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Abstract—Adversarial examples have received a lot of attention
over the past decade, particularly with the rise of deep neural
networks. Adversarial manipulation of sensitive health-related
information, e.g., if such information is used for prescribing
medicine, may have irreversible consequences, involving patients’
lives. In this article, we consider adversarial perturbations in
the context of medical and health applications and focus on the
epileptic seizure detection problem. We formulate an optimization
problem for computing universal adversarial perturbations and
show that such universal perturbations may be used to declare
the majority of seizure samples as non-seizure, i.e., to fool the
classification algorithm, while being imperceptible to the medical
expert eye.

Index Terms—Universal Adversarial Perturbation, Epileptic
Seizure Detection, Epileptic Ictal Activity

I. INTRODUCTION

Adversarial perturbations have been discussed in the litera-
ture over the past decade to demonstrate the vulnerabilities of
modern machine-learning classifiers, both in terms of theory
[1]-[3] and applications [4]-[6]. These vulnerabilities high-
light that very small carefully-identified perturbation vectors
exist and may cause data samples in many applications,
e.g., image classification, to be misclassified. The adversarial
perturbations are not only important in terms of reliability
and robustness of the machine-learning classifiers, but also
in terms of safety and security of their users. In line with
this observation, several studies acknowledge such threats and
attempt to detect/defend such adversarial perturbations [7]-[9].

Adversarial manipulation of sensitive health-related infor-
mation, e.g., if used to prescribe medicine, may have irre-
versible consequences, involving patients’ lives. In this article,
we consider the problem of epileptic seizure detection as a
real-world case study to demonstrate the importance of such
adversarial perturbations. Epilepsy is a chronic neurological
disorder affecting more than 50 million people worldwide
[10] and is ranked number four after migraine, Alzheimers
disease, and stroke [11]. Epilepsy is manifested by recurrent
unprovoked seizures and the symptoms include behavioral
arrest, rigid extension of limbs, automatic movements and
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severe body convulsions. The unpredictability of seizures not
only degrades the quality of life of the patients, but can also
be life-threatening. Several previous studies have considered
the epileptic seizure detection and monitoring problem based
on machine-learning techniques [12]-[21].

Modern systems monitoring the electroencephalography
(EEG) signals are being currently developed with the view
to detect epileptic seizures in order to alert caregivers in real
time and reduce the impact of seizures on patients’ quality of
life. This is, for instance, possible using wearable and mobile-
health technologies, e.g., e-Glass sensor [16], to monitor the
brain activities of the patients in real time and inform family
members, caregivers, and emergency units for rescue in case
of seizures. However, such seizures, if missed to be detected,
e.g., due to adversarial attacks, may even jeopardize patient’s
life.

At the same time, the information collected from each
patient is used by the medical experts to develop a better
understanding of such health pathologies and, in turn, diag-
nosis, prognosis, and treatment. In particular, epileptologists
administer drugs based on the frequency and duration of the
seizures. Therefore, if the adversary is able to manipulate the
biosignals, e.g., by introducing adversarial perturbations to
mask certain seizures, the medical experts will then prescribe
according to this manipulated biosignals, which may clearly
have irreversible consequences.

In this article, we consider adversarial perturbations in the
context of medical and health applications for the epileptic
seizure detection problem based on the EEG signals. We
formulate an optimization problem to identify the minimum
universal perturbations required by the adversaries to declare
the majority of ictal (seizure) samples as non-ictal (non-
seizure), i.e., to fool the classification algorithm, while being
imperceptible to the medical expert eye. We evaluate our pro-
posed universal perturbation scheme based on the CHB-MIT
scalp EEG database [22] and demonstrate the effectiveness of
the proposed scheme.

The remainder of this article is structured as follows. In
Section II, we present the motivational example for adver-
sarial perturbations in the case of epileptic seizure detection
problem. In Section III, we formulate the problem as an
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Fig. 1. The original signal (blue) and the adversarial signal (red) for two channels T7F7 and T8F8. The amplification factor per sample is shown in black.
Notice that there are very small (but non-zero) amplification coefficients around 100 and just after 300 on the left side (T7F7), while the changes in the

adversarial signal are imperceptible to the human eye.

optimization problem and describe in detail our proposed
universal adversarial perturbations. In Section IV, we present
the experimental setup and evaluate the proposed universal
adversarial perturbation scheme. Finally, Section V serves as
a conclusion.

II. MOTIVATIONAL EXAMPLE

Let us consider the epileptic seizure detection problem,
to identify seizures by monitoring the raw EEG signals for
synchronous rhythmic activities. The standard 10-20 EEG
acquisition system include as many as 19 electrodes on the
scalp [23]. For the simplicity of the presentation, let us
consider only two channels T7F7 and T8F8, which have been
proven to be essential for epileptic seizure detection and are
adopted in the state-of-the-art wearable sensors [16].

The original EEG signals and the corresponding minimal
adversarial signals, based on our previous work in [24], for
two channels T7F7 and T8F8 are shown in Figure 1. We
define the minimal adversarial perturbation as the minimum
manipulation required to declare a specific ictal sample as non-
ictal. The presence of the well-known delta—theta rhythm, i.e.,
rhythmic slow activity with a frequency of oscillation in 0.5-
4 or 4-7 hertz, is a clear indication of the ictal discharge
and epileptic seizure in the EEG signals [25]. Notice that
there are only slight differences between the original and
the corresponding adversarial signals, e.g., the very small
amplification coefficients around 100 and just after 300 on
the left side (in T7F7), while the changes in the adversarial
signal are imperceptible to the human eye. Nevertheless, the
adversary is able to mask the seizure by slight manipulation of
the original signals. The amplification factor for each sample

is also shown Figure 1. We observe that the majority of the
samples remain approximately the same.

The original EEG signals and the corresponding universal
adversarial signals for two channels T7F7 and T8F8 are shown
in Figure 2. We define universal adversarial perturbation as
the minimum perturbation required to declare the majority of
the ictal samples as non-ictal with high probability. Notice
that there are slight differences between the original and
adversarial signals, e.g., the peak just before 400 on the
right side (in T8F8). Nevertheless, the well-known delta—theta
rhythm, which is a clear indication of the ictal discharge
and epileptic seizure in the EEG signals, is preserved in the
adversarial signal. The amplification factor for each sample is
also shown in Figure 2. Finally, we evaluate this universal
perturbation for all (unseen) seizure signals available for
this patient and observe a success rate of 90.20%. That is,
considering this universal perturbation, 90.20% of the ictal
samples are misclassified as non-ictal.

III. UNIVERSAL ADVERSARIAL PERTURBATIONS

In this section, we discuss our proposed universal adver-
sarial perturbation scheme. In Section III-A, we introduce
the seizure detection problem and discuss the classification
algorithm for the detection of epileptic seizures. In Section
III-B, we formulate a convex optimization problem to identify
the minimal perturbations required for the misclassification
of one single seizure sample as non-seizure. We extend this
formulation to identify the universal adversarial perturbations
for the misclassification of the majority of seizure samples as
non-seizure with high probability.
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Fig. 2. The original signal (blue) and the universal adversarial signal (red) for two channels T7F7 and T8FS8. The amplification factor per sample is shown
in black. Notice that there are slight differences between the original and adversarial signals, e.g., the peak just before 400 on the right side (T8FS).

A. Seizure Detection Classification

Let us consider the Support Vector Machine (SVM) clas-
sification for the epileptic seizure detection problem [26].
The original formulation of the SVM classification with soft-
margin is as follows,

wTw+)\Z|§,;|
=1
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min
w,b

)Yy
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s.t. yi- (whe;+b) >1-¢&, i€[l,n]

where x; is sample ¢ and y; € {—1,+1} is its corresponding
label. The soft-margin slack variables are denoted by &; for
sample ¢. The total number of data samples is denoted by n.
Finally, the hyperplane that separates the ictal and non-ictal
samples is captured by w and b. The SVM classification algo-
rithm in its original form is unable to capture the complexity of
the seizure detection problem. Therefore, we consider a simple
transformation and use x; ® x; instead of x;, as follows,

wlw+ A & )
=1

s.t. yi- (w'(z; ©x) +b) >1-¢&, ielln]

where the operator © is the element-wise multiplication be-
tween two vectors.

B. Universal Adversarial Manipulation

We shall first focus on the minimal adversarial perturbations
for the misclassification of one single seizure sample. Let
us consider the multiplicative adversarial manipulation model,
which is formulated as follows,

min - 13 N
st. yi-(w((z;0a)®(z;®a)) +b) <0,

where a is the multiplicative perturbation vector. Our objective
is to minimize the magnitude of the adversarial perturbation
vector, which is capture by ||a — 1||2. Unfortunately, however,
the above optimization problem is not guaranteed to be convex
because of its constraint.

To address this problem, we reformulate the above opti-
mization problem as follows,

min la — 1|2

“ “4)

st. gy (w ((®i©x;) ©a) +b) <0,
which is a convex optimization problem and can be solved
to find the minimal adversarial perturbations required for
the misclassification of seizure sample x;. Observe that the
objective function is the classical Lo norm, which is convex,
and the constraints are linear with respect to variable a. The
adversarial perturbation vector is captured by a.

We shall now extend this optimization problem to identify
the universal adversarial perturbations, i.e., the adversarial
perturbation vector that render the majority of the ictal samples
to be misclassified as non-ictal samples. To achieve this, we
introduce a constraint for each ictal sample in the training
set that is used to learn this universal perturbation vector as
follows,

min  |la — 12
a

5

st.  yi-(w ((z; 0x)®a)+b) <0, i€ (n,m). ®
Note that the above optimization remains a convex optimiza-
tion problem and can be solved to find the universal adversarial
perturbations required for the misclassification of all seizure
samples x;, where i € (n,m].

Such an optimization problem may lead to universal adver-
sarial perturbations that are too aggressive, manipulating the



signals to the extent that is perceptible to the expert eye. To
address this issue, we propose a soft optimization problem and
introduce a penalty function for those data samples for which
the universal perturbation vector is not effective, as follows,

m
min a—1}s+ €
sin a1+ 3 e ©
st. gy (W (miox)0a)+b) <e, i€ (n,m]

where ¢; is the penalty for the correct classification of ictal data
sample z;, when considering the universal perturbation. On the
other hand, p is the parameter which controls the balance be-
tween the magnitude of the universal adversarial perturbation
vector and the penalty for the correct classification of ictal data
samples when applying the universal adversarial perturbations.

IV. EXPERIMENTAL SETUP AND RESULTS

In this section, we evaluate the power of our proposed
adversarial perturbation scheme in the case of epileptic seizure
detection problem. In Section IV-A, we discuss the dataset
used for the evaluation of our proposed universal adversarial
perturbations scheme. In Section IV-B, we evaluate our pro-
posed universal adversarial schemes and evaluate the trade-
off between the success rate in misclassification of the ictal
samples and the magnitude of the adversarial perturbations.

A. Epilepsy Dataset

We consider the CHB-MIT database [22] that contains EEG
signals from 23 epilepsy patients with intractable seizures. All
recordings are collected from children and young adults in
the 1.5-22 age range. The dataset is annotated by the medical
experts and contains a total of 182 seizures. These EEG signals
are sampled at Fs = 256 Hz, with 16-bit resolution. Several
previous studies indicate that the majority of seizures last
longer than one minute, with an expected value of median
equal to 71.9 seconds [27]. However, patients 6, 14, and
16 in this dataset suffer from seizures lasting 15.30 + 2.87,
21.13 + 8.68, and 8.40 £ 2.27 seconds, respectively, hence
are not considered in our analysis. We consider only the two
channels T'7F7 and T8F'8 in the e-Glass wearable system
[16], which have been shown to be important for the detection
of epileptic seizures.

B. Universal Adversarial Manipulation

In this section, we evaluate our proposed adversarial per-
turbation scheme based on the epileptic seizure samples. We
shall first evaluate the possibility of successful manipulation
of each single seizure sample, such that the seizure samples
are misclassified as non-seizure. We also evaluate the effort
required for the misclassification of an ictal sample as non-
ictal. We evaluate the performance of our adversarial perturba-
tion scheme based on the median success rate and the median
required perturbation.

The success rate captures the number of seizure samples
that could be successfully perturbed to be misclassified as
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Fig. 3. The distribution of the success rate and minimum required pertur-
bations for our proposed adversarial perturbations scheme when considering
only one single ictal sample.

non-seizure over the total number of original seizure samples
classified correctly. The results are shown in Figure 3. The
median success rate among all patients is 70.3%. In addition,
in all cases, the proposed scheme is able to successfully
perturb more than 40.0% of the seizure samples such that the
classification algorithm misclassifies these seizure samples as
non-seizure.

The median required perturbation captures the (median)
effort required for the misclassification of one single seizure
sample as non-seizure, which is captured by ||@ — 1||5. The
results are shown in Figure 3. The median value of ||a — 1]|2
among all patients is 1.7, where the vector a is of dimension
2000.

We shall now evaluate our proposed universal adversarial
perturbation scheme and compare these results against the
adversarial perturbations scheme when only considering one
single seizure sample. We evaluate the success rate, i.e.,
the rate of successful perturbation of seizure samples to be
misclassified as non-seizure samples considering our universal
adversarial perturbation scheme. We also evaluate the effort
required for the misclassification of ictal samples as non-ictal
samples, which is captured by ||@ — 1]|2.

In Figure 4, we evaluate the median success rate and the
median required perturbation versus the value of parameter .
As discussed before, p is the parameter which controls the
balance between the magnitude of the universal adversarial
perturbations and the penalty for the correct classification of
ictal data samples under the universal adversarial perturbation.
We observe that both the median success rate and the median
required perturbation increase as we increase the value of .
Note that, in Figure 4, we use a log-2 scale for the x-axis.

Let us now focus on ¢ = 0.01. The median success rate
among all patients is 76.9%. Observe that, in the worst-
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Fig. 4. The distribution of the adversarial success rate and minimum required perturbations for our universal adversarial perturbations scheme versus the

value of p in the optimization problem.

case scenario and for a minority of seizure samples, the
universal adversarial perturbation might not be effective as
shown in Figure 4. However, as we increase the value of y, the
number of seizure samples that are correctly classified under
the universal adversarial perturbation reduces. In terms of the
magnitude of our universal adversarial perturbation vector, the
median value of ||a@ — 1|| among all patients is 7.3, where the
vector @ is of dimension 2000.

Note that the median success rate in the case of universal
perturbation scheme with g = 0.01 is 76.9%, which is
sightly larger than the median success rate in the adversarial
perturbation scheme when considering only one single seizure
sample, i.e., 70.3%. This is essentially because the median
required perturbation in the case of universal perturbation
scheme is 7.3, which is more than three times the median
required perturbation in the adversarial perturbation scheme
which considers only one single seizure sample, i.e., 1.7. This
is due to the fact that the latter perturbation is specifically
optimized for one single ictal sample, but the universal per-
turbation is carefully crafted to ensure the misclassification of
the majority of the ictal samples. Therefore, the effort required
in the universal adversarial perturbations is beyond that of the
adversarial perturbation for one single ictal sample.

V. CONCLUSION

Machine-learning models have been proven to be vulner-
able to adversarial perturbations of their input data and, in
turn, misclassify such perturbed input data. The adversarial
perturbations of sensitive health-related information, e.g., if
such health-related data are used for prescribing medicine, may
have irreversible consequences, involving patients’ lives. In
this article, we demonstrated the power of universal adversarial
perturbations based on a real-world epileptic seizure detection
problem. We formulated the problem as a convex optimization

problem to quantify the effort required to declare the majority
of seizure samples as non-seizure, i.e., the universal adversarial
perturbations to fool the classification algorithm.
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