test pattern, because the predictor that attains the best
performance in this region is selected to forecast this test pattern.
The performance of dynamic selection methods depends on two
main parameters, the size of the region of competence and the
similarity measure (also called of distance measure). This work
evaluates the influence of these parameters on six real-world
time series to forecasting one step. In the experiments, Bagging is
adopted to generate a pool of predictors, where the best predictor
is selected per query pattern based on its performance on the
region of competence. The results show that the choice of an
appropriate distance measure, as well as the size of the region
of competence, is mandatory to boost the performance of the
prediction system. Moreover, the results reinforce the importance
of using a dynamic selection approach to improve forecasting
accuracy when compared to the monolithic models, also called
of single models.

I. INTRODUCTION

Time series forecasting has been applied in several areas,
such as Energy [1], Economy [2], Financial Market [3], Traffic
Control [4], among others [5], [6]. In recent years, several Ma-
chine Learning (ML) models have been used for this task, e.g.,
Multilayer Perceptron Neural Network (MLP) [7], Support
Vector Regression (SVR) [8], Radial Basis Function Network
(RBF) [9], and Long Short-Term Memory (LSTM) [10]. ML
models have been used to time series forecasting because
they are non-parametric, data-driven, and perform nonlinear
modeling [11]. Each ML model has specific characteristics
and, consequently, can present different performances in the
forecasting of a given time series. Furthermore, according to
the no-free-lunch theorem [12], no technique is better than
others in all possible cases. Thus, the selection of the most
suitable ML model to forecast a specific time series is a
relevant and challenging task [13], [14].

Multiple Predictor System (MPS), also named Ensemble,
has been developed to deal with uncertainties inherent to the
choice of model [15] aiming to improve the accuracy [16] of
the whole system. The idea is to combine the strengths of
different techniques with the objective to obtain a more robust
system. Several studies have used MPSs to the forecasting
task [1], [12], [17], [18]. In time series context, an ensemble of
forecasting models generates the final forecast of two manners:
combining the forecasts of two or more models or choosing
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one model. An MPS generally is composed of three steps [19]:
(D Generation, (IT) Selection, (IIT) Integration. In the first step,
a pool of forecasting models (set of models) is generated.
In the second step, a single model or a subset of models
is selected. In the last step, the final forecast is obtained
combining the chosen models in the previous step.

The selection is a crucial step because it can improve the
accuracy of the system [17] and reduce the computational
complexity [20]. However, the selection step is a complex task
since there is no certainty that the more appropriate model is
being chosen for a specific problem [21]. Several methods
have been proposed to select the best forecast model [12],
[22], [23], [24], [25]. Most of these methods employ static se-
lection, using the same model for forecasting all out-samples.
However, due to the dynamic behavior of the time series, the
dynamic selection approach has attained better results [12],
[26], [27].

Dynamic selection methods aim at selecting one or more
models according to some criterion [17], based on the assump-
tion that a unique forecaster is not enough to adequately model
local patterns that may be present in the time series [28].
In this way, different forecasting models may be experts in
local regions of the time series [12]. So, the critical issue
in the dynamic selection approach is to define the region
of competence more adequate to evaluate the performance
of the models in a determined task [29]. Dynamic selection
methods developed for time series forecasting were inspired
by the Local Accuracy (OLA) [30], which is a Dynamic
Classifier Selection method, and by the Dynamic Selection
(DS) method [31], which was initially proposed to regression
problems and posteriorly applied to time series forecast-
ing [32], [33], [34]. DS consists of selecting a set of patterns
(region of competence) in the training or validation sets [35],
which are more similar to the test pattern. After, the model
with the lowest forecasting error in this region of competence
is selected to predict the test pattern.

Regarding time series classification task, an empirical com-
parison of different similarity measures was carried out using
the nearest neighbor method with a fixed value of £ = 1
in [36]. The influence of the DS method parameters, dis-
tance measure, and neighborhood size, was evaluated in the
classification task [37]. However, to the best of the authors’
knowledge, the impact of the parameters of the DS in the time
series forecasting context was not investigated.



In time series forecasting, methods that use DS have out-
performed single best predictors and static combinations of
predictors in several studies [34], [38], [11]. However, the
influence of the DS parameters in the overall performance of
the system is still an open question.

In this paper, it is investigated the influence of the two
main DS parameters: the k that defines the size of the region
of competence and the similarity measure (distance measure)
that determines the shape of the decision space selecting the
patterns based on the similarity between the test pattern and
the in-sample patterns. The study is performed to evaluate the
sensitivity of the DS algorithm to the parameters. Experiments
were performed employing ten similarity measure, and two
values for k, to evaluated the one step ahead task on six real-
world time series using the Mean Square Error (MSE) metric.
Experimental results showed that the accuracy of the DS
algorithm increases with the correct choice of the parameters,
attaining better results than a single model in all evaluated
cases.

The remainder of this paper is structured as follows: Sec-
tion II presents the proposed methodology to analyze the
influence of DS parameters in time series forecasting. The
experimental setup and results are described in Section III and
the conclusions are presented in Section I'V.

II. PROPOSED METHODOLOGY

The proposed methodology aims to evaluate the influence
of two parameters, the similarity measure and the number of
patterns in the region of competence, in the performance of the
dynamic selection step of an MPS. Section II-A and II-B de-
scribe the proposed methodology and the evaluated similarity
measures, respectively.

A. Multiple Predictor Systems

Multiple Predictor Systems (MPSs) are composed of a set
of forecasting models. The main idea behind this approach is
to generate diversity among the individual ensemble members
and use it for the improvement of the accuracy of the whole
forecasting system. The diversity can be generated through
different approaches, such as manipulation of the training set,
handling of the model parameters and employing different
models. The former approach is often employed in homoge-
neous forecasting systems, where the same type of model is
trained on subsets of the original data set. Model parameters
can also be changed to produce different models, such as
changing neural networks weights.

MPSs are composed of three steps: (I) Generation, (II)
Selection, (III) Integration. The first step is responsible for
generating a pool of forecasting models M = {M;,Ms ...,
My }. The pool should contain accurate and diverse models.
The second step is responsible for selecting (statically, or
dynamically) a single model, or a subset of models. In the
static approach, the selection is performed in the in-sample
patterns through some chosen selection criterion, e.g., Meta-
Learning [25] and Ranking [23]. After, the selected model(s) is
applied to forecast all out-of-sample patterns. In the dynamic

selection step, one or more models can be selected for each
new pattern in out-of-sample. The main approach used in the
dynamic selection of forecasters is the DS [31]. DS selects
the set of time windows (in the training or validation sets)
more similar to a new pattern of the test sample and, after
that, the model with the lowest prediction error in the region
of competence is used to forecast the test pattern. In the
integration step, the selected model are fused to return the
predicted value of the test pattern. Combination approaches
such as mean or median are commonly applied to produce the
final forecasting. If only one model is selected, no integration
is required.

Figure 1 shows the architecture of a typical MPS with two
phases: (I) Generation and (II) Dynamic Selection. In the first
phase, given a training data set of a time series Z, the Bagging
method is used to generate a pool with N models trained in
different subsets (Tr). The subsets are composed of patterns
selected randomly of the training data set, taking into account
the temporal order of the series. So, for application of the
Bagging approach in the time series context is necessary to
organize the data into a pattern (input, target). The input is
created from a time sliding window (z¢, Z¢—1, ..., Zt—m—1)
where m is the size of the window. The target is the future
point that will be forecast (zy41), preserving the temporal
ordering. For each Tr;, an M; model is trained, resulting in
a pool with N models.

In the second phase, the MPS is applied in the test set.
For each new time window (TS;) an My model is selected
to forecast the pattern zy;;. The DS algorithm is employed
to select the My model from the generated pool in phase (I).
This process consists of choosing the M; model with the higher
performance in the region of competence (Ry). R is defined
as a set of k patterns that belengs to the training set (VI),
which are more similar to the pattern TS, taking into account
a similarity measure.

B. Similarity Measures

Given two time windows X = (X1, X2, ..., Xq) and Y =
(Y1, ¥2, - .-, Ya), different metrics can be used to measure the
similarity between them.

DS algorithm uses a similarity measure to select the k time
windows in the in-sample set with behavior more similar to
the new pattern of the test set. The k windows compose the
region of competence, which is used to evaluate each model
of the pool. It is fundamental to create a region of competence
with patterns similar to the target pattern that will be predicted.
In this context, it is crucial to use a similarity measure able
to select the time window really more similar.

In the time series context, several distance measures are ap-
plied to calculate the similarity. In this study, the experiments
are carried out using ten measures that can be organized into
distances metric (Euclidean, Manhattan, Cosine, Correlation,
Chebyshev, Hellinger, and Gower) and algorithms of distance
(DTW, ShapeDTW, and EDRS). For a better comprehension,
we use the following terms: dist(X,Y) is the distance between
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Fig. 1: Overview of the MPS proposed with the DS approach. It is divided into two steps: (I) Generation, where Try subsets
are generated through the Bagging approach, and My are predictor model of pool trained using each subset. (II) Dynamic
Selection, where k and Dist are parameters of the DS, k to define the size of Region of Competence (R), and Dist to define
the distance/similarity measure, IV is the training sample, (TS) is the pattern of out-of-sample (TS), and M, is the model

selected.

the windows X and Y, d is the window size, X’ and Y’ are
the windows X and Y without the first value, respectively.
Euclidean. The most popular distance, with no config-
urable parameters and easy interpretation. The main drawbacks
are sensibility to noise and unable to deal with local time
shifts [39]. The Euclidean distance is defined as follows:

(1

Dynamic Time Warping (DTW) is considered the most
successful similarity measure in time series classification con-
text, but it has a high computational cost [40]. The dynamic
programming is applied to determine the best alignment that
will result in the DTW distance. DTW is defined as:

dlSt(X,Y) = (Xl — Y1)2+
min(dist(X’, Y’), dist(X’, Y), dist(X, Y')) (2)

ShapeDTW is an algorithm that applies the DTW in
similarly-shaped structures. The algorithm is composed of
two steps: (I) transform each temporal point through a shape
descriptor, resulting in a sequence of descriptors. (II) apply

the DTW to align two sequences of descriptors and result in
the distance of them [41].

Manbhattan is also known as city block distance and has the
simplicity in computation and it is more robust to the influence
of outliers in comparison with other distance measures [42].
The Manhattan distance is computed as following:

Z Ixi — il

Cosine is applied to compute to the angular distance ignor-
ing the scale of values of the time window [43]. The cosine
distance following the equation:
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Correlation or Pearson distance is based Pearson’s product-
momentum correlation coefficient of two time windows [43].
The equation of Correlation distance is defined as:

Y —®) (i - )

\/Zl 1 (xi = %) \/Zl (i =

dist(X,Y)

4)

dist(X,Y) =1-—

(&)




Chebyshev computes the greatest difference along between
each point in the time windows [44].The equation is defined
as:

dist(X,Y) = max |x; — il (6)

Hellinger compute the distance between two discrete prob-
ability distributions, measuring how to distribution are close to
each other [45]. The equation of Hellinger distance is defined
as:

d
dist(X,Y) =2,|1- > v xy; (7)
i=1

Gower calculate distance values in mixed data types [46].
The equation is defined as:

d
. 1
dist(X,Y) = 1 E Ixi — yil ®)
i=1

Edit Distance on Real Sequences (EDRS) is able to
account misalignment between time windows, and reduce the
effect of noise [47]. The EDRS is defined by:

dist(X,Y) = min{dist(X', Y’)
+cost, dist(X’,Y) + 1,dist(X, Y') + 1}, (9)

where the cost is equal to 0 when the points have the same
values, 1 otherwise.

III. SIMULATION AND RESULTS
A. Experimental setup

An experimental study is conducted in the scenario of one
step ahead forecasting. Six real-world time series are used:
Goldman Sachs (Goldman), Star Brightness (Star) , Microsoft
(MSFT), Vehicle, Red Wine, and Pollution'. Goldman Sachs
series is composed of daily values of the adjusted close price
of Goldman Sachs stock from 01/04/2010 to 12/31/2012,
resulting in 754 points. Star Brightness series is composed of
daily values of the brightness of a variable star at midnight,
resulting in 600 points. Microsoft series corresponds to daily
records of the adjusted close price of Microsoft stock from
01/04/2010 to 12/31/2012, totaling 754 points. Vehicle series
is the collection of monthly values of sales of vehicles in
the USA from 1971 to 1991, resulting in 252 points. Red
Wine series is composed of monthly records of Australian
wine sales from 1980 to 1994, totaling 187 points. These time
series have different behaviors (seasonality, nonstationary, and
trend) and are widely used in the literature. Each time series
was normalized into the interval [0, 1] and divided as follows:
the first 75% points of time series for training and validation,
and the last 25% for testing.

The experimental simulation was performed using a pool
with 100 Support Vector Regression (SVR) models. The pool
was created with Bagging [4], as shown in Figure 1. SVR was
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chosen as the base model to composed the pool due to its good
performance regarding accuracy in the forecasting task [48].
The pool was trained using a grid search approach to find the
best configuration parameters per model (Table I).

The training set, which represents 75% of the time se-
ries, was resampled using Bagging. This process resulted in
two sets: training (in-sample patterns) and validation (out-
of-sample patterns) per model. These sets were organized
into time sliding windows having a maximum size of 20
lags selected using the autocorrelation function (ACF) [49].
The training set (in-sample) was used to train each model,
and the validation set (out-of-sample) was used to adjust the
parameters of the model.

TABLE I: SVR parameters values.

Parameters Values
Kernel Radial basis function, Sigmoid
Gamma 0.5, 1, 10, 20, - - -, 100, 200, - - -, 1000
Cost 0.1,1,100,1000,10000
Epsilon 1, 0.1,0.001, 0.0001, 0.00001, 0.000001

The performance of the different configurations of the MPS
was evaluated using the Mean Square Error (MSE) which is a
widely used measure to evaluate forecasting models [50]. The
MSE is defined in Equation 10.

N

1 A2
MSE:NZ(Zifzi) ,

i=1

(10)

where z; and Z; are the actual value of the time series and its
forecast in time i, respectively.

Another way to assess the performance is to calculate the
percentage difference between two forecasting approaches.
Equation 11 shows the ratio (percentage difference).

(9a — 0B)
oA
where 64 and Jp are the performance in terms of MSE of the

approaches A and B, respectively.

In this work, the performance of the proposed MPS is
compared to the Oracle [29] and the Monolithic model. The
Oracle [29] is a hypothetic approach that selects the best model
for each point in the test sample. This approach is the best
performance of a specific pool. The Monolithic model consists
of only one SVR. Table I shows the parameters of the SVR
defined using a grid search procedure.

ratio = (11D

x 100,

B. Results

Table II shows the MSE values obtaining varying the
parameter k and the distance measure. The best result achieved
in each data set for a specific k value is underlined. The lowest
MSE for each series is highlighted in bold. For the majority
of the study cases, the MSE varies one order of magnitude
for different distance measures employing the same k value.
For the same distance measure, different error values also are
attained for different k values.

For k = 1, the best distances were Euclidean and Shape
DTW, two datasets for each one. When k = 10, Chebyshev



TABLE II: Performance (MSE) comparison varying the value of k and the similarity measure.

Distance Star MSFT Red Wine Pollution Vehicle Goldman
k=1 k=10 k=1 k=10 k=1 k=10 k=1 k=10 k=1 k=10 k=1 k=10

DTW 1.01E-04 | 4.48E-05 | 2.41E-03 | 2.47E-03 | 4.56E-03 | 3.16E-03 | 5.36E-02 | 4.02E-02 | 3.45E-02 | 2.27E-02 | 6.37E-04 | 7.00E-04
Chebyshev 1.06E-04 | 4.93E-05 | 2.42E-03 | 241E-03 | 547E-03 | 2.97E-03 | 4.55E-02 | 3.90E-02 | 5.50E-02 | 2.53E-02 | 7.24E-04 | 6.29E-04
Manhattan 1.01E-04 | 4.48E-05 | 2.41E-03 | 2.47E-03 | 4.56E-03 | 3.16E-03 | 5.36E-02 | 4.02E-02 | 3.45E-02 | 2.27E-02 | 6.37E-04 | 7.00E-04
Correlation 1.09E-04 | 9.31E-05 | 1.48E-02 | 8.80E-03 | 2.92E-02 | 2.05E-02 | 5.03E-01 | 6.29E-02 | 8.17E-02 | 4.69E-02 | 2.30E-03 | 1.36E-03
Euclidean 1.07E-04 | 5.13E-05 | 2.11E-03 | 1.88E-03 | 3.32E-03 | 3.00E-03 | 5.36E-02 | 4.06E-02 | 3.58E-02 | 2.20E-02 | 6.47E-04 | 6.11E-04
Cosine 1.00E-04 | 5.21E-05 | 6.23E-03 | 3.08E-03 | 3.04E-02 | 2.05E-02 | 5.02E-01 | 4.96E-02 | 8.58E-02 | 3.23E-02 | 1.93E-03 | 1.78E-03
Gower 1.06E-04 | 4.41E-05 | 2.41E-03 | 2.47E-03 | 4.56E-03 | 3.16E-03 | 5.36E-02 | 4.02E-02 | 3.45E-02 | 2.27E-02 | 6.37E-04 | 7.00E-04
Hellinger 9.52E-05 | 6.12E-05 | 2.13E-03 | 1.84E-03 | 3.33E-03 | 3.12E-03 | 4.68E-02 | 4.06E-02 | 3.58E-02 | 2.21E-02 | 6.47E-04 | 7.20E-04
EDRS 1.04E-04 | 1.12E-04 | 1.84E-02 | 2.36E-02 | 4.01E-02 | 3.06E-03 | 9.87E-02 | 8.45E-02 | 1.51E-01 | 2.56E-02 | 3.55E-03 | 1.81E-03
Shape DTW | 9.97E-05 | 8.24E-05 | 2.20E-03 | 2.29E-03 | 5.88E-03 | 3.01E-03 | 9.89E-02 | 5.22E-02 | 2.75E-02 | 1.98E-02 | 6.06E-04 | 9.48E-04

TABLE III: Comparing the best results in Table II against the results of the single model and the Oracle.

Distance Star MSFT Red Wine Pollution Vehicle Goldman
k=1 k=10 k=1 k=10 k=1 k=10 k=1 k=10 k=1 k=10 k=1 k=10
DTW 1.01E-04 4.48E 2.41E-03 | 2.47E-03 | 4.56E-03 3.16E-03 | 5.36E-02 | 4.02E-02 | 3.45E-02 | 2.27E-02 | 6.37E-04 | 7.00E-04
Euclidean 1.07E-04 | 5.13E-05 | 2.11E-03 | 1.88E-03 | 3.32E-03 | 3.00E-03 | 5.36E-02 | 4.06E-02 | 3.58E-02 | 3.58E-02 | 6.47E-04 | 6.11E-04
Best Distance 9.52E-05 | 4.41E-05 | 2.11E-03 | 1.84E-03 | 3.32E-03 | 2.97E-03 4.55E-02 | 3.90E-02 | 2.75E-02 | 1.98E-02 | 6.06E-04 6.11E-04
Worst Distance | 1.09E-04 | 1.12E-04 | 1.84E-02 | 2.36E-02 | 4.01E-02 | 2.05E-02 | 5.03E-01 | 8.45E-02 | 1.51E-01 | 4.69E-02 3.55E-03 1.81E-03
Monolithic 8.52E-05 2.30E-02 1.24E-02 1.26E-01 2.86E-01 1.26E-01
Oracle 1.05E-06 2.29E-05 2.74E-05 6.45E-04 1.18E-03 9.39E-06

distance attained the best accuracy in 2 out of 6 cases. From
the similarity measures point of view, the best performances
were obtained for Chebyshev and Shape DTW, each one won
in two cases, while, Gower and Hellinger won in one case
each. In 5 out of 6 data sets, the best MSE value was achieved
employing a k value equal to 10. This result shows that the
k value has a fundamental role in the performance of the DS
algorithm.

Table III shows the comparison of the accuracy obtained
by best configuration attained in Table II against the distances
commonly used in the literature (Euclidean and DTW), the
Monolithic approach, and the Oracle. The best configuration
found in Table II attained higher performance than the Mono-
lithic model in all data sets. The difference was one order of
magnitude in 4 data sets (MSFT, Red Wine, Pollutions, Vehi-
cle) and three orders of magnitude in one series (Goldman).

Comparing the Oracle with the best distance, the Oracle
reached lower MSE by one order of magnitude in 2 series
(Star, Vehicle), two orders of magnitude in 4 data sets (MSFT,
Red Wine, Pollution, Goldman). Since Oracle results represent
a hypothetical scenario (the best performance of the pool in
the selection of a single model), this analysis shows us that
there is plenty of room for improvement.

Table IV shows the percentage difference ratio (Equa-
tion 11) between the configurations of the MPS and single
model for all data sets. A percentage equals to zero means that
there was no difference between the single model and MPS. If
the single model achieves lower error than the MPS, a negative
ratio is achieved. Otherwise, a positive value is obtained if the
opposite situation occurs. Furthermore, higher absolute ratio
values represent a higher difference between the performances
of the single model and of the MPS. For Goldman and Vehicle
data sets, all configurations of the MPS attained the lower MSE
than the single model. In these series, the highest percentage
differences were reached. For other sets, the performance of
the MPS was more sensitive in relation to the variation of the
parameters distance measures and k values. For MSFT set, the

choice of the distance measure and k value was critical for
the performance of MPS. For example, the MPS using EDRS
distance with k = 10 performed worse —2.64% concerning
the single model, but for configuration Hellinger and k = 10
achieved a percentage gain of 91.99%. Table III also shows
that for the same measure distance, different results can be
reached with the variation of the k value. For Red Wine,
MPS with EDRS distance employing k = 1 and k = 10
obtained —223.05% and 75.35%, respectively. For Pollution
series, MPS with Correlation distance employing k = 1 and
k = 10 obtained —298.92% and 50.07%, respectively. In
general, the worst performances were achieved with k = 1.

Table III also shows that for the same k value, changing the
distance measure generally leads to significant differences. For
example, in the Pollution series, the MPS with k = 1 reached
a percentage difference when compared with the single model
of —298.92% and 63.87% with Correlation and Chebyshev
distances, respectively.

C. Discussion

This work investigates the influence of the parameters of the
DS algorithm for time series forecasting task. Ten different
similarity measures were employed, varying the number of
patterns within the region of competence (k) between two
values (1 and 10), totaling twenty configurations. The results
show that the combination of the parameters distance measure
and k leads to different performances of the DS algorithm.

Among six time series evaluated, configurations of the DS
employing the distance measures Chebyshev and Shape DTW
achieved the best results into two data sets each one. So, 4 out
of 10 distance measures reached the best results: Chebyshev
for Red Wine and Pollution series, Shape DTW for Vehicle
and Goldman series, Gower for Star set, and Hellinger for
MSFT data set. From these results, two important points may
be highlighted: the measure more used in the literature [34],
[51], Euclidean distance, did not lead the DS to the best
performance in any data base, and there is not a distance



TABLE IV: Percentage difference ratio between the proposal and the monolithic predictor.

Distance Star MSFT Red Wine Pollution Vehicle Goldman
k=1 k=10 | k=1 | k=10 k=1 k=10 k=1 k=10 | k=1 [ k=10 | k=1 | k=10
DTW -18.34 47.47 89.52 89.28 63.24 74.56 57.47 68.07 87.94 92.07 99.49 99.44
Chebyshev -23.95 42.17 89.48 89.51 55.91 76.03 63.87 69.02 80.78 91.15 99.43 99.50
Manhattan -18.34 47.47 89.52 89.28 63.24 74.56 57.47 68.07 87.94 92.07 99.49 99.44
Correlation -27.48 -9.26 35.57 61.74 -135.39 | -65.51 -298.92 50.07 71.44 83.61 98.17 98.92
Euclidean -25.89 39.81 90.82 91.84 73.22 75.81 57.47 67.80 87.48 92.31 99.49 99.51
Cosine -17.89 38.87 72.93 86.62 -145.03 | -65.51 -298.27 60.62 70.01 88.69 98.47 98.59
Gower -24.42 48.28 89.52 89.28 63.24 74.56 57.47 68.07 87.94 92.07 99.49 99.44
Hellinger -11.71 28.18 90.74 91.99 73.11 74.83 62.85 67.80 87.49 92.29 99.49 99.43
EDRS -22.56 | -31.43 19.98 -2.64 -223.05 75.35 21.67 32.96 47.12 91.06 97.18 98.56
Shape DTW | -17.04 3.27 90.41 90.03 52.54 75.70 21.50 58.58 90.39 93.07 99.52 99.25

measure most suitable for all cases. The first point shows
that the investigation of other distance measures is a crucial
research question to obtain accurate forecasts using the DS.
The second issue is related to the difficulty to guarantee which
a given temporal behavior be better identified using a specific
distance measure. So, the definition of the best similarity
measure for a particular time series is a complex task.

Table III shows that in 5 out of 6 series the best and worst
accuracies can differ to one order of magnitude, changing only
the k value. In 5 out of 6 data sets, the best accuracy was
attained with k = 10. This result infers that through a region
of competence composed of ten patterns (k = 10) is possible
to select models more accurate. It can occur because of two
reasons: First, the region of competence with more than one
pattern similar to the new pattern of out-of-sample reduce the
uncertainty to select the model suitable to predict the new
pattern. Second, the best size of the region of competence
can be influenced by the performance measure selected. In
this work, the MSE was the performance measure applied to
evaluate the models of the pool on patterns of the region of
competence, this measure evaluates the model through than
mean error, and for that is important applied in the region of
competence with more than one pattern.

In Table IV, the results achieved show that the parame-
ters could influence the MPS performance compared to the
monolithic approach (an SVR model). In the Star series, the
choice of k = 1 resulted in negative performance regardless
of the distance measure. On the other hand, in the Goldman
series the choice of parameters resulted in small variation
performance. When using a k = 10, the DTW, Chebyshey,
Manhattan, Euclidean, Gower, Hellinger and Shape DTW
measures, achieve better performance than the monolithic in
all time series evaluated. This result reinforces the importance
of the use of MPS with dynamic selection compared to use of
the monolithic model to time series forecasting.

IV. CONCLUSIONS

In this work, we investigated the influence of the similarity
measure along with the number of patterns k in the region
of competence on the performance of time series forecasting
systems. In the proposed methodology, Bagging was employed
to generate a homogeneous pool composed of SVRs. After,
possible regions of competence are evaluated on different
parameter configurations. In the end, the model with the best

performance in the region of competence is selected to forecast
the test pattern.

The experiments were performed on six publicly available
data sets (Star, MSFT, Red Wine, Pollutions, Vehicle, and
Goldman) considering ten distance metrics (DTW, Chebyshev,
Manhattan, Correlation, Euclidean, Cosine, Gower, Hellinger,
EDRS, and Shape DTW) and two values of k (1 and 10). The
results showed that the selection of a proper distance metric
and k value influence the results, and promising results can
be achieved if the appropriate parameter values are selected.
However, there is no best configuration of parameters for all
the analyzed data sets; these parameters should be defined in
a data set-dependent fashion. Moreover, the results reinforce
the importance of the use of the dynamic selection approach
to improve forecasting accuracy when compared to the mono-
lithic model.

In future works, two research issues should be addressed:
how to select the best similarity measure for a particular time
series, and analyzing if there is some relation between the
performance measure and the size of the region of decision.
Furthermore, it is interesting to explore the tradeoffs of having
a heterogeneous pool of predictors.
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