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Abstract—Load Disaggregation has gained much popularity
in the recent times, owing to the advantages it brings to energy
utility companies. Many modeling techniques ranging from Dic-
tionary Learning to HMM-based techniques to Neural Network
based modeling have been proposed in the literature to solve this
problem. However, scalability and computational lightness, have
been two main areas of concern associated with the problem
modeling. In this work, the authors propose to use Multi-Label
Auto-Encoder architecture to solve this problem. The proposed
architecture incurs minimum instrumentation cost, which makes
it truly non-intrusive. The use of superposed appliance class
labels of interest in the discriminative penalizing term of the
architecture, ensures that disaggregation is achieved without the
need to train a separate model for each appliance class of interest.

Index Terms—Load Disaggregation, Smart Meter, Multi-Label
Auto-Encoder.

I. INTRODUCTION

Smart meters roll-out in the recent years has enabled en-
ergy sector to move towards digitization. Smart meters are
designed to collect total power consumption data at a pre-
defined sampling rate, that typically ranges from one second
to one hour. Smart meter data is used to obtain appliance-
level energy consumption at installed locations, using source-
separations methods to disaggregate the smart meter data into
the corresponding appliances loads. This process is termed
as Load Disaggregation. Disaggregated information such as
operation of a) schedul-able loads (Washing Machines, Dish
Washers, Dryers etc.), b) Electric Vehicles (EV) that act
as a source (negative load) and, c) elastic loads (like air
conditioning) etc. is vital to energy-utility companies as this
would enable them to (i) design optimal demand response
for targeted customers and (ii) to provide the customers
with energy saving recommendations that may also include
replacing inefficient appliances, if any. Load disaggregation
further helps customers to have the know-how to optimize the
usage of various appliances..

Load Disaggregation (LD) has been a subject of research
for over two decades now and has started with Hart’s [1]
work where he used events in the total consumption to detect
the individual appliances. Since then, Load Disaggregation
has gained significant momentum. Load Disaggregation can
broadly classified into (i) Event-based load disaggregation and
(ii) Non-event based load disaggregation. Event based LD is

carried out using ON/OFF events of the appliances [10] [12]
and some times can include other discriminating features like
time of operation. Event-based LD is applicable for smart
meter data with sampling frequencies up to 1 minute where
events could be observed whenever the appliance switched
ON/OFF. For sampling frequencies greater than 1 minute,
the problem is to map the aggregate power data onto the
combination of loads operational in the window of observation
using statistical optimization methods. This usually is termed
as Non-Event Load Disaggregation problem.

Load Disaggregation problem, in this category, received
great attention, owing to the fact that while the total power
consumption could itself be a linear superposition of ap-
pliances, the aggregate power consumption at any point in
time, cannot be mapped to an unambiguous set of appliance-
combinations. To this effect, several optimisation methods and
neural network based methods were studied and proposed,
ranging from Sparse Coding methods [6], [8] to HMM -based
modeling techniques [9], to Deep Learning based architectures
[11].

Kelly et al. [11] proposed deep architectures using De-
noising Auto-Encoders (DAEs) and Long Short-term Memory
(LSTM) neural network for load disaggregation where there
is seperate network trained for each appliance of interest
considering aggregate load as input and appliance consumption
pattern as output. Sparse Coding based source separation
algorithm was proposed by Kolter [8], in which he considered
hourly consumption data to develop sparse models for each
appliance class so as to solve the problem using non-negative
sparse coding technique.

However, the authors’ have in their previous works for-
mulated Dictionary-Learning based disaggregation framework
[6] and Neural Network based method [10] and observed
that these methods often incur huge computational costs,
due to the large data requirement during the training phase.
Therefore these methods are not practically feasible as a viable
business solution. It is evident that for a real life solution,
the Non-Event Load Disaggregation must, most importantly,
possess the ability to extract loads from the aggregate data,
in a computationally simpler manner. This implies that the
formulation for training of the appliance class models requires
simplification, which would in turn, reduce the amount of
data required to solve the problem. This is important in the
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area of Load Disaggregation, as labeled or annotated smart
meter data is often difficult to acquire, while unlabeled data is
easily acquired through a smart meter installation. This further
implies that the solution should be computationally light and
scalable.

To this effect, a recent emerging line of research using
semi-supervised learning approaches has come to the au-
thors’ attention. Semi-supervised learning methods offer the
flexibility to learn patterns from the aggregate data in an
unsupervised manner in the first step, which are then used by a
discriminative model to classify or identify the patterns in the
window of observation. Further, the discriminative part of the
model does not require extensive formulation, and therefore is
easier to handle.

A semi-supervised approach that instead combines the dis-
criminative ability with the representational stage of an Auto-
Encoder [5] had come to authors’ attention. In this work, the
authors [5], inspired by the results of training neural-network
based architectures using Alternating Direction Method of
Multipliers (ADMM) in [18], have used this method to obtain
the discriminant features of the data at the decoding layer of
an Auto-Encoder framework. It may be noted that ADMM has
been demonstrated to produce more efficent and stable results
as opposed to those produced by stochastic gradient descent
method on large data-sets [18].

While auto-encoders have been used earlier for feature
extraction and for single-label classification in the literature,
using Auto-Encoders for multi-label classification has been
first reported in [5]. Termed as Discriminative Auto-Encoders
(DiAE) in their work, this framework has been evaluated for
character recognition and inspired by the results in this paper
we propose to solve the problem of Load Disaggregation using
this framework.

To the best of the author’s knowledge, this has been the first
attempt to use Discriminative Auto-Encoder (DiAE) network
for the task of load disaggregation. Load Disaggregation is
a more complex task, as compared to character recognition,
in that it belongs to the class of source-separation problems
which makes the mapping of the aggregate data onto the cor-
responding loads of interest challenging as mentioned earlier
in this section. Therefore, the performance of DiAE in this
case is worth examining. In this work, the DiAE framework
is used as follows: obtain the encoded representations of the
aggregate data, map the representations to the decoder layer
and to the appliance class labels matrix in an alternating
manner as detailed in [5], [18]. This enables the decoding
layer of the Auto-Encoder to act as a discriminator to obtain
the disaggregated results.

We evaluate the performance of this framework on REDD
data-set, and further compare these results with those obtained
by applying Multi-Label KNN (ML-KNN) and RAKEL algo-
rithms on the same data-set.

II. MULTI-LABEL AUTO-ENCODER

The Multi-Label Auto-Encoder Model involves a discrim-
inative penalising term in the representation-learning formu-

lation. The discriminative ability is obtained at the decoding
layer by learning a linear mapping between the representa-
tions of the input data and the class labels of interest. This
formulation results in a simplified architecture that ensures
the discriminative ability is learnt via a single formulation.
Authors’ in [5] propose the DiAE design as shown in the
Figure 1.

The figure also demonstrates how the architecture would
be used in the current work. The class labels in our work
(D as mentioned in the Figure 1), is appliance label matrix,
consisting of the ON-OFF state information for all appliances
of interest for a window of observation. As we can observe,
the class label matrix D consists of superposed information
at any point in time unlike a one-hot encoding vector used in
[5].

To the best of the authors’ knowledge, such an approach was
not attempted earlier to the problem of load disaggregation. By
using DiAE, we intend to map the aggregate power consump-
tion data, via the encoded representations, to the appliance
class matrix. Using a series of updations as demonstration
in section II-A, we finally achieve our goal of drawing the
requisite mapping between the input data representations and
the appliance labels. This way, given an aggregate data input,
we will be able to identify the appliances present in it. The
formulation for DiAE is detailed in section II-A.

Fig. 1. Block Diagram for DiAE

A. Training
A basic autoencoder encodes the aggregate data and yields

the latent representations of the same as:

h = φ(W1x) (1)

Here, W1 refers to the weights of the nodes of the encoding
layer and h refers to the representations learnt from x and φ
is the activation function.

The decoding layer of this autoencoder would reconstruct
the input layer back from the representations h as:

x =W2φ(W1x) (2)



During training, encoding and decoding weights are learnt
by minimizing the distance between the input data, x and
reconstructed output (W2φ(W1x)):

‖X −W2φ(W1x)‖ 2F (3)

In DiAE, the linear mapping D, between the representations
and the class labels of interest is also learnt. This enables dis-
criminative ability at the decoder layer. This can be formulated
as follows:

argmin
W2,W1,Z,D

‖X −W2φ(W1X)‖ 2F + λ ‖L−DZ‖ 2F (4)

However, in order to avoid the learning of encoder weights,
W1 and encoder representations, Z simultaneously, a third
term Z − φ(W1X) is introduced. This brings us to the final
formulation for DiAE as:

argmin
W2,W1,Z,D

‖X −W2φ(W1X)‖ 2F + λ ‖L−DZ‖ 2F+

µ ‖Z − φ(W1X)‖ 2F (5)

where L indicates the class labels and Z indicates the encoder
representations.

Clearly, this formulation is the Augmented Lagrangian or
ADMM formulation, discussed in [18]. We break this formu-
lation into four steps, in order to obtain the updations for W2,
D, W1 and Z as explained in Algorithm 1. We implement
each step as a least square minimization problem, akin to the
way it is implemented in [5].

Algorithm 1: The DiAE least square minimization steps
to compute W2, D, W1

Step1 :W2 ← argminW2
‖X −W2φ(W1x)‖ 2F

Step2 : D ← argminD ‖L−DZ‖ 2F
Step3 :W1← argminW1

‖Z − φ(W1x)‖ 2F
Step4 : T ← argminZ ‖X −W2φ(W1X)‖ 2F +
‖L−DZ‖ 2F + ‖Z − φ(W1X)‖ 2F
Step5 : H ← T = |T |

III. IMPLEMENTATION

A. Data Sets

In our work, we have used REDD dataset, to train and test
the formulation [7]. The data set consists of data for six houses.
The aggregate and the appliance level readings were measured
at the sampling frequency of every 3 seconds and 1 second
respectively. The data from houses from 2 to 4 were used for
training and is tested on house 5.

Choice of Appliances: A combination of high power and
low power consuming appliances were used in our work,
to validate the proposed approach. We chose washer-dryer,
refrigerator, dishwasher and an oven as appliances of interest,
as some of these appliances (washer-dryer, oven) are high-
power consuming appliances while some others (refrigerator,

dishwasher, oven) are highly used appliances in most of the
houses.

B. Data Pre-processing

In our work, we down-sample the data to 1 minute sampling
rate. This achieved two purposes:

• The long intervals for which the data was zero or not
available was significantly reduced.

• This also allows us to use lesser number of samples, so
as to reduce the complexity burden on the algorithm.

We have considered close to two months of data for vali-
dating the proposed architecture.

Windowing: Raw aggregated data was fed as input to the
encoder. The discriminant layer will have the information
about the appliances which are operating during that particular
window. The appliance information is given in the form of
binary values i.e Li is 1 if the ith appliance (Li) is present
in that particular window or otherwise Li is 0. Appliances’
consumption data will have non-zero values whenever they
are ON and zero or very small positive values whenever the
appliance is OFF . To binarise these appliances, we used a
small positive threshold ε to obtain just the ON or OFF states,
thereby modeling them as binary state machines. This is done
as we are using the formulation to identify the operational
appliances in the aggregate data.

Li = 1, Pi > ε
= 0 Pi < ε

(6)

where Pi is the power consumption of the ith appliance.

IV. TESTING

After training the architecture with 40 days of data, we
tested the same with 25 days of data. The product of learnt
linear mappings and the learnt encoded representations is used
to estimate the labels, as given by the following equation.

l = DW1Xtest (7)

The estimated labels will have a certain bias as we observe
in the Figure 2 to Figure 4. Therefore, the estimated results
are thresholded appropriately, to detect the presence of the
appliance. If the estimated values fall below the thresholded
value, we consider them to be absent at that time instant;
else, they would be considered as operational. The thresholds
are usually unique for each appliance, and therefore, careful
understanding of the appliance ranges, during the training
phase is necessary before deciding the same.

A. Evaluation procedure

Window sizes of one hour, three hours and one day were
used to assess the performance of the algorithm. We found that
windowing size did not significantly affect the reconstruction,
however, in order to obtain full cycles of appliance operation
in one window, we preferred three hours window size as
the optimal window size. We observe that pre-processing of
the data to remove all the windows where no loads were



operating , both in the labeled data and in the aggregate data,
was crucial to improving the reconstruction accuracy. The
results provided in Figures (2-4) are obtained by concatenating
windows to demonstrate the reconstruction for one day of
power consumption. We observe that Washer-Dryer appliance
has the best reconstruction; this can be attributed to the high-
power consumption of the appliance. Figures (2 - 4) contain
the reconstruction instances of the Washer-Dryer against the
ground truth. Refrigerator and dishwasher reconstructions had
false negatives (refer Figures 2,4), i.e, the appliances were not
detected in some windows. This could be attributed to the low-
power consuming nature of these appliances, compared to the
rest of the loads. Oven reconstruction was the least accurate
in comparison - this is chiefly owing to the fact that oven’s
operation time is less than a minute. While sufficient labeled
data does exist, latching onto the appliance especially in the
presence of other appliances operating for a longer time seems
to be a problem. Figure 2 contains the reconstruction error
for oven in the presence of dishwasher. There were no false
positives reported in any of the appliances’ reconstruction.

Fig. 2. Oven and DishWasher reconstruction

V. COMPARISON AND DISCUSSIONS

Comparision with MLKNN and RAKEL algorithms: We
compare the results of the DiAE framework with those of
popular multi-label classification algorithms - MLKNN [19]
and RAKEL [20]. These algorithms were implemented and
tested with REDD data sets, for the same period of training
and testing as for DiAE framework.

We observe that while there is not much difference in the
results using DiAE and the rest of the two algorithms for
refrigerator instances - all the three are observed to accurately
predict the appliance; however, the same does not hold for
high power appliances such as Microwave oven and Washer-
Dryer. It is observed that DiAE outperforms both MLKNN and

Fig. 3. Oven and Washer-Dryer reconstruction

Fig. 4. Refrigerator and Washer-Dryer reconstruction

RAKEL when tested for high power appliances. We present
the results using MLKNN and RAKEL algorithms for two-
hour window durations, to highlight the large number of false
positives in the reconstructions.

Improvement against proposed framework by Kelly et
al.: The results from our work, were also compared against
those demonstrated by Kelly et al. [11]. This is shown in



table V. Kelly et al. demonstrates the performance of three
different neural network models for energy disaggregation. In
this work, De-noising Auto-Encoders (AE) were trained, one
for each appliance, with the assumption that all the remaining
appliances contributing to the aggregate power is noise. The
output of each denoising AE is the identified appliance.
However, by using the DiAE formulation, we have simplified
the discriminative process greatly as opposed to the training
process involved in the former [11], without compromising on
the disaggregation performance. We observe that our results
using this approach score better in terms of accuracy and F1-
score, with the only exception of Oven reconstruction.

Fig. 5. Refrigerator, Microwave and Washer-Dryer reconstructions using
MLKNN algorithm

LD Results-DiAE framework Vs Denoising AE
Denoising
AE

DiAE Ap-
proach

Appliance
Name

Accuracy F1-
score

Accuracy F1-
score

Dish
Washer

0.95 0.6 0.975 0.95

Refrigerator 0.85 0.81 0.9 0.85
Oven 0.85 0.6 0.75 0.62
Dryer-
Washer

0.75 0.49 0.9 0.9

Fig. 6. Refrigerator, Microwave and Washer-Dryer reconstructions using
RAKEL algorithm

LD Results due to MLKNN and RAKEL
MLKNN RAKEL

Appliance
Name

Accuracy F1-
score

Accuracy F1-
score

Dish
Washer

0.8 0.75 0.85 0.77

Refrigerator 0.95 0.9 0.95 0.9
Oven 0.65 0.6 0.65 0.6
Dryer-
Washer

0.75 0.7 0.7 0.65

As we obtain appliance identification as the output in this
formulation, it is necessary to clamp the reconstruction to a ’1’
or ’0’, depending on a threshold value. A threshold value of 0.5
is suitable with the data used in this work. Later a simple post-
processing scheme, involving multiplication of the identified
appliances by the aggregate power consumption data, will
help to obtain the appliance shapes too. Along with the
timing information that is already in place, the reconstructed
shape thus obtained through post-processing would provide for
complete picture of the disaggregation.

VI. CONCLUSIONS

We present an approach to load disaggregation by using
Discriminative Auto-Encoder framework. The formulation is
based on simple sequential updations using least square min-
imization, to establish discriminative ability accurately at the
decoding layer. A hallmark of this work is the ability to use



DiAE framework for superposed loads in the labeled data , and
this work has been the first attempt to report results with such
a modification to the class label matrix. We have been able
to use just 40 days of training data to achieve the accuracy,
which demonstrates the use of this algorithm as intended for
a real life solution.

We also compared the proposed methodology against
MLKNN and RAKEL algorithms, and observed that the
proposed method outperforms both these algorithms, when
tested for high-power consuming appliances such as washer
and Microwave oven, which is usually required for real life
situations.

Extending this work further, the authors are implementing
deeper version of the proposed architecture and the per-
formance of the same for Load Disaggregation problem, is
currently being studied.
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