
Video object segmentation using spatio-temporal
deep network

Akshaya Ramaswamy, Jayavardhana Gubbi, Balamuralidhar P.
Embedded Systems and Robotics

TCS Research and Innovation, Banglore, India
akshaya.ramaswamy@tcs.com, j.gubbi@tcs.com, balamurali.p@tcs.com

Abstract—Video analysis is increasingly becoming possible with
improvement in hardware and deep learning algorithms. Videos
contain the spatial as well as the temporal information that
come closest to the real-world visual information representa-
tion. Albeit the human brain can make better decisions using
spatio-temporal data, the images and video frames captured
from the same standard RGB camera will vary in quality.
Deep learning has resulted in extraordinary performances for
image analysis. Image-based deep networks have been modified
and extended to work on video, and optical flow between the
frames has been utilized to capture temporal variations. There
is a gap in understanding whether such networks capture the
spatio-temporal information collectively. The network that can
capture the information effectively should be capable of good
performances despite relatively bad quality video frames. In this
work, different deep network architectures are explored and
their ability to capture spatio-temporal features is explored. With
the understanding of the advantages and disadvantages of the
network components, a new network is designed for the task
of video object segmentation (VOS). The performance of the
proposed network is evaluated using the DAVIS dataset for three
tasks: VOS using weak supervision, zero-shot VOS and one-shot
VOS. The best performance is reported in comparison to the
state-of-the-art on DAVIS dataset and the robustness of the model
to noisy labels is demonstrated.

Index Terms—Video object detection, Video reconstruction,
Self-supervised learning, spatio-temporal representation

I. INTRODUCTION

A video is a sequence of image frames that forms a moving
visual scene. This provides contextual information about the
scene in the form of spatio-temporal data, which is crucial
for video object detection (from low-quality frames), video
event detection and behaviour analysis. The challenge lies in
building a network to extract the spatio-temporal information
since the temporal variation is not an image property, rather a
property between image frames. Some tasks require only an
overall understanding of the spatio-temporal variations, such
as video action recognition. Others like video object detection
require a deeper look into the frame-level features.

Convolutional neural networks (CNNs) have shown remark-
able performance in many image-based tasks. Video analysis
has also benefited from these image-based pre-trained models.
Further, memory-based units such as recurrent neural networks
(RNNs) have been widely used in time series analysis of
sequential signals and are now being explored for video ap-
plications. In [1], a study is performed to understand the need
for multiple frames for action recognition. It is observed that

around 40% of classes in UCF101 [2] and 35% of the classes
in Kinetics [3] do not require the motion information for
action recognition. To demonstrate the usefulness of motion
in the video, datasets such as Something-Something V2 [4]
and Jester [5] are introduced. These contain videos of micro-
actions performed by human subjects. Many networks such as
temporal relational reasoning [6] and motion-fused frames [7],
proposed on top of frame-level networks, are adapted to
Something-Something V2. The drawback of such methods is
that they learn the sequence of action through image-level
features, but do not exactly capture the temporal features.
This raises the question as to whether a network is actually
capturing the spatio-temporal information, or is it trivially
capturing other image-level features for a video task. The goal
of our work is: a) to evaluate different architectures for spatio-
temporal information capture by formulating the problem as
video reconstruction; and b) to design an architecture for
video object segmentation by the understanding of advantages
and disadvantages of different architectural configurations. The
second goal is further extended to effectively build represen-
tation for zero-shot and one-shot learning scenarios that is
ultimately very useful for video-based applications, where the
annotation is very challenging.

II. RELATED WORK

There are a number of works that have looked at video
feature and video representation learning using interesting
approaches. Video object segmentation is also quite a well-
explored area, with many competitions such as DAVIS [8].
We look at the prior art in video feature learning and in video
object segmentation and bring out the relevance of our work
in this context.

Many inventive ways have been attempted to capture spatio-
temporal features in videos. One popular method is to make
use of the order of the frames, which is directly related to
temporal coherence. Odd-one-out network [9] proposes an
algorithm where, multiple video sequences are given as input
to a multi-branched network, to find the sequence in which
frames are not in order. Temporally shuffled frames are given
as input to a deep network [10], which learns how to sort
the sequence, while another algorithm for temporal order
verification is proposed by Misra et al. [11]. Similar to this,
instead of frame order, clip order prediction is learned by
the network [12] in another work. Usage of other properties
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has also been explored such as learning of pixel correspon-
dences [13] and learning the optical flow between frames [14].
All these works are validated using standard datasets that are
biased for image-based recognition of tasks. In the proposed
approach, the auxiliary property of videos is not used, video
reconstruction problem is formulated that is the ultimate test
for building representation.

In applications involving frame-level analysis such as video
object segmentation, frame-level convolutional networks using
image pre-trained models OSVOS [15] and MaskTrack [16]
have become very popular, and multiple improvements over
these networks have been proposed [17] [18] [19]. These net-
works use the segmentation mask of the first frame to compute
masks in the subsequent frames using online training. The task
of unsupervised or zero-shot video object segmentation was
introduced in the DAVIS challenge 2019 [20]. The similarity in
the background and the temporal coherence in the foreground
have been used to come up with attention-based networks for
zero-shot VOS [21] [22]. A motion-based bilateral network
is used to estimate the background from video segments, and
this is used to segment the foreground objects [23]. In another
work [24], LSTMs are used to construct a network, which can
be trained end-to-end offline, for both zero-shot and one-shot
VOS.
To the best of our knowledge, there is only one work on using
self-supervised learning for video object segmentation [13].
This uses pixel-wise correspondence matching to train the
network for feature learning, and this network is evaluated on
the DAVIS dataset for one-shot VOS. We design a network,
pre-trained on a large number of videos for the task of video
reconstruction, and fine-tune it for video object segmentation.
Our network can be trained end-to-end for both zero-shot VOS
and one-shot VOS. It does not require online training using
the mask of the first frame for one-shot VOS.

III. APPROACH

The two main objectives of this work are a) to experiment
with and evaluate various deep learning components for the
capture of spatio-temporal features from videos; b) to come
up with an optimized self-supervised network that is fine-
tuned for the task of video object segmentation. Instead of
focusing on discrimination as the final goal, we approach the
problem as a video reconstruction problem. The idea behind
this approach is that only a network that can learn the spatio-
temporal information and variations from the input frames will
be able to reconstruct the frames reasonably well and this can
then be extended to any pattern recognition and compression
applications.

A. Problem Formulation

Consider a set of input video frames f1, f2,...fN , and a
video segment V = {Fi}|Ni=1 made up of the N frames
stacked together. The goal is to learn all the spatio-temporal
features from the input video. We conceptualize this as a
video reconstruction problem, using an encoder (E) - decoder
(D) framework. We consider two ways of approaching this

problem. The first approach is using a single network that
captures spatial features and spatio-temporal variations. From
Eq. 1, FST is this set of features learned by the spatio-temporal
encoder network, and from FST , the input video V has to be
recovered using the decoder.

FST = E(V ) and V ′ = D(FST ) (1)

The second approach is designing the encoder with two
separate networks – a spatial network to extract the spatial
information and a temporal network to capture spatio-temporal
variations between frames. From Eq. 2, FS , denoting spatial
features, and FT , indicating temporal features are combined
to reconstruct the original frames, using the decoder network.

FS = ES(V );FT = ET (V );V ′ = D(FS |FT ) (2)

Reconstruction validation is performed using L2 cost function
and is given by:

cost = ‖(V − V ′)‖ (3)

An array of deep learning component exists for achieving
this objective. ResNet, I3D, LSTM and the respective variants
are used as building blocks for validating our hypothesis. A
number of architectural possibilities emerge due to this variety
and they are elaborated in the next section.

B. Video Reconstruction Network Architecture
Motivated by multiple developments in image-based ar-

chitecture, we develop four video reconstruction frameworks
using convolution and LSTM layers. We make use of image
pre-trained models and video pre-trained models for spatio-
temporal feature extraction. For the proposed architecture,
we keep the input and expected output the same with a set
of ten consecutive RGB video frames of size 224 × 224
each. The set of 10 frames is chosen based on the available
action recognition dataset where micro-action is represented
by approximately 0.3 seconds of video. All our architectures
are based on the auto-encoder framework; the intent is that
the encoder captures spatio-temporal features, and these fea-
tures are validated by video reconstruction using the decoder
network.

1) Network with I3D as the base: The first network ar-
chitecture (N1) uses Inflated Inception 3D (I3D) pre-trained
model [25] as shown in Figure 1. The network follows a
3D-Conv–3D-Deconv framework, and additionally uses LSTM
for capturing temporal information. The input set of frames
is given to the I3D model, which is pre-trained on both
ImageNet and Kinetics datasets. The I3D network performs 3D
convolutions on the input, thereby capturing spatio-temporal
variation features of the input frames. The output is given
to a bi-directional 2D convolutional LSTM (2 × 2 × 2) grid.
Each block in the grid consists of two LSTM layers to capture
long-term temporal information, and we tap out all the inter-
mediate LSTM outputs. The LSTM outputs of each block are
concatenated along the width, height and channel dimensions
to obtain the encoder feature R. We use R to retrieve the
original frames by applying 3D transpose convolution layers
and 3D convolution layers.



Fig. 1. Architecture (N1) using LSTM and I3D

2) Network with ResNet as the base: The second archi-
tecture (N2) uses ResNet as the pre-trained model and hence
uses 2D convolution instead of 3D convolution as shown in
Figure 2. The ResNet outputs are concatenated and input into
a bi-directional 2D convolutional LSTM layer. The LSTM
output R is input to 2D deconvolution layers, consisting of
2D convolution and 2D deconvolution layers to reconstruct
the input. Adding deconvolution layers helps to validate how
well the spatio-temporal variations are captured by the features
for perfect reconstruction.

Fig. 2. Architecture (N2) using LSTM and ResNet

3) Network with ResNet and I3D as the base: In the third
variation (N3), we make use of a combination of both I3D and
ResNet. We consider the base architecture as N1 and capture
spatial and temporal properties in two ways: a) combining
ResNet and I3D outputs before feeding it into LSTM (Fig. 3
top called N3A); and b) combining ResNet output with LSTM
output before reconstruction (Fig. 3 bottom called N3B). The
interpretation behind having both image and video-based pre-
trained models is that spatial information is captured well by
an image model, and the spatio-temporal variation is captured
in the 3D architecture. Combining them can contribute to
giving a more complete feature representation R of the input.

Fig. 3. Architecture (N3) using the two configurations explained in Sec-
tion III-B3

4) Network with ResNet as the base and skip connections:
The above three architectures were variations of ideas from
image processing for detection and classification. Although
the temporal information is being captured in the form of 3D
convolution units and LSTM units, reconstruction in videos
requires a better approach. The final architecture makes use of
ResNet for spatial feature extraction and LSTM for capturing
the spatio-temporal variation. During the reconstruction phase,
intermediate ResNet outputs are introduced as skip connec-
tions in deconvolution layers. The proposed network is shown
in Figure 4.

Fig. 4. Architecture (N4) using ResNet and skip connections



C. Experimental analysis and observations for video recon-
struction

Something-Something-V2 action recognition dataset is used
for training our video reconstruction networks, and the ability
of effective feature extraction is analysed by looking at the
quality of reconstruction. This dataset contains over five lakh
videos of mainly humans performing basic actions from 174
action classes. The action classes in this dataset are highly
challenging since they involve atomic actions such as pushing-
pulling (moving left to right vs moving right to left of the
frame), picking and placing (moving top to bottom vs moving
bottom to the top of the frame). Without temporal information,
correct reconstruction is not possible. For all our experiments,
we use a training set of ten thousand videos from this dataset,
with a training, validation and test ratio of 0.8 : 0.1 : 0.1.
We use an Adam optimizer and a mean square error (MSE)
loss to train the networks for one thousand epochs. As there
are no benchmark results for video reconstruction, we resort
to a comparison between various methods and analyse the net
effect of various networks. Further, due to very poor recon-
struction with some networks, we rely on qualitative rather
than on quantitative comparison except for N4 architecture.

Fig. 5. Video reconstruction results using N1 (row 2), N2 (row 3), N3A

(row 4) and N3B (row 5); row 1 shows the input image.

The reconstruction results of N1, N2, N3A and N3B are
shown in Fig. 5. The I3D based network N1 resulted in very

Fig. 6. Video reconstruction using network N4: row 1 - input; row 2 - output;
row 3 - output with a single skip connection

poor reconstruction as shown in the second row of Fig. 5.
ResNet based reconstruction architecture N2 is able to capture
information about the action objects, which is critical for
many video-based object detection and classification problems.
However, the RGB information and temporal variation are
not reconstructed appropriately (third row of Fig. 5). Rel-
ative to the first two architectures, N3A and N3B showed
better performance due to the combination of convolution and
LSTM features being used. Specifically, combining ResNet
and LSTM outputs result in better RGB reconstruction (last
row of Fig. 5). The reconstruction results for N4 are shown
in Fig. 6. The frame-wise ResNet encoder captures spatial
features, and LSTM takes the individual frame output at
each timestep and captures the spatio-temporal representation.
Along with skip connections from ResNet intermediate out-
puts, this gives a good reconstruction performance as shown
in the middle row of Fig. 6. To assess the effect of skip
connections in reconstruction, the last skip connection in N4

was removed and the network was trained again. The last row
of Fig. 6 shows the deterioration in results for this case. For
quantitative comparison, Structural Similarity Index (SSIM),
Peak Signal to Noise Ratio (PSNR) and Mean Square Error
(MSE) between input and output of N4 as well as between
input and output of N4 without the last skip connection are
tabulated in Table I. With all the skip connections, the metric
values are found to be better demonstrating the usefulness
of skip connections in reconstructing spatial properties in the
video.

TABLE I
QUANTITATIVE EVALUATION OF TWO CONFIGURATIONS OF N4

Metric N4 N4

with one skip connection
SSIM 0.915 0.831
PSNR 30.06 27.63
MSE 44.55 87.8

From the experimental analysis of different deep learning



architectures for video reconstruction, we make observations
about each block and its ability to capture spatio-temporal
information from the video frames.
1) ResNet features capture spatial features extremely well as is
already seen in many image recognition applications. It plays
a major role in the video reconstruction. It is an important
component in video applications that require frame-level out-
puts such as video frame prediction and video segmentation.
2) I3D model shows the ability to capture spatio-temporal
variations, but is unable to get back to the original frames on
its own. Further, the temporal information captured is limited
to the short-term often smaller than the actions defined in any
datasets.
3) The role of convLSTM is analysed, especially in the
context of the N4 architecture, where the network gives the
best video reconstruction. Further analysis into intermediate
outputs show that ResNet almost entirely contributes to this
reconstruction. This architecture is similar to a U-net type of
framework, with the spatial features alone getting captured and
the frames getting reconstructed. Other works in literature also
point out the ineffectiveness of convLSTM to capture temporal
variations in video data [26], [27].

Based on the advantages offered by each of the components
in the above architectures, we design a video object segmenta-
tion network that is pre-trained on the Something-something-
V2 dataset for feature learning and fine-tuned on the DAVIS
dataset.

IV. VIDEO OBJECT SEGMENTATION USING ST-VOS
NETWORK

We construct an architecture for spatio-temporal video ob-
ject segmentation (ST-VOS) network using three main compo-
nents: ResNet, Inception 3D and ST-LSTM. These components
have shown to individually work well in different tasks.
ResNet is the popular choice as a pre-trained model for
multiple image applications and our experiments above also
show it to be an important component for video analysis; the
I3D network has been shown to perform well on video action
recognition tasks, and we observe that it is capable of short-
term spatio-temporal feature capture. Based on our observation
of the inability of convLSTM in capturing temporal variations,
we look at the recent works proposing multiple convLSTM
variations for spatio-temporal information capture [27] [26].
ST-LSTM has shown good results on video frame prediction
tasks, and its internal structure enables feature retention over
multiple layers. Taking a combination of these elements, we
design the network as shown in Figure 7.
The input to the network is a set of ten RGB frames of size
(224, 224, 3). This is passed through the I3D model, and
an intermediate output of size (5, 28, 28, 64) is extracted.
This is input to an ST-LSTM sub-network, consisting of four
layers with filter sizes as shown in Fig. 7. We tap all the
intermediate outputs and then feed it to the deconvolution sub-
network consisting of 3D convolution layers and 3D transpose
convolution layers. The input is parallelly passed through
ResNet and the outputs at multiple levels are captured. This is

input to the corresponding levels in the deconvolution block
to compute the final object segmentation map.

The proposed network is validated in two different ways in
line with the literature using DAVIS dataset released in 2009.

Zero-Shot VOS: For the unsupervised video object seg-
mentation, we train the network on the binary object segmenta-
tion mask of a set of videos Svid and evaluate it on unseen test
videos (new scenes) containing both similar objects and new
objects. We pre-train the network on the Something-something
V2 dataset for video reconstruction and fine-tune the last four
layers for video object segmentation.

One-Shot VOS: We extend the same network for the task
of one-shot video object segmentation by performing offline
training. We incorporate the object segmentation mask of the
first frame into the network by feeding it along with the
ResNet features to the deconvolution sub-network. We resize
the segmentation mask to match the ResNet intermediate
outputs tapped at two levels. At each scale, these outputs are
concatenated with the deconvolution layer outputs and input
to the next layer. We train this network on the same set of
videos Svid and evaluate on the test videos.

A. Experiments and Results

In this section, details about the dataset used, experimental
details and the results are presented. Due to complexity
in video processing, a combination of semi-supervised and
unsupervised method needs to be validated. Further, the effect
of multiple network sub-blocks needs to be assessed and this
is achieved using the ablation study.

Dataset: The DAVIS challenge [8] features a standard
track on semi-supervised video object segmentation, in which
the mask of the first frame is provided, and the segmentation
for the subsequent frames should be performed. The DAVIS
dataset [8] is a set of densely annotated video scenes for video
object segmentation. The recent DAVIS challenge introduces a
new track on unsupervised VOS or zero-shot VOS, in which,
given a new set of video frames, the network should be able
to segment the objects of interest from all the frames, without
any prior knowledge about the objects in it. We do not train for
identifying each object separately, but only train to generate
the binary segmentation map for each frame, where each pixel
indicates the probability of being an object of interest. We use
the DAVIS 2017 dataset that consists of 60 training video
sequences and 30 testing video sequences. Every frame is
annotated with one or more objects. The video sequences
contain an average of 70 frames. Most of the video sequences
are of resolution 3840× 2160, but we have used the standard
down-sampled version of 480p resolution (720 × 480) in all
our experiments.

Training details: We train according to the network
configuration shown in Fig. 7 taking ten frames at a time.
From the training set of 60 video sequences, we generate 600
ten-frame samples to form the training set. Recurrent units
are known to underperform during training due to multiple
issues and the following tweaks were made to overcome: in
the deconvolution sub-network, each [conv 3D transpose +



Fig. 7. Proposed network architecture for video object segmentation.

conv 3D] layer is followed by a dropout layer (prob=0.2); a
batch normalization layer and a leaky ReLU activation layer
was added, except the last layer which has sigmoid activation.
In addition to this, Gaussian noise was added between the
deconvolution blocks. The loss is set to binary cross-entropy
and Adam optimizer is used. A constant learning rate of 0.001
is maintained up to 5000 iterations after which it is reduced
by half every 1000 iterations. All the networks are trained for
7000 iterations. All the weights of the pre-trained I3D model
and the ResNet model are frozen during training.

Zero Shot VOS and Ablation study: An ablation study
was conducted to look at the effect of removing a network
component on the model performance. We try three variations
of the model: 1) ST-VOS without I3D; 2) ST-VOS without
ST-LSTM; 3) the complete network ST-VOS. We have not
considered ST-VOS without ResNet skip connections for eval-
uation since there is a significant dip in performance due to
the absence of spatial details captured by ResNet as concluded
earlier. Figure 9 shows the output of these models on test video
samples for zero-shot VOS. We can see from the visual outputs
that the segmentation becomes better with the addition of 3D
convolution networks. The I3D features show great capability
in capturing spatio-temporal features and there is only slight
improvement in the performance after adding ST-LSTM layers
to I3D features. This can be seen in the segmentation outputs,
especially in reducing false regions, and better segmentations
at the object boundaries, leading to a higher mean boundary
F -score.

One-Shot VOS: For one-shot VOS, the mask of the first
frame is concatenated with the ResNet skip connections at
different scales, and the network is trained with an Adam
optimizer and a cross-entropy loss computed over the rest of
the nine frames. Figure 10 shows the visual outputs of one-
shot VOS for five challenging scenarios: static objects in the
background, object scale variation, multiple object instances,
occlusion and cluttered background.

Quantitative Evaluation: For quantitative evaluation of
the network variations, we compute the following standard
metrics: Mean Jaccard index (J) and Mean boundary F -score
(F ). We compare the performance of our network for both
zero-shot VOS and one-shot VOS, with other approaches:
OSVOS [15], RVOS [24] and a self-supervised approach using
pixel correspondence matching (referred to as CorrFlow) [13].
Table II summarises this evaluation. The quantitative results
of the proposed network for one-shot VOS shows comparable
performance with online training method OSVOS and does
much better than the state-of-art self-supervised approach.
Using ST-LSTM instead of convLSTM boosts performance as
seen by the performance of RVOS. From the visual outputs in
difficult scenes, we can infer that the network captures object
features effectively that allows segmentation consistency for
different types of scenes.

One-Shot VOS with noisy labels: To evaluate the ro-
bustness of features captured by one-shot VOS network, we
provide the network with a noisy object mask to the first
frame. To do this, we modify the object annotations in two
ways: we extract different size object bounding boxes from the
pixel annotation; we perform small random translations on the
extracted bounding box masks. We train the network on the
same video set Svos, but with these modified annotations and
observe the deterioration in performance with an increase in
noise. Figure 8 plots the change in J and F with the increase
in wrong labels. From the graph in figure 8, it can be clearly
seen that the deterioration in performance is quite low even
with a sufficiently large number of noisy pixels. Assuming that
on an average, an object occupies one-fifth of an image and
considering an image size of (224 × 224), 1200 noisy pixels
correspond to about 12% of the object. It can be inferred that
the performance of the network, given a mask with 12% noisy
pixels is as good as that given an accurate object mask. This
shows great promise for applications that require unsupervised
or semi-supervised annotation.



TABLE II
TABLE SHOWING PERFORMANCE METRICS – MEAN JACCARD INDEX (J ),

MEAN BOUNDARY F -MEASURE (F ) FOR COMPARISON WITH OTHER
APPROACHES FOR ZERO-SHOT VOS AND ONE-SHOT VOS

Method Zero-Shot One-Shot
Metric J F J F

RVOS 23.0 29.9 48.0 52.6
CorrFlow - - 48.4 52.2
OSVOS - - 56.6 63.9
ST-VOS without I3D 31.6 34.2 - -
ST-VOS without ST-LSTM 42.9 43.9 - -
ST-VOS 43.2 44.7 52.9 60.4

Fig. 8. Graph showing the varation of the mean of J and F for one-shot
VOS, with increase in noisy label pixels in the first frame segmentation mask

Fig. 9. Visual outputs of testing our network variations for video object
segmentation on DAVIS dataset; Row 1: Input image, Row 2: Segmentation
groundtruth; Row 3: ResNet-STLSTM output, Row 4: I3D-ResNet output,
Row 5: I3D-STLSTM-ResNet output

Time complexity: For video object segmentation of
frames of size (224, 224, 3), the proposed ST-VOS network
takes 56 ms per frame and the network without ST-LSTM
layers takes 48 ms per frame on a Tesla K80 GPU. The
time taken for training each network for 7000 iterations for

Fig. 10. Visual outputs of testing our network for one shot video object
segmentation on DAVIS dataset: Rows: 1) First frame, 2) Object mask, 3)
Test frame, 4) Ground truth mask, 5) Output of our network; five difficult
scenarios considered (from top to bottom): static objects in background, object
scale variation, multiple object instances, occlusion and cluttered background.

a training set of 600 video segments with ten frames each is
about 15 hours.

V. CONCLUSION

In this work, we formulate the objective of video feature
extraction as a video reconstruction problem. We explore
multiple architectures using different deep learning blocks and
assess the ability of the blocks in capturing spatio-temporal
features effectively. The effect of LSTM, I3D and ResNet are
discussed in detail with respect to the video representation
problem. For video reconstruction, an SSIM value of 0.915
is obtained on Something-Something-v2 dataset. We further
design a spatio-temporal video object segmentation network
based on the reconstruction results obtained earlier. We suc-
cessfully implement the network for the application of zero-
shot VOS and one-shot VOS on the DAVIS 2017 dataset.
We obtain a mean Jaccard index of 43.2 and 52.9 for zero-
shot and one-shot VOS respectively. F -measure of 44.7 and
60.4 respectively is obtained for zero-shot and one-shot VOS
respectively. Further evaluation in the presence of noisy labels
shows the robustness of our network in performing accurate
video object segmentation.
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