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Abstract—X-ray Computed Tomography (CT) based 3D imag-
ing is widely used in airports for aviation security screening whilst
prior work on prohibited item detection focuses primarily on 2D
X-ray imagery. In this paper, we aim to evaluate the possibility of
extending the automatic prohibited item detection from 2D X-ray
imagery to volumetric 3D CT baggage security screening imagery.
To these ends, we take advantage of 3D Convolutional Neural
Networks (CNN) and popular object detection frameworks such
as RetinaNet and Faster R-CNN in our work. As the first attempt
to use 3D CNN for volumetric 3D CT baggage security screening,
we first evaluate different CNN architectures on the classification
of isolated prohibited item volumes and compare against tradi-
tional methods which use hand-crafted features. Subsequently, we
evaluate object detection performance of different architectures
on volumetric 3D CT baggage images. The results of our
experiments on Bottle and Handgun datasets demonstrate that
3D CNN models can achieve comparable performance (∼98%
true positive rate and ∼1.5% false positive rate) to traditional
methods but require significantly less time for inference (0.014s
per volume). Furthermore, the extended 3D object detection
models achieve promising performance in detecting prohibited
items within volumetric 3D CT baggage imagery with ∼76%
mAP for bottles and ∼88% mAP for handguns, which shows
both the challenge and promise of such threat detection within
3D CT X-ray security imagery.

Index Terms—3D volumetric data, deep convolutional neural
network, X-ray computed tomography, baggage data, classifica-
tion, object detection.

I. INTRODUCTION

X-ray baggage security screening is widely used to maintain
aviation security. Currently, multi-view X-ray is predomi-
nantly used in aviation security for cabin baggage screening.
This traditional baggage screening process, using 2D X-ray
scanners, has the disadvantage of both inter-object occlu-
sion and clutter within any given image projection of the
scanned baggage item. As a result, it poses a considerably
challenging visual search task for the human operators to
discover the prohibited items (e.g., liquids, firearms, knives,
etc.) overlapped with other benign items (e.g., electronic
devices) within a constrained time frame. For this reason,
passengers are currently required to divest large electronic
devices and liquids which decreases checkpoint throughput
significantly. Furthermore, human operator performance can

be subjective and is heavily affected by many factors such as
the experience, fatigue, monotony and concentration, although
many successful measures have been taken to alleviate the
problem in practice (e.g., Threat Image Projection (TIP) [1],
[2] and shorter shift rotations [3]).

By leveraging recent advances in object classification and
detection, significant progress has been made in automatic
prohibited item detection within 2D X-ray imagery [4]. The
use of deep learning techniques allows real-time and accurate
detection of prohibited items even in cluttered X-ray images
[5]–[7]. However, performance can be affected when the
baggage contains significant clutter and inter-object occlusion
due to the fundamental limitation of projected 2D X-ray
imagery. To improve the detection rate without affecting the
checkpoint throughput, airports are currently increasing the
use of 3D CT screening which does not require the removal
of electronic devices and liquids during baggage screening.
The reconstructed 3D CT images provide more information
and make it possible for the human operators to inspect the 3D
CT images from differing views. However, current technology
does not facilitate the automatic detection of (non-explosive)
prohibited items such as weapons and liquid containers. It is
unknown if the success of deep learning approaches in 2D X-
ray imagery can be similarly replicated in volumetric 3D CT
imagery for baggage security screening and whether the 3D
CNN based approaches are efficient enough for operational
viability?

To answer the above questions, in this paper we extend the
prohibited item classification and detection methods from 2D
to 3D imagery and evaluate their effectiveness in real volumet-
ric 3D CT baggage security screening imagery. Firstly, we look
into the task of 3D object classification for isolated prohibited
items in volumetric 3D CT data. We investigate different CNN
architectures including ResNet [8] with variable depths and
Voxception-ResNet [9]. We also evaluate the effectiveness of
data and feature augmentation techniques in 3D CNN based
classification. As for the detection problem, we consider two
successful object detection frameworks for 2D imagery: Faster
R-CNN [10] and RetinaNet [11].

The contributions of this work are summarized as follows:
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– the first attempt to use deep CNN models for the prohib-
ited item classification and detection within volumetric
3D CT baggage imagery to our best knowledge;

– an evaluation of different 3D CNN models in the clas-
sification of prohibited items within volumetric 3D CT
baggage imagery and the effect of data/feature augmen-
tation;

– an evaluation of prohibited item detection within volu-
metric 3D CT baggage imagery using 3D Faster R-CNN
and 3D RetinaNet CNN architectures.

II. RELATED WORK

The work presented in this paper is closely related to some
prior art in two aspects which we briefly discuss in this section:
3D baggage imagery analysis and 3D CNN.

A. 3D Baggage Imagery Analysis

To enable automatic baggage screening using 3D CT im-
agery, a variety of studies have been carried out in recent years
[2], [12]–[19].

One research direction is object segmentation based on
the material and morphological structure [12], [17], [19].
Specifically, Mouton et al. [17] proposed a two-stage approach
for object segmentation within 3D CT imagery. A CT volume
is firstly coarsely segmented based on the voxel intensity
ranges of pre-defined materials. Subsequently, a variety of
shape descriptors are computed as features for the random
forest classifier to determine a segment resulted from the first
stage is good (containing only one object) or bad (containing
multiple objects and hence need further segmentation). Wang
et al. [19] studied the issue of object segmentation and classi-
fication in 3D CT imagery and focused mainly on the material
characteristics without considering any specific prohibited item
(e.g., firearm, knife, etc.). An approach to 3D segmentation
was proposed based on recursive morphological operations and
the Support Vector Machines (SVM) were employed for the
classification of three types of materials.

3D object classification was studied in [13], [14], [16] where
a binary classifier was formulated to distinguish the objects of
interest (i.e. handgun or bottle) from the background volumes
which contain cluttered content (e.g., books, clothes and etc.).
The bag-of-word features and a SVM classifier were used in
these studies (denoted Cortex [13], Codebook [16] and ERC
[14] in Table III). Isolated 3D CT volumes of prohibited items
are manually cropped from the baggage CT images to form
the positive sample set which are also employed here in our
work for the evaluation of 3D CNN based classification.

More recently, Wang et al. [2] present an approach to
3D threat image projection which can be used to generate
realistic and plausible volumetric 3D CT baggage images
with superimposed threat object signatures. This technique can
be used for training not only human operators for baggage
security screening but also machine learning algorithms for
automatic prohibited item detection without time-consuming
data collection and manual annotation such as in [1].

B. 3D Convolutional Neural Networks

3D CNN models are widely used for object classification
and detection within varying data modalities such as LiDAR
point cloud [20], [21], RGB-Depth data [22], 3D Computer
Aided Design (CAD) models [9] and medical CT imagery
[23], [24].

VoxelNet [21] is an end-to-end 3D object detector specially
designed for LiDAR data. It consists of three modules: feature
learning network (subdivide the point cloud into many sub-
volumes/voxels, feature engineering + fully connected neural
network), convolutional middle layer (3D convolution applied
to the stacked voxel feature volumes, each subvolume/voxel is
a feature vector) and region proposal networks. VoxNet [20]
in a more generic model being able to handle different types
of 3D data including LiDAR point cloud, CAD and RGBD
data. Qi et al. [25] improved the performance of VoxNet by
introducing the auxiliary subvolume supervision to alleviate
the overfitting issue.

RGB-Depth data can also be processed using 3D CNN
by firstly extracting proposals from 2D RGB images using
a 2D object detector and transforming the proposals and
corresponding depth information into 3D point clouds [22].
The generated 3D point clouds can be further explored by 3D
CNN models such as PointNet [26].

These models designed for point clouds, RGBD data, CAD
models or medical CT images are not readily transferable to
our volumetric 3D CT imagery for baggage security screening
since the modality of input data for 3D CNN can differ sig-
nificantly. However, the design of 3D CNN architectures and
the training strategies used in existing work can be repurposed
towards our prohibited item classification and detection within
3D CT baggage imagery.

III. METHOD

In this section, we describe the methods used in our work for
prohibited item classification and detection within volumetric
3D CT baggage imagery. We firstly consider a classification
problem to evaluate the possibility of discriminating the iso-
lated prohibited item signatures from benign CT volumes.
Subsequently, we consider the more realistic detection problem
which aims to not only classify the prohibited item within a
baggage CT image but also localises it by generating a 3D
bounding box around the target object.

A. 3D Prohibited Item Classification

Our prohibited item classification is formulated as a binary
classification problem in this work to evaluate the effectiveness
of 3D CNN models. Specifically, given a CT volume as
the input, the 3D CNN model aims to determine if the
volume contains a prohibited item signature (positive sample)
or not (negative sample). The positive samples are manually
cropped from baggage volumes, hence they can have varying
dimensions and orientations. As a result, we need to pre-
process the input samples to a common voxel scaling before
feeding them into the 3D CNN.
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Fig. 1. Our 3D CNN architecture for classification with rich feature fusion
based on ResNet [8] (four CNN layers used for feature fusion are depicted
here whilst many other intermediate layers are omitted; the output layer has
one node for our binary classification problems).

1) 3D CNN Model: We consider ResNet [8] and
Voxception-ResNet (VRN) [9] in our evaluation. ResNet was
extended to the 3D version by Chen et al. [27] for medical
CT image analysis. To address the issue of variable sizes of
prohibited items, we employ the idea of rich features [28]
to explore the multi-scale feature volumes. Specifically, we
augment the features for fully-connected layers by fusing the
feature volumes generated by multiple intermediate convolu-
tional layers. The proposed architecture of rich feature ResNet
is illustrated in Figure 1. The architecture is composed of
four sequential blocks, each of which contains multiple 3D
convolutional layers. By stacking different numbers of layers,
we investigate variants of ResNet (ResNet10, ResNet18 and
ResNet34) in our experiments. Even deeper ResNet models
(e.g., ResNet50 and ResNet101) are also investigated. However,
these deeper models suffer with convergence problems.

Alternatively, we also consider a variation of deeper ResNet:
Voxception-ResNet (VRN). VRN is designed by combining
the ideas of Inception-style [29] networks and ResNet in a
3D CNN framework. It takes advantage of the Inception-style
architectures for multi-scale visual information exploration and
the advantage of residual connections for efficient training.

2) Data Pre-processing and Augmentation: Correctly de-
signed data pre-processing and augmentation strategies are
beneficial for training CNN models for small datasets. Here
we consider two strategies for data pre-processing and aug-
mentation: rescaling and rotation. Since our chosen CNN
architecture uses an adaptive pooling layer before the fully-
connected layers to handle the variable dimensions of the
feature volumes caused by the varying input sizes, the input
volumes are not required to have the same size. The rescaling
aims to restrict three dimensions (i.e. height, width and depth)
of input volumes within a limited range. Specifically, we
rescale the input 3D volumes to have dimensions no greater
than a pre-defined number of voxels in any dimension by
down-sampling a given volume V ∈ RH×W×D by factors
of max{1, bH/sc}, max{1, bW/sc} and max{1, bD/sc} for
all three dimensions respectively. The hyper-parameter scaling
value s is empirically chosen as 32 for favourable classification
performance.
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Fig. 2. An illustration of 3D anchors built on multi-level feature volumes
(small anchors are more densely built with references to all voxels within a
lower-level 3D feature volume).

During training, the 3D input volumes are randomly rotated
in three planes (i.e., xy, yz and xz) with a fixed probability
to augment the training data. The augmentation of rotation is
enabled randomly in one of the three planes and the rotation
angles are restricted to {90 , 180 , 270} degrees. Without this
restriction the volumes after rotation become more compli-
cated by the requirement for resampling and zero padding and
this poses an additional challenge for training.

B. 3D Prohibited Item Detection

Prohibited item detection within volumetric 3D CT baggage
imagery is a more challenging problem aiming to both localise
and classify the prohibited items simultaneously. We look into
the possibility of extending 2D object detection frameworks
to resolve this problem arising from real-world applications
of aviation security. Faster R-CNN [10] and RetinaNet [11]
are considered for their superior performance in 2D object
detection within this domain [1], [5].

Faster R-CNN consists of three modules: Feature Extraction
Network, Region Proposal Network and Region of Interest
(RoI) pooling. We use ResNet50 and ResNet101 as the back-
bone networks for feature extraction. To handle the object
scale variability, we use a Feature Pyramid Network similar
to the rich feature extraction strategy used in the classification
models. By contrast, RetinaNet is a one-stage object detection
approach. Again, ResNet50 and ResNet101 are used as the
backbone networks for feature extraction. For both methods
the anchors are defined on multiple levels of feature volumes.

The anchor size is an important factor affecting the per-
formance of detectors used in our evaluation. We follow the
work on 2D object detection [10], [11] and extend it to our 3D
object detection frameworks. We use a set of anchor sizes and
ratios to generate diverse 3D anchors in four feature pyramid
levels. Specifically, we set anchor sizes as {al}, l = 1, 2, 3, 4
for four feature pyramid levels respectively. The anchor ratios
are uniformly set as (height:width:depth) {1 : 2 :

√
2; 1 : 1 :

1; 2 : 1 :
√
2}. These ratios are empirically selected rather than

generated by k-means [30] clustering over training bounding
boxes for the fact that the prohibited items within baggage can
have arbitrary orientations leading to arbitrary box ratios even



the items themselves have fixed dimension ratios. With the
combination of anchor sizes and ratios, three 3D anchors are
generated for each voxel in the feature volume for Faster R-
CNN. In the RetinaNet framework, the anchors are augmented
by adding extra anchor sizes of {al21/3, al22/3} for all feature
pyramid levels l = 1, 2, 3, 4 [11]. As a result, for each voxel in
a feature volume nine 3D anchors are generated for RetinaNet.
The anchor sizes of lower-level feature volumes should be
smaller since the anchors are more densely built as shown in
Figure 2. The effect of varying anchor sizes will be evaluated
in our experiments.

IV. EXPERIMENTAL SETUP

In this section, we describe the experimental setup for
the evaluation of prohibited item classification and detection
within baggage CT volumes. We describe the datasets used in
our experiments and implementation details of the classifica-
tion and detection methods.

A. Dataset

We use the same datasets as employed in [16] for classifica-
tion and detection tasks. The data was obtained from a CT80-
DR dual-energy baggage-CT scanner manufactured by Reveal
Imaging Inc. Two object categories (i.e. bottles and handguns)
are considered in our experiments for proof-of-concept.

For classification, we use the manually isolated CT volumes
from the original baggage CT volumes. These isolated CT
volumes form two independent datasets. The Bottle dataset
contains 1704 isolated CT volumes among which 526 are
positive samples (i.e. with bottles) and 1178 are negative
samples (i.e. without bottles). The Handgun dataset contains
1255 isolated CT volumes among which there are 284 positive
samples and 971 negative ones. Some exemplar isolated CT
volumes of bottles and handguns are shown in Figure 3. The
same ten-fold cross-validation used in [16] was employed in
our experiments for classification.

For detection, we use the original whole baggage CT
volumes. Again two datasets (i.e. Bottle and Handgun) are
considered independently in our experiments. There are 305
baggage volumes in the Bottle dataset and 526 bottle signa-
tures are annotated by 3D bounding boxes. There are 267
baggage volumes in the Handgun dataset within which 282
handgun signatures are annotated by 3D bounding boxes. We
divide the dataset into training (80%) and test (20%) subsets
randomly. Three random splits are generated for each dataset
in our experiments.

B. Implementation Detail

The classification and detection models evaluated in this
work are implemented in PyTorch [31]. In the classification
experiments, we use the Adam [32] optimiser with the learning
rates of 0.0001 and 0.00001 for the Bottle and Handgun
datasets respectively. In the 3D detection experiments, our
models are also optimised by the Adam with a learning rate
of 1e− 4 and stop training at 150 iterations. All experiments
are conducted on a GTX 1080Ti GPU.

V. EVALUATION

We present and evaluate experimental results of both clas-
sification and detection in this section.

A. Evaluation Criteria

For the classification task, our model performances are
evaluated in terms of True Positive rate (TPR%) and False
Positive rate (FPR%). The mean and standard deviations
over 10-fold cross validation are reported as the experimental
results. For the detection task, we set the IoU (Intersection
over Union; of ground truth and predicted 3D bounding boxes)
threshold as 0.1 since it is significantly more challenging to
get good overlapping bounding boxes in 3D object detection
than that in 2D detection where an IoU threshold greater than
0.5 is typically used [5]. Precision (%) and Recall (%) are
calculated by thresholding the associated classification score at
0.9. In addition, Average Precision (%) is reported to evaluate
the overall model performance. All these evaluation criteria are
reported as mean ± standard deviation over the three random
splits of each dataset.

B. 3D Classification

3D ResNet and Voxception-ResNet (VRN) are evaluated
for 3D prohibited item classification in our experiments with
evaluation results shown in Tables I and II.

We firstly investigate the effect of different data pre-
processing and augmentation strategies. For each model, the
performance is reported when different combinations of strate-
gies are used. It is obvious that rescaling with s = 32 is
important to good classification performance. Without rescal-
ing the TPR is low and the FPR is high for ResNet10 and
ResNet18 models on the Bottle dataset and in the rest cases all
models can not even converge (denoted by n/a in Tables I-II).
The use of rescaling significantly improves performance in all
situations. Recall that rescaling tends to reduce the difference
of three dimensions (i.e., height, width and depth) of the input
CT volumes, it is crucial to ensure the input volumes to have
similar dimensions and suitable sizes so that the information
loss can be avoided in the adaptive pooling layer.

The use of rich features benefits the ResNet models on both
datasets with increased TPR and reduced FPR consistently
(Tables I, II). However, rich features do not make a difference
for the VRN model. The reason is the VRN model has already
employed the Inception-style architecture which is exactly for
the fusion of multiple features learned with different kernel
sizes. These results demonstrate the fact that rich features
characterising information underlying different spatial scales
are crucial for good classification performance and it can
be implemented in different ways (e.g., multi-level feature
volume fusion and inception-style network module).

The effect of rotation varies on two datasets. For the Bottle
dataset, the use of rotation does not improve the performance
of any model (Table I). However, the data augmentation with
rotation benefits the classification of handguns significantly,
especially for the ResNet models (Table II). One potential



Fig. 3. Exemplar CT volumes of isolated prohibited items (bottles in the upper row and handguns in the bottom row) used in our classification experiments.

explanation is that the rotation operation applied into handgun
signatures can generate more diversity than that into bottles.

By comparing different models in Tables I,II, the VRN
model achieves the highest TPR (98.9% on bottles and 97.5%
on handguns) with moderate FPR (1.4% on bottles and 1.5%
on handguns). As for the ResNet models, those having more
layers generally perform better than the shallow ones. How-
ever, our results of ResNet50 and ResNet101 (not shown in
tables) for classification demonstrate that deeper models are
more difficult to converge with a limited number of training
samples.

Table III shows the comparison results of classification with
prior work [13], [14], [16]. Overall, the best performing 3D
CNN model VRN can achieve better results than the earlier
Cortex [13] and Codebook [16] methods but is slightly worse
than ERC [14] which, however, suffers from heavy computa-
tion burdens for computing dense 3D visual descriptors (187s
per volume [14]). By contrast, our 3D CNN models are more
efficient in the inference stage especially via parallelised GPU
computation (0.0142s per volume).

TABLE I
CLASSIFICATION RESULTS OF VARYING 3D CNN ARCHITECTURES ON

THE BOTTLE DATASET.

Model Augmentation TPR (%) FPR (%)Res Rot RF

ResNet10

7 7 7 57.1 ± 16.2 26.7 ± 7.4
3 7 7 93.3 ± 3.5 1.6 ± 1.0
3 7 3 95.4 ± 2.9 0.9 ± 0.9
3 3 3 95.4 ± 4.0 0.9 ± 0.8

ResNet18

7 7 7 61.3 ± 12.8 26.5 ± 22.6
3 7 7 94.7 ± 4.3 0.4 ± 0.8
3 7 3 94.8 ± 2.4 1.1 ± 2.5
3 3 3 96.0 ± 3.9 0.8 ± 0.8

ResNet34

7 7 7 n/a n/a
3 7 7 93.3 ± 6.7 2.9 ± 5.7
3 7 3 94.9 ± 3.5 0.7 ± 0.9
3 3 3 94.9 ± 2.6 0.8 ± 1.1

Voxception-ResNet

7 7 7 86.1 ± 10.4 14.7 ± 11.7
3 7 7 98.9 ± 1.6 0.6 ± 0.7
3 7 3 97.7 ± 2.4 0.8 ± 0.7
3 3 7 98.9 ± 1.0 1.4 ± 1.1

TABLE II
CLASSIFICATION RESULTS OF VARYING 3D CNN ARCHITECTURES ON

THE HANDGUN DATASET.

Model Augmentation TPR (%) FPR (%)Res Rot RF

ResNet10

7 7 7 n/a n/a
3 7 7 80.5 ± 6.5 10.8 ± 1.1
3 7 3 83.7 ± 6.0 8.3 ± 2.9
3 3 3 84.9 ± 9.5 11.3 ± 4.1

ResNet18

7 7 7 n/a n/a
3 7 7 82.6 ± 10.9 10.3 ± 1.6
3 7 3 85.1 ± 8.1 8.8 ± 3.8
3 3 3 89.4 ± 9.1 9.6 ± 5.2

ResNet34

7 7 7 n/a n/a
3 7 7 85.5 ± 6.0 7.6 ± 4.9
3 7 3 89.7 ± 5.5 0.8 ± 0.8
3 3 3 93.4 ± 4.6 3.6 ± 2.2

Voxception-ResNet

7 7 7 n/a n/a
3 7 7 96.1 ± 4.9 1.5 ± 2.1
3 7 3 94.7 ± 5.4 1.0 ± 1.0
3 3 7 97.5 ± 2.4 1.5 ± 1.1

TABLE III
COMPARISON RESULTS OF CLASSIFICATION WITH PRIOR WORK.

Method Bottles Guns
TPR (%) FPR (%) TPR (%) FPR (%)

Cortex [13] 96.6 ± 3.2 1.0 ± 1.6 96.8 ± 2.6 1.1 ± 0.9
Codebook [16] 89.3 ± 5.5 3.0 ± 1.4 97.3 ± 3.4 1.8 ± 1.7
ERC [14] 98.9 ± 0.7 0.6 ± 0.3 99.7 ± 0.5 0.3 ± 0.2
VRN (Ours) 98.9 ± 1.0 1.4 ± 1.1 97.5 ± 2.4 1.5 ± 1.1

C. 3D Object Detection

For prohibited item (i.e., bottles and handguns) detection
within 3D X-ray CT baggage screening images, we employ
Faster R-CNN [10] and RetinaNet [11] CNN architectures as
set out in Section III-B. The detection results using ResNet50
and ResNet101 backbone netwroks are presented in the Tables
IV and V.

In our detection experiments we investigate the effect of
different factors, such as resampling, anchor box size, and
confidence threshold. We report the best performing combina-
tions by varying configurations for both detection models. The
resampling is essential to achieve good detection performance.
We observe, for both detection architectures on both datasets,
resampling CT volume by 1/3 in all three dimensions signif-



TABLE IV
DETECTION RESULTS OF VARYING 3D CNN ARCHITECTURES ON THE BOTTLE DATASET.

Model Network Anchor size Score threshold=0.9 Average Precision (%)Precision (%) Recall (%)

Faster R-CNN [10]

ResNet50

4-8-16-32 80.41 ± 3.77 62.47 ± 5.47 58.84 ± 5.91
6-12-24-48 85.99 ± 2.82 68.56 ± 2.33 65.82 ± 3.13
8-12-16-24 85.83 ± 2.81 65.66 ± 2.52 64.00 ± 3.10
8-16-32-64 89.96 ± 3.65 67.56 ± 1.19 65.73 ± 0.73

ResNet101

4-8-16-32 74.79 ± 5.64 60.59 ± 9.34 54.34 ± 12.28
6-12-24-48 87.18 ± 3.76 69.34 ± 1.26 66.74 ± 0.73
8-12-16-24 84.40 ± 2.74 68.51 ± 2.89 65.95 ± 3.01
8-16-32-64 83.28 ± 4.04 67.90 ± 1.89 64.77 ± 2.46

RetinaNet [11]

ResNet50

4-8-16-32 73.06 ± 10.05 74.46 ± 4.75 67.66 ± 9.86
6-12-24-48 74.05 ± 2.49 81.71 ± 1.52 76.47 ± 2.76
8-12-16-24 78.86 ± 4.59 81.00 ± 1.23 75.09 ± 2.10
8-16-32-64 80.26 ± 5.75 78.30 ± 3.56 71.37 ± 1.52

ResNet101

4-8-16-32 64.00 ± 6.44 67.77 ± 12.51 55.93 ± 14.06
6-12-24-48 79.75 ± 3.75 78.74 ± 3.19 72.78 ± 3.32
8-12-16-24 78.16 ± 1.89 80.14 ± 1.18 75.13 ± 1.21
8-16-32-64 78.68 ± 2.16 82.42 ± 0.52 76.83 ± 1.09

TABLE V
DETECTION RESULTS OF VARYING 3D CNN ARCHITECTURES ON THE HANDGUN DATASET.

Model Network Anchor size Score threshold=0.9 Average Precision (%)Precision (%) Recall (%)

Faster R-CNN [10]

ResNet50

4-8-16-32 91.67 ± 1.82 84.62 ± 2.21 84.00 ± 2.07
6-12-24-48 91.38 ± 4.19 86.98 ± 2.25 85.30 ± 3.11
8-12-16-24 92.43 ± 1.37 86.38 ± 1.74 85.40 ± 1.77
8-16-32-64 91.98 ± 3.33 87.56 ± 1.54 86.74 ± 1.81

ResNet101

4-8-16-32 89.93 ± 3.39 85.18 ± 4.74 83.98 ± 5.03
6-12-24-48 91.00 ± 4.23 88.74 ± 1.76 87.76 ± 1.82
8-12-16-24 91.70 ± 1.07 85.19 ± 2.31 84.38 ± 2.16
8-16-32-64 90.17 ± 1.76 86.97 ± 3.41 85.92 ± 2.93

RetinaNet [11]

ResNet50

4-8-16-32 87.29 ± 2.14 89.34 ± 1.52 87.30 ± 3.33
6-12-24-48 90.06 ± 2.79 90.53 ± 0.88 89.13 ± 0.87
8-12-16-24 91.15 ± 3.63 89.95 ± 1.58 88.12 ± 2.33
8-16-32-64 88.98 ± 2.67 89.94 ± 0.91 85.89 ± 1.74

ResNet101

4-8-16-32 88.95 ± 2.21 90.53 ± 2.24 88.61 ± 2.25
6-12-24-48 89.69 ± 4.30 90.55 ± 2.13 87.82 ± 2.65
8-12-16-24 91.09 ± 1.33 90.54 ± 0.75 87.31 ± 1.35
8-16-32-64 90.56 ± 2.10 90.54 ± 1.64 87.18 ± 2.40

icantly achieve better results (AP: 64.77 Bottle dataset, Fatser
R-CNN with ResNet101) compared to resampling factor of 1/2
(AP: 58.68 Bottle dataset, Fatser R-CNN with ResNet101).
Therefore, the results reported in the Tables IV and V, the
resampling factor of 1/3 is applied with confidence score
threshold of 0.9.

We vary the anchor sizes (4 different sets) in our exper-
iments as explained in the Section III-B. The AP is higher
with the larger anchor size, i.e., (6-12-24-48), (8-16-32-64)
(AP: ∼65%), compared to anchor size of (4-8-16-32) (AP:
∼58%) while using Faster R-CNN [10] with ResNet50 (Table
IV upper) for Bottle dataset. The similar trend is perceptible
for both Faster R-CNN [10] and RetinaNet [11] (Table IV,
upper and lower) with ResNet50 and ResNet101. The best AP
is achieved by RetinaNet with ResNet101 (AP: 76%, Table
IV, lower) with anchor size of (8-16-32-64). For Handgun
dataset, RetinaNet with ResNet50 achieves the highest average
precision (AP: 89%, Table V, lower) using (6-12-24-18) an-
chor size. It observable that for Handgun dataset, all different
variant of anchor sizes achieve similar performances on all the

metrics (precision, recall and AP).
From the results (Tables IV, V), by increasing the number

of convolutional layers in backbone network (ResNet50 vs
ResNet101) does not increase the performance. By comparing
two different detection architectures, RetinaNet [11] outper-
forms Faster R-CNN [10] for both Botte dataset (AP: 76%,
Table IV, lower) and Handgun dataset (AP: 89%, Table V,
lower).

Exemplar prohibited items detection results from Faster R-
CNN [10] and RetinaNet [11] with ResNet101 are depicted in
Figure 4. From the examples, we observe Faster R-CNN [10]
falsely detects a bottle while RetinaNet [11] correctly detects
the item (Figure 4-Bottles, column 3). This is anticipated due
to the superior performance of RetinaNet [11] than Faster R-
CNN [10] for Bottle dataset (Table I). Both the models perform
in a similar fashion for handguns as depicted in the Figure 4-
Handguns, echoed our quantitative evaluations in Table II.

VI. CONCLUSION

We extend Convolutional Neural Networks for prohibited
item classification and detection in volumetric 3D CT baggage
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Fig. 4. Exemplar detection results (ground truth, detection results of Faster R-CNN [10] and RetinaNet [11] both with ResNet101 are shown in top three
rows for bottles and bottom three rows for handguns).



security screening X-ray imagery. As the first attempt of
deep CNN based techniques in this specific application, we
make extensive evaluations on a variety of CNN models
and data pre-processing strategies. The experimental results
on classification demonstrate comparable performance (TP:
∼98%, FP: ∼1.5% for both Bottle and Handgun) of the
Voxception-ResNet model with prior art using hand-crafted 3D
features whilst the 3D CNN model is more computationally
efficient than the traditional methods [14]. The results of
detection demonstrate the feasibility of extending traditional
2D object detectors (e.g., Faster R-CNN and RetinaNet) to
detect prohibited item in volumetric 3D CT data (mAP: ∼76%
for Bottle, mAP: ∼88% for Handgun).

Although viable performance has been achieved for the
classification task, the detection task still needs to be improved
in order to meet operational requirements for aviation security
screening. Limited training data is the primary reason for
the more limited detection performance. In our future work,
we will take advantage of transfer learning and the use of
synthetic data [2] to improve the performance. In addition,
we will incorporate variety of prohibited items for multi-class
classification and detection problems.
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