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Abstract—A growing need for on-device machine learning has
led to an increased interest in light-weight neural networks that
lower model complexity while retaining performance. While a
variety of general-purpose techniques exist in this context, very
few approaches exploit domain-specific properties to further
improve upon the capacity-performance trade-off. In this paper,
extending our prior work [1], we train a network to emulate the
behaviour of an audio codec and use this network to construct
a loss. By approximating the psychoacoustic model underlying
the codec, our approach enables light-weight neural networks to
focus on perceptually relevant properties without wasting their
limited capacity on imperceptible signal components. We adapt
our method to two audio source separation tasks, demonstrate
an improvement in performance for small-scale networks via
listening tests, characterize the behaviour of the loss network
in detail, and quantify the relationship between performance
gain and model capacity. Our work illustrates the potential for
incorporating perceptual principles into objective functions for
neural networks.

Index Terms—Deep Neural Networks, Audio, Psyachoacous-
tics, Perception, Audio Coding, Source Separation

I. INTRODUCTION

In the last few years, deep neural networks have led to
a substantial increase in performance in speech and audio
processing tasks. The capacity provided by these methods
(measured in the number of free parameters) enables modeling
data and underlying distributions with high accuracy. This
capacity, however, also prohibits the applicability of neural
networks to many resource-constrained device classes, includ-
ing phones and Internet-of-Things (IoT) devices. Thus, maxi-
mizing performance under computing and memory constraints
has recently gained considerable interest. In this context,
model weight quantization [2], memory-efficient architectures
[3], [4], parameter pruning and sharing strategies [5], and
student-teacher training [6] were successfully employed to
reduce resources while trying to maintain modeling power.
None of these techniques, however, is specific to the audio
domain, which leaves considerable potential for improvement.
For example, systems producing audio, including those for
noise removal in speech, speech synthesis or musical source
separation, are currently often trained in a supervised fashion

against `1, `2, or cross-entropy losses, such as in [7], [8]. Such
simple losses, however, do not take human perception into
account and thus force networks to waste their limited capacity
on modeling aspects of the signal that cannot be perceived.

In this paper, we present a strategy for optimizing the perfor-
mance of capacity-limited networks, employing a loss trained
to remove perceptually irrelevant elements of the signal. More
precisely, we train a neural network to emulate the operation
of a low-bitrate audio codec (e.g. MP3). We therefore obtain a
differentiable function-approximation that can be used to elim-
inate signal components that are perceptually less important
before the signals are compared in a supervised form. This
way, we can employ any psychoacoustic model available in
audio codecs as a perceptual model for neural network training
without expert knowledge. In contrast to adversarial losses
(which have yet to be shown to be effective as perceptual
models for capacity-constrained generators), our loss preserves
the ability to train in a supervised fashion and thus training
remains stable and straightforward. We explored the basic
principles behind this idea in [1] and while we were able to
demonstrate that there is merit to the idea, the results were
limited to synthetic examples and so it became clear that the
concept had to be developed further to be applicable in real
world scenarios.

In the following, we extend this first idea to a stable strategy
to optimize resource-constrained audio separation models. Our
main contributions in this paper are as follows: (1) we extend
the technique proposed in [1] and demonstrate that it is
effective for two real-world audio separation tasks – speech
denoising and vocal separation – and adapt the procedure
as necessary; (2) we show an improvement in performance
for both applications over a baseline `1 loss for resource-
constrained models; (3) we conduct a series of listening tests
to understand the contributions of different configurations of
the trained codec-loss, resulting in a more efficient method for
computing our loss (which accelerates training as compared
to [1]); and (4) we further use listening tests to characterize
the behaviour of our loss method in detail and show that
the benefit obtained by employing our perceptual objective
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Fig. 1. An illustration of the u-network architecture used for our separation
and loss networks.

function increases with smaller capacity models and converges
to the performance of the baseline objective function for larger
capacity models.

II. RELATED WORK

Developing objective functions that incorporate principles
of perception is not a well-explored area. Some attempts have
been made to approximate metrics used in existing perceptual
evaluation toolkits (e.g., STOI [9] and PESQ [10]), such as in
[11]–[13]. These metrics, however, are either not differentiable
functions, thus requiring numerical approximations for back
propagation which is highly inefficient, or can be represented
as differentiable functions with the consequence of being lim-
ited to rather simple models. Most recently, the authors in [14]
suggested a perceptual weighting derived from psychoacoustic
models applied to a mean-squared-error objective function
and highlighted improvements in the performance of small
scale neural networks. While this work provides a foundational
step in exploring the intersection of psychoacoustic objective
functions and limited capacity networks, we note that it does
not incorporate subjective listening tests as a part of the
evaluation, and employs a per-spectrum calculation of the
global masking threshold from the PAM-1 model, which is
a non-differentiable approximation.

III. MODEL DESCRIPTION

To describe our approach, let fΘ denote a function repre-
senting a neural network with parameters Θ. Our aim is to train
fΘ to maximize performance for a specific audio separation
task, while taking resource constraints for Θ into account. In
this paper, we consider noise removal in speech and vocal
separation as applications; since they are source separation
tasks, we refer to f as the separation network in the following.
In this context, fΘ will operate on short snippets of magnitude
spectrograms, with XM ∈ RF×N denoting the input mixture
and XS ∈ RF×N the desired output for the target source.
Given this notation, a baseline speech noise removal or vocal

separation method can be trained in a supervised fashion using
a standard `1 loss:

Θ∗ = argmin
Θ

E
(XM ,XS)

||fΘ(XM )�XM −XS ||1, (1)

where � denotes the Hadamard product and fΘ(XM ) ∈
[0, 1]F×N represents a mask to be applied to XM (resembling
Wiener filtering).

For our method, we follow [1] and replace the `1 term with
a new expression that takes human perception into account. To
this end, we define a second function gΦ, which we train to
approximate the operation of an audio codec. More precisely,
let X denote a snippet of a magnitude spectrogram for an au-
dio signal and let XC be the corresponding representation for
the signal after applying a codec, we train gΦ to approximate
the codec via:

Φ∗ = argmin
Φ

E
(X,XC)

||gΦ(X)−XC ||1.

This way, we can construct a new supervised loss L̃

L̃(X,Y ) := ||gΦ∗(X)− gΦ∗(Y )||1

and by replacing the `1 term in Eq. 1 with L̃(fΘ(XM ) �
XM , XS) we obtain a first version of a loss that removes
signal components that are perceptually less relevant before
computing the actual comparison. We refer to gΦ as the loss
network in the following.

While L̃ can work, we observed in practice slow con-
vergence and sometimes even instabilities during training.
Therefore, we incorporate ideas found useful in the image
domain [15], [16], where trained classifiers were used as
losses, which is conceptually related to our approach. More
precisely, let gmΦ (X) denote the output of the m-th layer of the
multilayer network gΦ. In this context, gmΦ (X) corresponds to
representations or features the network extracts intermittently
to fulfill its task, i.e. the input signal is represented at various
semantic levels. Thus, we can compare the two inputs not only
at the final output layer but also at additional semantic levels.
In [15], [16], this was shown to considerably stabilize the use
of such a loss and we observed similar behaviour in our setting
as well. Our proposed perceptual loss is thus defined as:

LM(X,Y ) :=
∑

m∈M
λm||gmΦ∗(X)− gmΦ∗(Y )||1, (2)

where λm are weights to adjust the importance of individual
layers and M ⊂ {1, . . . ,M}, where M is the number of
layers. In practice, we first train for 10 epochs with λm =
1, and then set λm = 1

||gm
Φ∗ (X)−gm

Φ∗ (Y )||1 for the remainder of
the training to equally weight the contribution of the selected
layers, following the suggestion in [15]. Since it is not clear
which semantic levels are useful for our task, we conduct a
series of listening tests in our experiments (see Section V), to
investigate the importance of individual layers.

The architectures for our loss and separation networks
closely follow the U-Net architecture described in [17], [18],
as shown in Figure 1. Similar to Wavelets, the architecture is



TABLE I
A LIST OF THE MODEL ARCHITECTURE PARAMETERS AND HYPERPARAMETERS USED IN TRAINING THE LOSS AND SEPARATION NETWORKS FOR ALL

EXPERIMENTS.

Parameter Loss Network Speech Denoising Network
Loss Configuration Experiment

Speech Denoising Network
Model Capacity Experiment

Vocal Separation Network
Model Capacity Experiment

Number of Layers 6 2 {1,1,1,2,2} {2,2,3,4,5}
W 128 128 128 128
H 512 512 512 512
F 28 1 {1,2,4,2,4} {1,4,2,2,4}

Batch Normalization All layers All layers All layers All layers
Dropout 50% (first 3 upsampling layers) 50% (first 3 upsampling layers) 50% (first 3 upsampling layers) 50% (first 3 upsampling layers)

Kernel Size (Downsampling) (5,5), Stride=2 (5,5), Stride=2 (5,5), Stride=2 (5,5), Stride=2
Kernel Size (Upsampling) (5,5), Stride=2 (5,5), Stride=2 (5,5), Stride=2 (5,5), Stride=2

Activation ReLu, sigmoid in final layer ReLu, sigmoid in final layer ReLu, sigmoid in final layer ReLu, sigmoid in final layer
Learning Rate 0.0001 0.001 0.001 0.001

Decay 5e-6 5e-6 5e-6 5e-6
Batch Size 32 16 16 16
Optimizer Adam Adam Adam Adam

TABLE II
NUMBER OF TRAINABLE PARAMETERS ASSOCIATED WITH EACH

LIMITED-CAPACITY CONFIGURATION.

Model Type Num of Parameters
(Speech)

Num of Parameters
(Vocals)

P1 54 188
P2 107 1,949
P3 213 2,411
P4 575 9,683
P5 1,949 153,653

designed to represent the signal at multiple scales, via a series
of down- and up-sampling blocks, which are implemented as
convolutional or transposed convolutional layers with stride.
As demonstrated in [18], the addition of skip connections
between the layers enables the network to focus on higher-
level semantics at higher layers, while still being able to access
low-level information to reconstruct the signal as needed. This
architecture was found useful for various tasks, including
source separation [18] and lyrics alignment [19]. One may
observe that using a U-Network architecture also for the
loss network does not directly emulate the typical encoder-
decoder structure that is characteristic of an audio codec, as
the presence of skip connections circumvents the introduction
of a true information bottleneck. In other words, we do not
choose a network that would imitate an audio codec also on
the architecture side. In particular, as the MP3 compressed
audio data is already limited in information compared to
the original audio, there is no need to introduce a separate
information bottleneck in the network itself, which would
limit the network’s capacity to reproduce the audio codec
faithfully. Instead, we use specific regularizers to provide a
balance between approximation accuracy for the audio codec
and smoothness of the function described by the loss network
– we found this to be essential to be able to back-propagate
through the loss network in a meaningful way. We use different
configurations of this architecture in our experiments, which
are given in Table I.

IV. MODEL CAPACITY EXPERIMENTS

We conducted a series of experiments to investigate the
benefit of our proposed loss strategy for limited capacity

networks in the context of the speech denoising and vocal
separation tasks. We choose these tasks due to their relevance
to on-device applications – examples include speech enhance-
ment for phone calls and song identification based on lyric
transcription. For the former task, we used the dataset first
presented in [20], selecting the 56 speaker corpus. To increase
the difficulty of the task, we select only those examples
where the speech and noise are mixed at 0dB SNR, and sub-
divide these examples into training, validation, and test sets
of approximately 4000, 1200, and 600 samples respectively.
For vocal separation, we employ the MUSDB18 dataset [21],
which consists of pairs of mixes and corresponding stems
for entire songs. We choose the mixture stem as the noisy
input XM , and attempt to predict the vocal stem as the clean
output XS . This dataset is sub-divided into train, validation,
and test sets consisting of 100, 25, and 25 tracks respectively,
with each track being several minutes in length. All of the
speech segments/ music tracks are downsampled to 22050Hz,
magnitude spectrograms are computed with a window size of
1024 and a hop size of 512 samples, and are broken into non-
overlapping snippets of size 128. Some speech segments are
simply tiled if they do not meet this minimum input width of
the separation network.

We select and fix the loss network parameters as in Table I,
and then choose five different sets of parameters determining
model capacity for the separation networks performing each
of the two tasks, denoted P1, P2, P3, P4, P5. In this context
it should be noted that the size of the loss network does not
contribute to the model capacity for the separation network
associated with each experiment – the loss network is only
used during training to improve the performance of the sep-
aration network at inference time. A set of parameters P is
determined by the values for W and F in the U-Network
(see Fig. 1), and are given in Table I; the corresponding total
number of trainable parameters is shown in Table II. Note that
the values for W and F for a given model type P may not
be identical between the two tasks; state-of-the-art results in
music separation tasks have been achieved with significantly
larger networks than those needed for speech denoising tasks.
We choose a range of model capacities whose extremes still
demonstrate meaningful outputs, and discuss results from a



Fig. 2. An illustration of the six configurations of layers from the loss network tested in our characterization experiments; the dark shaded layers represent
the regions of the loss network used to compute the custom loss in each configuration.

Fig. 3. Results from listening experiments plotting the rate that a sample
associated with the proposed loss was preferred over the baseline, as a function
of loss network configuration; Model F is selected as the best performing
configuration.

few points sub-sampled in this range.
We begin by training the loss network in a fashion similar

to our previous work, and utilize the dataset detailed in [1]
consisting of lossless music tracks paired with their 16kbps
MP3 coded counterparts; we pre-process the training examples
to a sample rate of 22050Hz (as we intuit that perception will
be influenced by higher frequency spectral detail in speech
and music), a window size of 1024 and a hop size of 512,
and use an `1 loss with early stopping to terminate training.
Once this is complete and coding behavior is verified on the
test set as in [1], this network is fixed without any further
training. We then proceed to train the combined system of
the separation network in each configuration P with the loss
network, using Eq. 2 applied to only a subset of layers
from the loss network (employing the best configuration from
experiments in Section V). We additionally train the separation
network in each configuration using an `1 loss to illustrate
the respective performance improvement over the loss used
in state-of-the-art systems for source separation, such as [18]
and [22]. Our training is performed on a single GPU machine,
using early stopping to terminate training; each experiment
takes approximately 8-10 hours and 4-6 hours for the speech
denoising and vocal separation tasks respectively.

We finally generate several examples from the test set

for each configuration by applying the phase of the input
mixture to the predicted output and inverting the resulting
spectrogram. We evaluate the outcomes by conducting an
online listening test, recruiting 20 participants in a crowd-
sourced experiment for a small fee. We found that performing
an actual listening test yielded more reliable results compared
to approximative metrics such as PESQ or STOI. Each task
in a study consisted of an A/B/X evaluation of a sample track
or speech sample comparing our proposed loss metric to the
baseline, corresponding to a particular model capacity type
P. Each participant evaluated the same five speech samples/
tracks for each of the five configurations in a random order,
for a total of 25 comparisons. For the speech task, participants
were asked to select the sample that was more intelligible; for
the vocal separation task, participants were asked to select
the sample where the vocals were more distinct and stronger
compared to the background track; in both cases, participants
could select “I Don’t Know” if they were unable to decide.
We present a discussion of the results in Section VI.

V. LOSS CONFIGURATION EXPERIMENTS

In [1], we simply follow the literature on feature losses from
the image domain and use all of the downsampling layers in
the loss network to compute the objective function. However,
since we might expect different layers of the network to extract
features from the input at different levels of abstraction, we
hypothesize that selecting certain subsets of layers M will
lead to better performing objective functions. Using the speech
denoising task, we evaluate this systematically by testing six
different layer configurations definingM for the loss network
illustrated in Figure 2, setting the parameters λm as discussed
in Section III. We assign the separation network a fixed
capacity with the parameters given in Table I, and train the
combined separation network and loss network system in each
configuration and with a baseline `1 loss for approximately 8-
10 hours on a single GPU machine, using early stopping to
terminate training.

Following the same reconstruction strategy as in Section
IV, we run a listening experiment to compare the output of
each loss configuration with the output of the baseline model.
Participants were asked to choose the sample that contained
the more intelligible speech, or choose “I Don’t Know” if they
could not decide. The study consisted of 15 crowd-sourced
participants recruited for a small fee; each participant was



Fig. 4. Magnitude spectrogram examples comparing the output of P1 models trained with the baseline (center) and custom loss (right), referenced against
the input (left), for the speech denoising (top) and vocal separation (bottom) tasks.

presented with the same five tracks from each of the six loss
configurations in a random order, performing a total of 30
comparisons. A summary of the quantitative results can be

seen in Figure 3 (we reserve the discussion of the qualitative
findings for Section VI). The study participants were most
likely to chose configurations “A”, “B”, “D”, “F”, suggesting



Fig. 5. Results from the listening tests comparing the proposed loss with the baseline for different model capacity configurations; (Top) For both the speech
and vocal separation task, use of the proposed loss leads to better performance for lower capacity models; (Bottom) The `1 metric resulting from the loss
case closely follows or is greater than that which results from the baseline case, suggesting that the loss network optimizes for a different set of constraints.

that lower level processing of the input spectrogram is a valu-
able contribution to the optimization problem. Furthermore,
choosing model F from this set enables us to only use the
activation outputs from the first three downsampling layers
of the loss network, which reduces both the computational
runtime for the loss and the on-GPU memory needed to train
the separation network (the weights of these first few layers are
saved independently). For the experiments detailed in Section
IV, we employ loss configuration “F” to compute the objective
function.

VI. RESULTS AND DISCUSSION

A. Performance with Decreasing Network Capacity

Audio samples from both the model capacity
and loss configuration experiments can be found at
http://ishwaryaanant.github.io/small-network-perceptual-
loss. In Figure 5, we summarize the quantitative results from
our listening experiments by plotting the rate of selection of
a sample associated with our proposed loss over the baseline
loss strategy, as a function of model capacity for both the
speech denoising and vocal separation tasks. We observe that
the likelihood that a sample generated using a network trained
with our proposed loss is preferred over a sample from the
baseline procedure decreases as model capacity increases, for
both tasks; the likelihood of a participant choosing option
“X” (“I Don’t Know”) also increases with model capacity
for both tasks. For example, we see that for Model P1,
80% or more of the participants were likely to choose the
sample associated with our proposed loss for both tasks.
Conversely, this number falls to 50% or less for Model P5.
We also note the inter-rater variance by the error bars in both
cases. While this variance is roughly constant for the vocal
separation tasks, we see a significant drop in the variance
for configurations P1 and P5 in the speech denoising tasks,

indicating high confidence in rater agreement on preferring
the proposed loss sample (P1) or the baseline sample (P5).
Taken together, this behavior suggests that perceptual gains
are afforded by our proposed objective function particularly
in the case of the smallest source separation networks, while
performance converges to the baseline with an increase in
model capacity.

Additionally in Figure 5, we plot the final test set `1 error
for both training procedures as a function of model capacity.
We show that the `1 error for the baseline case tightly follows
the perceptual loss case; this suggests that our loss strategy
is not simply a form of a regularizer that leads to better `1
optimization, but an error metric that optimizes for a different
set of aims.

B. Redistributing Noise

In Figure 4, we show spectrograms for sound samples
from the test set corresponding to both the speech denoising
and vocal separation tasks. Visually inspecting the samples
provides an interesting observation – that the spectrogram re-
sulting from the perceptual loss strategy appear to be “noisier”
than their baseline counterparts, or that the noise appears in
different time-frequency regions than in the baseline. This sug-
gests that our proposed loss enables the network to optimize
for regions of the spectrogram that more strongly influence
our audition and ignore other regions, rather than optimize
uniformly across the spectrogram – particularly in the case of
limited capacity networks.

VII. CONCLUSION

In this work, we presented a method to improve source
separation performance in networks with limited capacity. The
underlying idea is to employ a network as a loss that is trained
to remove perceptually irrelevant signal components before
we compare the source separation results to ground truth.

http://ishwaryaanant.github.io/small-network-perceptual-loss
http://ishwaryaanant.github.io/small-network-perceptual-loss


More specifically, we adapted our perceptually relevant loss
metric introduced in [1] to two audio source separation tasks,
and demonstrated improved performance over an `1 baseline
in listening tests. Additionally, we investigated the behaviour
of our proposed loss by characterizing the contributions of
different layers of our loss network, allowing us to accelerate
training times, and explored the relationship between model
capacity and performance. As a result, we found that designing
neural network objective functions that optimize for principles
of perception is not only feasible but also leads to considerable
improvements in performance.
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