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Abstract—Clustering is one of the most common applications
of unsupervised learning, being present in many statistical data
analysis processes performed by scientists and engineers. Because
of their special features, some categories of Artificial Neural
Networks have demonstrated to be specially efficient when it
comes to clustering. The Growing Neural Gas (GNG) is a good
example of these networks, not only because its capability for
revealing the clusters underlying in a certain distribution with
an optimized number of neurons, but to faithfully describe the
topological relations among the different clusters of a dataset.
However, because of their intrinsic nature, there will be some
data distributions with regions where no data can be found.
Aiming to perform a clustering process on these datasets, this
paper presents the design of a Growing Neural Gas-inspired
model that keeps its neuron prototypes out of a set of regions
previously specified, namely Forbidden Region Growing Neural
Gas (FRGNG). Experimental results illustrate how this model
can represent an alternative, in terms of accuracy, to one of the
most recent region avoiding clustering algorithms such as the
Forbidden Region Self-Organizing Map (FRSOFM).

Index Terms—Forbidden regions, Growing Neural Gas (GNG),
unsupervised learning, vector quantization

I. INTRODUCTION

One of the main approaches to represent an input data

distribution by describing the relations among the cluster is

the Self-Organizing Feature Map (SOFM) proposed originally

by Kohonen [1]. Given an input dataset, each neuron of the

SOFM learns a representative (centroid) of a subset of the

input in order to neurons, which are close in the lattice, adapt

to data subsets which are close together.

After the introduction of the SOFM, a myriad of alter-

natives and derivatives have been proposed in the literature

in order to enhance the quality of the mapping or enrich

the representation. SOFM-based neural networks that grow

during map training have in common that the training starts

with a rather small number of units (neurons). New neurons

are inserted into the network at certain iterations until a

stopping criterion. In some models, links between neurons are

being added or removed during training, thus, influencing their

neighborhood relations and allowing for a stronger separation

of clusters. For instance, the Incremental Grid Growing (IGG)

[2] initially consists of four connected neurons in a rectangular

grid structure. During the training process, the structure as well

as the connectivity of the network is dynamically adapted by

adding new neurons at the border of the network adjacent to

the neuron having the maximum quantization error, in order

to provide more map space for a better representation of the

input data. Similarly, during the training of the Growing Cell

Structures (GCS) [3], neurons are added and the state of

connections changed, but with more freedom regarding the

topology of the map space. Growing Neural Gas (GNG) [4]

uses a similar algorithm but implements a different learning

rule. In the Growing Grid (GG) [5], complete rows and

columns of neurons are added to the network maintaining

a rectangular grid until the training process is terminated.

New neurons are inserted between the neuron with the highest

number of hits and its most dissimilar neighbor in terms of

weight vector distance, while the connections between the

neurons remain untouched. A growing grid variant with an

adaptive hyper-cubical output space is presented in [6].

However, in many application or datasets, there are some

regions in the input data space where any prototype (centroid)

is forbidden. Those forbiden regions, which can represent

physical barries, are usually defined by convex polyhedral sets.

Many different algorithms that take into account forbidden

regions have been proposed over the years. The problem of

locating a new facility in the presence of convex polygonal

forbidden regions was addressed in [7], [8]. The same problem

with a set of polyhedral barriers that restricts traveling was

addressed in [9] and a generalized problem with “congested

regions” was treated in [10]. In [11], an algorithm that com-

putes the visibility graph of a set of non-intersecting polygonal

obstacles was proposed, and in [12], curved obstacles were

considered. Moreover, an integration of a minimal spanning

tree (MST) based graph-theoretic technique and expectation

maximization (EM) algorithm with rough set initialization was

presented for determining non-convex clusters [13]. Recently,

a variant of the SOFM, namely the Forbidden Region Self-

Organizing Map (FRSOM), whose protoypes avoid those

forbidden regions has been proposed [14]. In this paper, a new

variant of the GNG, namely the Forbidden Region Growing

Neural Gas (FRGNG), whose neuron prototypes avoid the

forbidden regions is proposed and compared to the FRSOM.

The rest of paper is organized as follows. Section II presents

the mathematical model of our proposal. In Section III, our ex-

perimental results are provided. Finally, Section IV concludes
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this paper.

II. METHODOLOGY

In this work, the matematical base for the new FRGNG al-

gorithm will be constituted by the well known GNG algorithm

[4]. In essence, the FRGNG is designed as a GNG algorithm

who has the capabilities of avoiding forbidden regions at the

moment of a new neuron creation and at the moment the

synaptic weights of an existing neuron are modified as a result

of the training process. This new feature has been designed

based on the the FRSOFM forbidden region avoidance feature

explained in [14]. Thus, this section is going to focus in the

new region avoidance feature this model incorporates to the

original GNG.

So, let B be a collection of pairwise disjoint convex poly-

hedral sets B1, . . . , BN located in the space R
D. Each set

Bi ⊂ R
D is defined as a barrier

Bi = Conv(pi,1, . . . ,pi,ni
) = (1)

=
{

ni
∑

j=1

αjpi,j |∀j, αj ≥ 0, and

ni
∑

j=1

αj = 1
}

where Conv stands for the convex hull of a set of points in

R
D.

Given two points spotted outside the set of barriers B, the

objective is to compute the shortest path that connects a with

b avoiding all barriers. The visibility graph G, is built from all

the extreme points of all barriers,
⋃N

i=1
{pi,1, . . . ,pi,ni

}, and

G will have an edge between two vertices if they are visible

from each other, this is, if the segment between them does not

interfere with any of the barriers. In this algorithm, moving

along the barriers boundaries is allowed and the weights of

the edges are the Euclidean distances between them. Once

the graph is constructed, Dijsktra’s algorithm will be used to

calculate the shortest distance dG(p,q) between any pair of

vertices, p and q, of G, just as follows:

(i) First, it will determine the vertices {p1, . . . ,pna
} of G

that are visible from a.

(ii) Second, the algorithm will determine the vertices

{q1, . . . ,qnb
} of G that are visible from b.

(iii) Finally, the shortest path and distance dG(a,b) are found

by optimizing the following expression

mini,j(d(a,pi) + dG(pi,qj) + d(qj , b)), (2)

where d is the Euclidean distance in R
2.

In order to properly explain the FRGNG model is very

important to define the Traverse function. Lets suppose that the

shortest path between a and b goes through the extreme points

of barriers s1, . . . , sn and has length d. Then, for 0 ≤ c ≤ 1,

we define

Traverse(c,a,b, {s1, . . . , sn}) (3)

as the point located along this shortest path at a distance from

a which is a fraction c of the total distance d.

So, the Forbidden Region GNG that will be referred as

FRGNG through all this document will update q and all its

direct topological neighbors with step size ǫb for unit r and

ǫn for the neighbors, where ǫb > ǫn:

ǫ (n, i) =











ǫb iff i == r

ǫn iff (i 6= r) ∧ (i, r) ∈ A

0 iff (i 6= r) ∧ (i, r) /∈ A

(4)

wi (n+ 1) = (1− ǫ (n, i))wi (n) + ǫ (n, i)xt (5)

This equation will be equivalent to

wi(n+ 1) = Traverse(ǫ(n, i), wi(n), x(n), ) (6)

So, assuming that D = 2 and being s1, . . . , sn the breaking

points of the the shortest path from wi(n) to x(n) that

avoids the barriers, B, the new update function for the neuron

prototypes will be:

wi(n+ 1) = Traverse(ǫ(n, i), wi(n), x(n), s1, s2, · · · , sn)
(7)

This operating mode will avoid the movement of neurons

across the forbidden regions of the feature vector scape.

However, since we are using the GNG model as the base for

the FRGNG, once the neuron prototypes have been updated

it may be necessary to add a new neuron if the current time

step is a multiple of the λ parameter. Nevertheless, as no rule

in the mathematical mode is preventing this to happen there

is a real chance that the new neuron “spawns” inside one of

the barriers of B. Hence, the new neuron will be generated as

follows:

• First, determine the unit r with the maximum error and

the unit z with the largest error among all direct neighbors

of r.

• Then create a new unit k, insert edges connecting k with

r and z, and remove the original edge between r and z.

• After that, decrease the error variables er and ez by

multiplying them with a constant α, and initialize the

error variable ek to the new value of er.

• Next, setup the prototype of k to be halfway between

those of r and z, as follows:

wk (n) =
1

2
(wr (n) +wz (n)) (8)

• Finally, if the new neuron k is generated inside a barrier,

the new prototype vector of this neuron will be:

wk(n) = (xs, ys) (9)

where (xs, ys) will be the prototype vector of the sample

whose euclidean distance to the k neuron is the shortest.



TABLE I
NUMBER OF SAMPLES FOR EACH BIOGEOGRAPHIC DATASET.

Species Region of interest Number of samples

Tiger shark Australia 481

Dolphinfish Australia 1405

Blue Shark Australia 1541

Common dolphin Celtic and North Seas 2813

Fin whale Greenland and Iceland 734

III. EXPERIMENTAL RESULTS

In order to test the new Forbidden Region Growing Neural

Gas performance applied to data distribution clustering tasks

and its capability for representing the topological relations

between the different clusters, a complete set of tests has been

designed. These tests involved data distributions corresponding

to real events happened in different geographical locations

on the surface of the earth. As it has been explained before,

because of their intrinsic nature, these events present circum-

stances that made them impossible to happen in determined

geographical locations.

Thus, five datasets have been used through all the ex-

perimental process. These datasets are composed by biogeo-

graphical data consisting of bi-dimensional number vectors

representing the latitude and longitude coordinates of real

sightings of marine animals. Three of them in the surroundings

of the Australian mainland: Blue shark, tiger shark and com-

mon dolphinfish. One around the Celtic and North Seas: the

common dolphin. The last dataset corresponds to the sightings

of the fin whale around Greenland and Iceland. Because of

obvious reasons, no marine species can be seen in mainland,

so the mainland areas of the different geographical zones will

constitute the forbidden regions for our experiments. Every

dataset has been obtained from the free and open access OBIS

(Ocean Biogeographic Information System, www.iobis.org)

database and their characteristics can be consulted in Table

I and Figure 1:

A. Experiments design

The experimental process consisted of training a FRGNG

model instance for a final number of 4, 16, 36 and 64 neurons.

Note that we use the word “final” for the number of neurons of

the FRGNG because this model is a network that grows along

the training process. As a competitor for the FRGNG model

presented in this work, it has been considered the FRSOFM

model from [14]. Thus, The experiments also included the

training of a FRSOFM network for 4, 16, 36, and 64 neurons

with square topology so both models can be compared. The

results of this training process can be seen in Figure 2 where

the final distributions of neurons for each model, dataset and

number of neurons are illustrated.

In order to design an experiment as reproducible as possible,

and with the objective of reducing the number of possible

configurations of the system that in other way would grow

to be unmanageable, both models have been trained using

the same values through all the experimentation process. For

TABLE II
SELECTED PARAMETER VALUES FOR THE FRGNG MODEL.

Parameter Value

ǫb 0.2

ǫn 0.000001

amax 50

λ variable

Hmax 4-64

α 0.5

d 0.995

TABLE III
SELECTED PARAMETER VALUES FOR THE FRSOFM MODEL.

Parameter Value

η0 0.441

∆0 0.5597

ηc 0.1669

∆c 0.3077

both the FRGNG and the FRSOFM models, the values for the

parameters can be consulted in tables II and III.

It is very important to remark that the training parameter

values for the FRSOM model are the same as the ones

mentioned in [14]. Those parameter values were specifically

optimized by the authors for the datasets used. In contrast to

this, training parameters for the FRGNG were not specifically

optimized for the datasets. For this new model, a generic

parameter selection, derived from the parameters used in [4],

has been done whithout any kind of optimization process.

As it is usual in this kind of experiments, in order to

obtain significant results, and aiming to carry out a rigorous

experimentation process, each algorithm has been tested by

performing a 10-fold cross-validation process for every model,

dataset and number of neurons. By means of this process, the

mean values of three commonly used clustering quality per-

formance measures have been obtained: The Davies-Bouldin

Index (DBI), the Mean Squared Error (MSE) and the Dunn

Index.

Davies Bouldin Index has been calculated following the

following expression:

DB =
1

nc

nc
∑

i=1

Ri

Where

Ri = max
j=1···nc,i 6=j

(Rij), i = 1 · · ·nc

Rij =
si + sj
dij

dij = d(vi, vj), si =
1

‖ci‖

∑

xǫci

d(x, vi)

Being d(x, y) the Euclidean distance between x and y. ci
will be the i − th cluster. vi is the centroid of cluster ci and

‖ci‖ refers to the norm of ci.



(a) (b) (c)

Fig. 1. Geographical locations for the datasets and their equivalents in polygonal barriers : (a) Australia, (b) Celtic and North Seas, (c) Greenland and Iceland.

TABLE IV
RESULTS YIELDED BY THE EXPERIMENTS FOR THE FIVE DATASETS

SHOWING THE MEAN VALUES OF THE DBI (LOWER IS BETTER), THE MSE
(LOWER IS BETTER) AND DUNN INDEX (HIGHER IS BETTER) FOR 4

NEURONS.

Dataset Model DBI MSE Dunn

Blue Shark
FRGNG 0.4647 8.5148 1.4011
FRSOFM 0.3995 23.1381 1.8237

Dolphinfish
FRGNG 0.5472 7.8524 0.9965
FRSOFM 0.4361 18.1298 1.6034

Tiger Shark
FRGNG 0.5744 2.7439 0.3324
FRSOFM 0.4171 30.4653 1.6208

Dolphin
FRGNG 0.8934 3.5314 0.7040
FRSOFM 0.7178 4.0852 1.2945

Whale
FRGNG 0.7281 1.2490 0.4292
FRSOFM 0.4212 6.4255 1.4772

The Mean Squared Error is another classic performance

measure in machine learning which is defined as follows:

MSE =
1

M

M
∑

i=1

‖wi − xi‖
2

(10)

where M is the number of samples in the dataset, xi is

the i-th input sample and wi is the prototype of the winning

neuron corresponding to xi.

Introduced by J. C. Dunn in 1974, the Dunn index is

a commonly used measure for evaluating clustering quality

that is calculated by applying the following expression for a

number c of clusters:

Dunn = min
1≤i≤c

(

min
1≤j≤c,j 6=i

(

δ(Xi, Xj)

max1≤k≤c (∆(Xk))

))

Where δ(Xi, Xj) is the intercluster distance. This is, the

distance between the cluster i and the cluster j, and ∆(Xk) is

the intracluster distance, this is, the distance within the cluster

Xk.

Once the experiments were performed, the results obtained

for each dataset, number of neurons and model for every of

the above explained indexes, can be checked in tables IV, V,

VI and VII.

At the same time, the evolution of the results obtained for

the DBI, MSE and Dunn index for each dataset as the final

number of neurons grows is illustrated in Figure 3.

TABLE V
RESULTS YIELDED BY THE EXPERIMENTS FOR THE FIVE DATASETS

SHOWING THE MEAN VALUES OF THE DBI (LOWER IS BETTER), THE MSE
(LOWER IS BETTER) AND DUNN INDEX (HIGHER IS BETTER) FOR 16

NEURONS.

Dataset Model DBI MSE Dunn

Blue Shark
FRGNG 0.7069 0.9662 0.5105
FRSOFM 0.6033 3.1732 0.9485

Dolphinfish
FRGNG 0.7245 0.9336 0.2545
FRSOFM 0.6471 3.6058 0.4095

Tiger Shark
FRGNG 0.5967 0.1819 0.3128
FRSOFM 0.5367 5.4706 0.6776

Dolphin
FRGNG 0.7046 0.4469 0.4349
FRSOFM 0.5928 0.7620 0.5967

Whale
FRGNG 0.6955 0.1205 0.0777
FRSOFM 0.5678 1.0366 0.4128

TABLE VI
RESULTS YIELDED BY THE EXPERIMENTS FOR THE FIVE DATASETS

SHOWING THE MEAN VALUES OF THE DBI (LOWER IS BETTER), THE MSE
(LOWER IS BETTER) AND DUNN INDEX (HIGHER IS BETTER) FOR 36

NEURONS.

Dataset Model DBI MSE Dunn

Blue Shark
FRGNG 0.7525 0.3443 0.3461
FRSOFM 0.6115 1.5457 0.5976

Dolphinfish
FRGNG 0.7094 0.3028 0.3641
FRSOFM 0.6061 1.4917 0.2657

Tiger Shark
FRGNG 0.5206 0.0371 0.3671
FRSOFM 0.5442 1.8987 0.3975

Dolphin
FRGNG 0.6877 0.1568 0.1215
FRSOFM 0.6222 0.3550 0.2436

Whale
FRGNG 0.6802 0.0369 0.1106
FRSOFM 0.6608 0.5122 0.2437

B. Discussion

Values yielded by the experimental process can be checked

in both Figure 3 and tables from 1 to 4. On them, it can

be observed the behaviour of the FRGNG when trained and

tested with the five different bi-dimensional data distributions

that have been used as datasets. It also can be observed the

behaviour of the model it has been used as a competitor, the

FRSOFM, when trained with the same datasets.

Charts of the first column of Figure 3 represent the DBI,

MSE and Dunn index values for the two models and the dataset

corresponding to the blue whaler shark. These charts reveal

how the FRGNG values for the MSE performance measure are
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Fig. 2. Final locations for FRSOFM and FRGNG neurons on the different datasets. Respectively, in rows from 1 to 5: blue shark, dolphinfish, tiger shark,
common dolphin and fin whale. Green spots correspond to samples in the data distribution. Blue circles correspond to FRGNG neurons. Red circles correspond
to FRSOFM neurons.

significantly below the FRSOFM values. However, its Dunn

index values are also below the FRSOFM values for every

number of neurons and the DBI value for this dataset is higher

than the DBI value for the FRSOM. Nevertheless, as all the

measures are in the same magnitude order, we can conclude

that for the blue whaler shark dataset, both methods perform

very similarly.

When it comes to the dolphinfish sightings around the

australian coast dataset, the scores reached by the experiments

are as significant as in the dataset above insofar as the MSE

index for the FRGNG value is better than the value for the

same measure reached by the FRSOM. However, the DBI

value obtained by the FRSOM is better in this case than the

DBI value presented by the FRGNG for all neuron numbers.

In the case of the Dunn index we can observe that it is better

for the FRSOFM except for the value associated to the 36

neurons map, where the FRGNG gets the best value.

Results are even more balanced for the Tiger shark sightings

on the surroundings of the coast of Australia. In the case of

this dataset, the DBI value is better for the FRSOM for 4 and

16 neurons maps. However, this circumstance changes for 36

and 64 neurons where the values reached by the FRGNG are

better. In the case of the MSE index, FRGNG values are better

with no exception. When it comes to the Dunn Index, results

illustrate that the FRSOM has a better performance for this

dataset.
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Fig. 3. Comparative results for DBI, MSE and Dunn Index obtained after the experimentation process by FRSOFM and FRGNG on the different datasets.

TABLE VII
RESULTS YIELDED BY THE EXPERIMENTS FOR THE FIVE DATASETS

SHOWING THE MEAN VALUES OF THE DBI (LOWER IS BETTER), THE MSE
(LOWER IS BETTER) AND DUNN INDEX (HIGHER IS BETTER) FOR 64

NEURONS.

Dataset Model DBI MSE Dunn

Blue Shark
FRGNG 0.7580 0.1738 0.2215
FRSOFM 0.6039 0.8698 0.4684

Dolphinfish
FRGNG 0.7902 0.1503 0.2163
FRSOFM 0.5740 0.8823 0.6577

Tiger Shark
FRGNG 0.3016 0.0073 0.1294
FRSOFM 0.5050 0.9054 0.4014

Dolphin
FRGNG 0.7226 0.0764 0.0713
FRSOFM 0.6400 0.2597 0.0975

Whale
FRGNG 0.6116 0.0145 0.1325
FRSOFM 0.5362 0.3245 0.2269

Experimental results obtained by the FRGNG in the case of

the common dolphin over the Celtic and North seas dataset are

in the same spirit as the results obtained for the blue whaler

shark dataset. This is, FRGNG performance is better than the

FRSOFM when considering the MSE measure, whilst FRSOM

DBI and Dunn index are better than the DBI and Dunn index

reached by the FRGNG for every neurons number map.

Finally, scores reached by the FRGNG when tested against

the FRSOFM with the fin whale over the surroundings of

the coast of Greenland and Iceland dataset illustrate, once

again, how the FRGNG clustering quality is very similar to

the clustering quality obtained by the FRSOFM. However, in

this case, looking at the chart represented on the 1st row and

5th column of the Figure 3, it can be observed that the DBI

values for both models present different trends for 4 to 36

neurons maps: The FRGNG DBI value presents a descending

curve whilst the FRSOM presents an ascending curve. Both

curves turn descending from 36 to 64 neurons maps. Once

more, the MSE value for the FRGNG remains lower than the

MSE value reached by the FRSOM and the Dunn index is

slightly better for the FRSOM map.

Overall, data represented in tables 4 to 7 and the represen-

tations in Figures 2 and 3 illustrate how the clustering quality

and topology representation faithfulness achieved by the two

models are similar. However, FRSOM model often seems to

win when it comes to the DBI and Dunn index measures, while

the FRGNG model presents better MSE values. This is a very

interesting behaviour given the fact that the parameters of the

FRGNG model have not been optimized for the datasets while

the parameters for the training of the FRSOM have indeed

been optimized for the datasets.

IV. CONCLUSION

In this work, a new artificial neural network-based model

has been presented for unsupervised data clustering. This

model is designed for data clustering processes with data

distributions where there are some regions of the feature vector

space where no data can be found. Combining the plasticity of

the Growing Neural Gas model and the ability of the FRSOFM

model for avoiding the forbidden regions, this model is capable

of achieving a similar performance as its best competitor, the

Forbidden Region Self-Organized Map (FRSOFM), despite the



fact that, unlike the FRSOM, its training parameters have not

been specifically optimized for the datasets.

Experimental results illustrate the FRGNG performance

against the FRSOFM model, remarking their similar behaviour

for almost every considered size in every considered dataset,

postulating the FRGNG as a very powerful mathematical

model for data clustering and cluster topology representation.
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