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Abstract—Mobile devices have become, in the last years, an
essential tool used to perform daily activities. However, they also
have become the target of continuous malware attacks usually
coming out from new malware obtained as a variant of existing
ones. For this reason, we suppose that by comparing the behavior
of a new application with those of known malware applications it
is possible to define it as malicious or trusted. According to this,
the current study proposes an approach based on a data-aware
declarative process mining technique to identify similarities and
recurring patterns in the system call traces generated by a set
of malicious mobile applications. The obtained characterization,
represented by a set of declarative constraints within their data
attributes, can be considered as a run-time fingerprint of a
malware useful to evaluate the membership of a new application
to a given malware family. The empirical validation of the
proposed approach is performed on a dataset of more than
1200 trusted and malicious applications coming out from eight
malware families and the obtained results show a very good
discrimination ability.

Index Terms—Malware detection, Declarative process mining,
data-aware process mining

I. INTRODUCTION

Mobile devices are usually used to communicate and to
access to sensitive data, such as personal certificates, email
or banking account. This explains the increasing number of
malware attacks aimed to capture reserved information or
reduce mobile service performances. New malware is con-
tinually obtained from existing malicious code [8] by using
automatic tools able to perform code exchange. Consequently,
new malware detection approaches are continually developed
to detect the always more sophisticated and complex malicious
code. This paper presents an update version of the approach
presented in [4] consisting to use a process mining (PM)
technique [21] for the dynamic analysis of the system call
traces gathered from an application. With respect to [4],
this new approach allows analyzing system call traces within
their data attributes. The main hypothesis at the base of this
proposal is that the study of the data attributes should improve
malware detection and give further information about the
malware behavior. Moreover, the proposed approach assumes
that similarities and derivations between mobile application
system calls can be discovered and modeled similarly to
process activities in business process logs. Indeed, the PM is
used to describe the behavior of trusted/malware applications
from a set of system calls traces obtained in response to

some activating events. The PM tool used to discover the
trusted/malware application behavior model from a set of col-
lected traces is based on MP-Declare [12], a multi-perspective
version of Declare Miner [5]. The model is represented as a
set of declarative constraints between system calls [17] within
their correlating data and is named Data-aware System Calls
Execution Fingerprint (DSEF). The approach is suitable for all
the mobile platforms but in this study, we focus on the Android
platform while it is considered the favorite target of malware
attacks [1]. The novelty introduced by the proposed approach
consists of a data-aware declarative PM technique that is used
to model a malware behavior exploiting a higher number
of properties and relations among the system calls gathered
from system call traces. Moreover, the proposed approach
should be very useful to support the automatic verification
and the new application approval process usually performed
by the commercial mobile application stores. The paper is
organized into 8 sections. Section II describes the background.
Section III reports the related work discussion. In Section
IV the proposed approach is described. Section V reports
the evaluation consisting to apply the proposed approach a
dataset of 8 malware families and 1200 malicious and trusted
applications. Section VI discusses the obtained results while
in Section VII, the threats to validity are discussed. Finally,
section VIII provides some conclusive remarks and future
work discussion.

II. BACKGROUND

A. Mobile Malware Families

A malware family represents a set of malware having
similar behavior and properties. The specific knowledge of the
structural and behavioral properties of a malware family is an
effective support for malware detection since new malwares
are usually obtained from existing ones through evolutionary
relationships [11]. The list of malware families studied in
this work are reported in Table I. The table, starting from
the third column, shows a brief description of the malware
family, its installation type (IT) and the known classes of
events activating the malware (AE). More precisely, IT refers
to the way the malicious payload is installed [27] and can
assume the values ’r’ (repackaging), ’s’ (standalone), and ’u’
(update attack). Activating Events belong to different classes
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(e.g., for the Android platform they are BOOT, BATT, SMS,
SYS, NET, CALL).

The correspondence between a malware family and the
classes of its activating events is reported in Table I whereas
the list of considered activating events along with their classes,
for the Android platform, is reported in Table II and is further
discussed in [10, 4].

B. Multi-perspective Declare

The proposed approach is based on MP-Declare, a multi-
perspective version of Declare language [17]. Declare is a
process modeling language that describes a process as a set
of constraints that must be satisfied throughout its execution.
The activities sequence is specified by the constraints since
all that does not violate them is allowed during the process
execution.

Declare constraints are concrete instantiations of templates
defining parameterized classes of properties.

The constraints inherit the graphical representation and
semantics from their templates. Common semantics are based
on LTL logic [5] allowing making processes verifiable and
executable throughout finite traces.

A multi-perspective version of Declare is MP-Declare [12,
13]. It is based on the Metric First-Order Linear Temporal
Logic (MFOTL). This logic allows to enrich the existing
Declare language with a time and data perspective.

The MP-Declare semantics are shown in Table III. It is
based on the concept of payload of an event. Consider, for
example, the activity receive call executed at a timestamp ts
having a caller attribute equal to Joe. In this case, we say that
{caller=Joe, timestamp=ts} is the payload of receive call.
Two kind of parameters are defined for MP-Declare activities:
activation and target parameters. Looking for example to the
response constraint between the activities receive call and
filter call, it means that the activity receive call is always
eventually followed by activity filter call. With respect to
Declare, a timed semantics is here introduced corresponding
to two additional conditions on data (for example an activation
condition ϕa and a correlation condition ϕc). The activation
condition is a relation among the variables (event logs global
attributes) that must be valid when the activation occurs. If the
activation condition is not valid, the constraint is not activated.
Looking at the response template reported in Table III, the
activation condition is represented as pA(x)∧ ra(x). It means
that when A occurs with payload x, the relation ra over x
must be valid. So, considering our small example, when the
activity receive call occurs and the (caller) is contained in
the black list, the activity filter call must eventually follow.
Viceversa, if the activity receive call occurs and the (caller)
is not contained in the black list, the constraint is not activated.

Moreover, we consider the correlation condition as a relation
that must be valid when the target occurs. It is formalized as
pB(y) ∧ rc(x, y), where rc represents a relation among the
variables corresponding to the global attributes in the event
log but, in this case, relating the payload of A and the payload
of B.

In this study we use MP-Declare [13] to discover constraints
that relate an activation and target attributes.

III. RELATED WORK

Several studies about malware detection are recently pre-
sented. For briefly, here we focus on dynamic methods while
a further discussion including also static methods is proposed
in [4]. Dynamic methods consist to analyze a malicious appli-
cation during its execution on a real device or in a controlled
environment. A great number of these approaches are based
on the system calls analysis [9, 18, 20, 7, 19, 24] and use
customized Android kernel. For example, the approach pro-
posed in [9] allows mining the read/write operations system to
detect malicious code. The authors use a real device equipped
with a customized kernel and the evaluation is performed on
a synthetic dataset. Differently, our proposed method does
not require a customized kernel, with consequently improved
applicability for the user.

Some other studies [23, 2] propose feature network-based
approaches to perform malware detection. However, these
studies are more focused on analyze data-leakage. Another
limit of the above approaches is that they require to recompile
the kernel. This makes them time intensive and resource-
consuming, with respect to our proposed approach. A recent
approach also proposes the combination of both static and
dynamic features to mine the malware behavior [26]. This
work propoposes the abstraction of feature vectors with the
procedure of decompiling the APK file. This makes this
approach more time and resource consuming with respect the
proposed one. Android malware detection is also the focus of
the study introduced in [6]. The authors analyze the sequences
of system calls to find a fingerprint of the malware obtaining
promising results (the accuracy is 97%).

The concept of malware fingerprint is also presented in
[4]. With respect to [6], this approach proposes the adoption
of process mining techniques to obtain a model (it is called
System Calls Execution Fingerprint (SEF)) of the malware
behavior from a set of traces collected during the running
of trusted and malware applications. The classification is
performed using the distance among SEFs to discriminate
malware and trusted applications on the base of their similar-
ities. The study presented in [4] represents the starting point
for our proposal. Here the concept of SEF is updated and
the Data-aware System Calls Execution Fingerprint (DSEF) is
introduced. The basic idea is that the addition of data attributes
analysis can improve the malware detection capability of the
process mining technique since malware behavior is often
activated and conditioned to the value assumed by the data
associated with the syscalls. In this study, we also compare
obtained results with the ones previously obtained in [4] to
verify if the introduction of data attributes study can effectively
improve the malware detection performances.

IV. APPROACH

The proposed approach uses a data-aware process mining
technique to mine system call traces (logs) of an Android



TABLE I
A LIST OF SOME COMMON MALWARE FAMILIES.

Family Samples Description IT Class of Activating Event
Airpush 7845 It displays unwanted ads without any consent r BOOT, BATT, SMS

DroidKungFu 3943 It installs a backdoor supporting the access of attackers to the
smartphone r BOOT, BATT, SYS

Dowgin 3894 It displays for displaying third-party advertising content and silently
leaks or captures sensitive information r BOOT,SMS,SYS

Fusob 2205 It encrypts data and then orders victims to pay to unlock the device r,u BOOT, SMS, NET, BATT
FakeInst 2178 it sends SMS messages to premium-rate numbers or services r,u BOOT, CALL
Mecor 1822 It is a Trojan-Spy s BOOT

Youmi 1302 It monitors and captures user behavior and floods the device with
unsolicited pop-up advertisements r,u BOOT, SMS, CALL

Kuguo 1201 it redirects the victim to malicious websites and continually display
popup ads r BOOT, SMS, NET, BATT

TABLE II
SYSTEM EVENTS ACTIVATING THE MALICIOUS BEHAVIOR.

Class Activating Event (AE) Description
BOOT BOOT COMPLETED Able to catch the boot completed

CALL PHONE STATE Incoming call
NEW OUTGOING CALL Outgoing call

SYS

INPUT METHOD CHANGED An input method has been changed
USER PRESENT User unlocks the device

SIG STR Listening to signal strength when the phone
sleeps

SIM FULL The SIM storage for SMS messages is full

SMS SMS RECEIVED Reception of SMS
WAP PUSH RECEIVED A WAP PUSH message has been received.

BATT

POWER CONNECTED Battery status in charging
POWER DISCONNECTED Battery status discharging

BATTERY OKAY Battery full charged
BATTERY LOW Battery status at 50%

BATTERY EMPTY Battery status at 0%
BATTERY CHANGED Battery status changed

NET PICK WIFI WORK Start the Wifi
CONNECTIVITY CHANGE The state of connection has been changed.

Fig. 1. Excerpt of a syscalls execution trace

application produced in response to the set of AE reported
in Table II. The obtained models represent a fingerprint of
the behavior of an application regarding executed system
calls. It is used to classify malware or trusted applications
by evaluating the membership of an infected application to
a given family. Specifically, the approach is based on the
analysis of system call traces (i.e., the logs) captured from
the execution of a mobile application. Such logs can be used

TABLE III
SEMANTICS FOR MP-DECLARE CONSTRAINTS.

Template MFOTL Semantics

existence FI(A ∧ ∃x.ϕa(x))
absence ¬FI(A ∧ ∃x.ϕa(x))

choice FI(A∧∃x.ϕa(x))∨FI(B∧∃x.ϕa(x))
exclusive choice (FI(A ∧ ∃x.ϕa(x)) ∨ FI(B ∧

∃x.ϕa(x)))∧
¬(FI(A ∧ ∃x.ϕa(x)) ∧ FI(B ∧

∃x.ϕa(x)))

responded existence G(∀x.((A ∧ ϕa(x)) → (OI(B ∧
∃y.ϕc(x, y))∨

FI(B ∧ ∃y.ϕc(x, y)))))
response G(∀x.((A ∧ ϕa(x)) → FI(B ∧

∃y.ϕc(x, y))))
alternate response G(∀x.((A ∧ ϕa(x)) →

X(¬(A ∧ ϕa(x))UI(B ∧
∃y.ϕc(x, y)))))

chain response G(∀x.((A ∧ ϕa(x)) → XI(B ∧
∃y.ϕc(x, y)))

precedence G(∀x.((B ∧ ϕa(x)) → OI(A ∧
∃y.ϕc(x, y)))

alternate precedence G(∀x.((B ∧ ϕa(x)) →
Y(¬(B ∧ ϕa(x))SI(A ∧

∃y.ϕc(x, y))))
chain precedence G(∀x.((B ∧ ϕa(x)) → YI(A ∧

∃y.ϕc(x, y)))

not responded exis-
tence

G(∀x.((A ∧ ϕa(x)) → ¬(OI(B ∧
∃y.ϕc(x, y))∨

FI(B ∧ ∃y.ϕc(x, y)))))
not response G(∀x.((A ∧ ϕa(x)) → ¬FI(B ∧

∃y.ϕc(x, y))))
not precedence G(∀x.((B ∧ ϕa(x)) → ¬OI(A ∧

∃y.ϕc(x, y)))
not chain response G(∀x.((A ∧ ϕa(x)) → ¬XI(B ∧

∃y.ϕc(x, y)))
not chain precedence G(∀x.((B ∧ ϕa(x)) → ¬YI(A ∧

∃y.ϕc(x, y)))

to characterize the behaviour of an application (including the
possible malware behavior). We assume that the malicious
behavior is usually triggered by system events broadcasted
by the operating system, as also highlighted in some studies
[4, 14].

To better clarify the approach we refer to the running exam-
ple shown in Figure 1 and Figure 2. The starting point is the
parsing of a set of syscall traces. Figure 2 reports an example
of process to which the trace of Figure 1 is conformant. Figure



Fig. 2. A process to which the trace in Figure 1 is conformant

1 shows a small sequence of syscall execution events generated
by an application that opens a file, write some data and close
it. The syscall executions in the trace are analyzed to generate
the events retaining information on both parameters and return
values. Each syscall is associated to an activity in the process
that defines the event payload structure in terms of attributes
and their types. During the syscall trace parsing, events and the
values of their attributes are created and added to the process
log used for a subsequent mining step.

The behavioral model extracted from syscalls logs is called
DSEF — Data-aware Syscalls Execution Fingerprint. With re-
spect to the original SEF notion [4] which is based on Declare
language, DSEF is represented using the MP-Declare notation
[13] in order to represent correlation conditions among syscall
taking also into account data parameters obtained from the
application execution traces.

A. Data-aware Syscalls Execution Fingerprint (DSEF)

In this section we report the definitions for the DSEF of a
mobile application and the DSEF of a malware family.

Definition 1 (MP-Declare model). The MP-Declare model
associated to a set T of system call traces is defined as:

MPD = {C1, . . . , Cn}

where Ch = (SA, ST , P ) is a constraint (unary or binary)
specifying a condition P as reported in the second column of
Table III. The constraints are satisfied if P holds over traces
in T :

• on the occurrences of each system calls SA, for unary
constraints;

• on each couple (SA, ST ) of activating and target system
calls, for binary constraints.

MP-Declare models are the building blocks for the defini-
tion of DSEF for both applications and malware families. For
the following definitions, let be:

• A, a set of m applications infected with the malware
family M ;

• E, the set of the n system events sent to each application.

Definition 2 (DSEF of an application a). The DSEFa of
the application a ∈ A is the set of the MP-declare models,
defined as:

DSEFa = {MPDa1
, . . . ,MPDan

}

where:

• MPDaj
is the MP-Declare model of the application

a for the system event j, mined from the set of traces
{tj1 , . . . , tjr}.

• n is the number of the system events sent to an applica-
tion;

• r is the number of performed runs of the application a;
• tjk is the k-th system calls trace generated by the appli-

cation a, in response to the event j, with k ∈ [1, r];

Definition 3 (DSEF of a malware family M ). The DSEF of
a malware family M can be defined as the set:

DSEF (M) = {MPDM1
, . . . ,MPDMn

}

where:

• MPDMj is the MP-Declare model for event j mined
from the set of traces {tj1, . . . , tjm}

• tji is the execution trace generated by the i-th application
of the set A in response to the j-th system event, with
i ∈ [1,m], j ∈ [1, n];

Observe that the kind and number of traces used for
Definition 2 and Definition 3 are different. For the application,
the DSEF is obtained, for each system event e ∈ E, by a
set of r traces executing the same application several times.
In this case, we are mining the models, for each event ej ,
of the application and hence several traces are required to
model its behavior using MP-Declare rules (the application
behavior, that is very similar from trace to trace since the
application is the same, is reflected as a proper set of MP-
Declare constraints).

Differently, the DSEF of a malware M is considered as the
model of the malicious behaviour that is shared by an entire
set of different applications infected by the same malware
M. In this case a single run for each application of the set
it is sufficient to mine the rules characterizing the common
(i.e. malicious) behavior shared by all applications in A.
Specifically, in this case each trace, generated by a different
application, contains different behaviors that do not determine
any constraints in the mined process. Only the common parts,
i.e. those generated by the malware portion of the application,
determine a set of constraints that can be considered a almost
unique fingerprint of the malware.



Fig. 3. The malware detection process.

B. Distance among DSEFs

To discriminate if an application a is infected with a
malware M we need to compare the MP-Declare model of
the application a obtained for an activating event with the one
of the malware M for the same event.

To accomplish this we need to define a distance between
MP-Declare process definitions.

Referring to the definitions 2 and 3, we can define the
distance σ(MPDi,MPDj) between two MP-Declare models
MPDi and MPDj as follows:

σ(MPDi,MPDj) =

∑k
h=1 σ(Cih, Cjh)

|Ei|+ |Ej |+
∑k

h=1 σ(Cih, Cjh)

where:
• Cih = (T, Pih) and Cjh = (T, Pjh) are the k constraints

with the same template present in both models and
σ(Cih, Cjh) is the tree edit distance among the expression
trees of their predicates (Pih and Pjh);

• Ei and Ej are the sets of constraints present, respectively,
only in model MPDi and in model MPDj ;

Specifically, the tree edit distance among the expression
trees Pih and Pjh has been evaluated using the approach
proposed in [16] and normalized using the approach suggested
in [25].

The defined distance represents a measure of similarity
among two MP-Declare models: distance of models having
same constraints with the same correlation conditions is equal
to zero, viceversa models with different constraints or with
completely different correlation conditions have a maximum
distance equals to one.

Finally, the distance between two DSEFs, namely A and B,
can be defined as:

σ(DSEFA, DSEFB) =

∑n
i=1 σ(MPDAi

,MPDBi
)

n

that is the average of the distances between the models A and
B of all the activating events. The distance among the DSEF
of an application can be effectively used to perform malware
detection by evaluating its similarity with the DSEFs of known
malware families.

C. Malware detection

The proposed malware detection approach is summarized
in Figure 3. For each checked Android application (APK)
and for all the considered malware families, the corresponding

DSEF is built. Successively, the matrix of the DSEF distances
between the application and the malware families is computed.
The matrix is the input of a malware classifier allowing to
indicate if the APK is infected with one or more considered
malware family. Several classification approaches have been
implemented and tested using Scikit-learn and Keras toolkits1.

The DSEF construction for both applications and malwares
requires a generation process involving the usage an android
device (a real device or a sandbox) used to generate syscall
traces from one or more application packages (APKs).

Further details about the process for computing the DSEF
of an APK are provided in Figure 4 and discussed in the
remainder of the section. The process starts with the traces
extraction step allowing to capture, for the considered APK,
the syscalls traces generated in response to the AE reported in
Table II. The traces are collected in a textual format. In this
step, an Android device emulator2 is used. Here the considered
APK is installed and started. During the APK running, a
system event is sent to the emulator and the subsequent system
calls are captured (when the APK state became stable the
syscall capture is stopped). Each event is sent more than
once in order to have a huge number of syscall traces to
generalize the APK behavior. After a syscall trace is captured,
the emulator is stopped and its disk is cleaned. However, the
APK is reinstalled to each run in order to always have the
same initial conditions. All the AE of Table II are scanned
using ad hoc build shell scripts [4].

In the CSV Generation, the syscall traces collected in
the previous step are converted into the CSV log format as
requested by the MP-Declare Miner [13]. The conversion
step is necessary because the syscall traces are in a textual
format and need to be adequately processed. The conversion
step retains only useful information including the attributes
of the entire session (e.g., the UUID for the application run
and the application id) and to each system call occurrence
(e.g., the executed system call, its timestamp, its ordered list
of arguments, and the process id requesting the system call).
This information is used to generate the event payload for each
log event and is needed during the following process mining
step to generate correlation conditions for the subsequently
mined MP-declare process. For data correlation, we adopted
a reference-based correlation approach as implemented in [4]
that defines a correlation function exploiting the process id

1See https://scikit-learn.org/ and https://keras.io for reference.
2https://developer.android.com/studio/run/emulator.html



Fig. 4. The process for computing the DSEF of an application.

and the event timestamps attributes.
The DSEF computation step starts from the CSV logs

generated in the previous step and builds the DSEF of the
APK. The CSV logs are firstly filtered (e.g., basing on the
Gaussian distribution of the sizes of the logs, the logs that
are outside the 80th percentiles are removed since they have
a very high probability to be not correct - for example when
generated by an application that is not working as intended and
hence is terminated by the OS - or not relevant). The relevant
logs are then mined using the MP-Declare tool obtaining an
MP-Declare model that represents the DSEF of the APK. Each
model can be seen as a set of MP-Declare constraints allowing
to describe the relationships among system call holding in all
the traces, for a specific activating event among those reported
in Table II. The set of mined models (one for each activating
event) represents the DSEF of the application.

The process described in Figure 4 is similar to the one exe-
cuted to compute the DSEF of a malware family. Concerning
trace extraction process, in this case the initial dataset is com-
posed of different applications (several APKs) all infected with
the same malware of the family under study. The results are
a set of syscall traces generated from malicious applications
belonging to a specific malware family and stimulated with
one of the considered system events. Since the applications
are different, the only common part of syscall traces is the
one generated by the shared malicious portion. For this reason,
the mined model contains a set of constraints that characterize
the behavior of the shared malware part while discards the
ones that are specific to the various applications (since they
are different from trace to trace). The obtained set of mined
models (one for each activating event) represents the DSEF of
the considered malware family.

D. Building of the neural network malware classifier

The malware classifier, used to check if an application
is infected or not, is trained on the distances between the

application DSEF and the malware models DSEFs.
The classification process starts by taking as a input the

DSEFs of Malware families, the DSEFs of training applica-
tions and the DSEFs of the testing applications. Respectively,
the DSEFs of training applications and the DSEFs of the
testing applications are computed. The training evaluates the
dissimilarity matrices between DSEFs of training applications
and malware family and is repeated (increasing the number of
training applications) until the best values for precision and
recall are obtained (using the set of testing applications for
assessment).

V. THE EXPERIMENT

A. Dataset description

An overview of the dataset used to evaluate the proposed
approach is shown in Table I. The dataset includes a selected
set of malware and trusted applications. The malware applica-
tions are downloaded from known datasets like Genoma [28],
Drebin [3] and ADM [22]. The trusted applications, instead,
are selected among the most downloaded applications of the
Google Play store. Both trusted and malware applications
have different application domains (i.e., education, traveling,
internet navigation, lifestyle, news, productivity, business,
communication, health) and the considered malware applica-
tions differ also for their malicious behavior. The label of
trusted or malware is assigned by each considered applications
directly from the dataset producers. Moreover, we performed
an additional analysis to confirm that the application labels are
correctly assigned. For the trusted applications the labels are
checked by using the Google Bouncer [15]. For the malware
applications, the check is performed using 57 anti-malware
(running on VirusTotal service3). In this check, we filtered out
from the infected applications list all the applications that were

3https://www.virustotal.com/gui/home/upload



Fig. 5. Distance Distributions among DSEF of considered families

labeled as not infected by at least five antimalware over the
57 ones.

B. Experiment setting

The experiment consists to evaluate the performances of two
different classifiers. The first single multinomial classifier is
trained by using samples of all the eight families of Table I. It
allows classifying each analyzed application as infected or not
infected. Moreover, the infected applications are classified as
belonging to one of the eight considered families. The second
classifier is a binary classifier able to identify for each malware
family of Table I if the analyzed application is infected with
that malware. The classification has been always performed
using different algorithms: DNN (Deep Neural Network) 5L,
CNN (Computational Neural Network) 5L, and CNN 6L.
Classifiers were trained using the distance matrices among
DSEFs of applications and reference malware families.

The classifiers’ performances are evaluated using the Pre-
cision and Recall. Precision is the fraction of the correctly
classified samples to all samples while Recall is the fraction of
correctly classified instances to all correct samples. Finally, we
also evaluate the ROC Area, that is the probability of correctly
classifying a random pair of occurrences as infected or not.

VI. DISCUSSION OF RESULTS

Table IV shows the obtained results. The second column
reports the name of the adopted algorithms (they are colored
in black), while the columns 3-5 report, respectively, the values
of Precision, Recall and ROC AUC. Concerning the results,
the first row (All families) shows the results obtained by the
multinomial classifier while the rows from two (AirPush) to
nine (Youmi) report the performance of the binary classifier
for each considered malware family.

We can observe that for all the considered algorithms, we
obtained very good and similar results. The best performances

Family Algorithm Precision Recall ROC AUC
DSEF-CNN 6L 0.965 0.958 0.95

All families DSEF-DNN 5L 0.953 0.978 0.94
DSEF-CNN 5L 0.962 0.958 0.95
SEF-DNN 5L 0.922 0.931 0.91
DSEF-CNN 6L 0.935 0.932 0.92

AirPush DSEF-DNN 5L 0.933 0.934 0.93
DSEF-CNN 5L 0.942 0.942 0.93
SEF-DNN 5L 0.906 0.921 0.90
DSEF-CNN 6L 0.975 0.979 0.97

DroidKungFu DSEF-DNN 5L 0.969 0.978 0.96
DSEF-CNN 5L 0.972 0.981 0.97
SEF-DNN 5L 0.956 0.951 0.95
DSEF-CNN 6L 0.925 0.918 0.92

Dowgin DSEF-DNN 5L 0.913 0.908 0.90
DSEF-CNN 5L 0.922 0.928 0.92
SEF-DNN 5L 0.866 0.821 0.85
DSEF-CNN 6L 0.961 0.953 0.95

Fusob DSEF-DNN 5L 0.953 0.955 0.93
DSEF-CNN 5L 0.958 0.952 0.94
SEF-DNN 5L 0.906 0.921 0.91
DSEF-CNN 6L 0.945 0.965 0.94

FakeInst DSEF-DNN 5L 0.933 0.953 0.94
DSEF-CNN 5L 0.942 0.964 0.95
SEF-DNN 5L 0.926 0.931 0.90
DSEF-CNN 6L 0.920 0.912 0.91

Mecor DSEF-DNN 5L 0.921 0.932 0.91
DSEF-CNN 5L 0.922 0.938 0.92
SEF-DNN 5L 0.896 0.881 0.89
DSEF-CNN 6L 0.945 0.952 0.94

Kuguo DSEF-DNN 5L 0.923 0.918 0.92
DSEF-CNN 5L 0.932 0.937 0.93
SEF-DNN 5L 0.796 0.801 0.80
DSEF-CNN 6L 0.915 0.941 0.92

Youmi DSEF-DNN 5L 0.903 0.908 0.90
DSEF-CNN 5L 0.922 0.934 0.93
SEF-DNN 5L 0.862 0.913 0.89

TABLE IV
PERFORMANCE OF THE CLASSIFIERS.

are obtained using the CNN 6L algorithm on the DroidKungFu
family (precision is equal to 0.975 and recall is equal to 0.979).
All the classifiers and all the algorithms always give recall
greater than 0.908. Moreover, for each considered malware
family, Figure 5 shows a statistical comparison among dis-
tances of the trusted and infected applications. The boxplots
reveal that the distances are always well separated and can be
effectively used as a discriminant signature of the malicious
behavior.

Finally, we perform a comparison between the results ob-
tained using a similar approach proposed in [4]. As explained
in Section III, the proposed approach updates the concept of
SEF [4] in DSEF. To evaluate the different performances of
these two approaches, we replicate the experiments described
in the previous subsection using the SEF distance as defined
in [4] in the place of DSEF distance. Table IV reports
(they are highlighted in blue) for each considered family the
performance of classification performing by using a DNN 5L
algorithm on classifiers trained using SEF distances. The table
shows that in all the cases (with the exception of the DSEF-
DNN 5L in Youmi family), the proposed approach ensures
better performances.

VII. THREATS TO VALIDITY

Looking to the construct validity, a possible threat is that
the process of syscall traces extraction is affected by some



possible imprecisions. However, the script for trace capturing
allows recording the trace when an AE and stops when the
application reaches a new stable state. This automatic cut
may cause the collection of incomplete traces. To mitigate
this problem, we perform a trace validation step consisting to
filter the incomplete and incorrect traces.

Another construct validity threat is the assumption that the
applications labeled as ”malicious” are really infected. To
mitigate this risk each application is checked on a consistent
number of antimalware and the applications labeled as ”in-
fected” are the only ones that are recognized by a number of
antimalware greater than five.

Finally, looking to the external validity threats and the
generalization of the obtained results, we have to highlight
that our experimentation requires an extension. To this aim,
new malware families and applications will be evaluated in
the future.

VIII. CONCLUSIONS AND FUTURE WORK

We presented an extension of an approach, introduced in
[4], consisting in using a process mining technique for the
dynamic analysis of the system call traces gathered from an
application. In detail, the approach identifies similarities and
recurring patterns in the system call traces generated by a
set of malicious mobile applications. The extension proposed
in this work allows analyzing system call traces within their
data attributes building a behavioral model called DSEF. We
evaluated the approach on a data set of more than 1200
infected applications from eight malware families. Overall,
the validation shows the effectiveness of the approach in
malware detection and the best performance of DSEF models
to represent malware behaviors in comparison to the SEF
models (proposed in [4]). A possible avenue for future work is
to carry out further experimentations with a greater number of
malware families and applications to determine if the obtained
results could be generalized.
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