
O(m logm) instance selection
algorithms—RR-DROPs

1st Marek Orliński
Department of Informatics

Nicolaus Copernicus University
Toruń, Poland

morlinski@is.umk.pl

2nd Norbert Jankowski
Department of Informatics

Nicolaus Copernicus University
Toruń, Poland

norbert@is.umk.pl

Abstract—This paper is focused on an instance selection algo-
rithm for classification purposes. We propose a new fast version
of DROP algorithms with complexity reduced to O(m logm),
while the original complexity was O(m3). The new RR-DROP
algorithms use random region hashing forests and jungle, and
several other data structures to keep the computational complex-
ity as low as possible. The proposed algorithms can be used for
huge datasets, with classification remaining unchanged, as proven
by a statistical analysis on several datasets.

Index Terms—instance selection, prototype-based classifiers,
instance-based learning, k nearest neighbors

I. INTRODUCTION

In this article we tackle instance selection applied to
supervised classification problems. Instance selection means
that we are looking for a subset S ⊆ D of learning data
(D = {(xi, yi) : i = 1, . . . ,m,xi ∈ Rn, yi ∈ R}). The
subset S should be enough to build a trustworthy classifier
upon, for example, a k nearest neighbor (kNN) classifier
[1]. The number of different instance selection algorithms is
quite large—we would like to recommend articles and books
devoted to prototype selection algorithms [2]–[5]. However,
most of these algorithms are fit only for small or medium-sized
datasets because of their high complexity [2], [3] (greater or
equal to the square of the number of instances).

In general, the tactic of several of the algorithms is to
remove inconsistent instances (filtering methods) or instances
that are somewhat redundant (prototype selection). An instance
being redundant typically means that eliminating it from the
training set does not decrease classification accuracy. Existing
reviews show that while all reviewed algorithms serve the
same purpose, they differ strongly in their details and con-
sequentially have very different speeds and accuracies. In [2]
it was clearly stated that most accurate algorithms are mostly
slow.

For kNN and some other learning machines, all training
examples must be stored as part of the model. From that
perspective, a significant reduction of the dataset is very
attractive. Instance selection algorithms can be also used to
construct classification rules basing on the selected prototypes
[6]. Such rules are then easy to understand, not being based
on intervals (as in decision trees), but on distances from
selected prototypes. In such a case it is convenient for instance

selection to have as high a reduction rate as possible (e.g. as
the algorithm Explore from [7]). However, high reduction is
not obligatory. Another good application of instance selection
is to use prototypes in the construction of neural networks
(RBFN [8] or ELM [9], [10]) [11]. In such a case, the selected
prototypes are successfully used as positions of the gaussian
neurons. The advantage of such a solution is the automatic
selection of the size of the network, since it is determined by
the number of prototypes.

The goal of this paper is to construct algorithms of complex-
ity O(m logm) on the basis of DROP algorithms proposed
in [12]. In the next section we describe the original DROP
algorithms. In the following, we present a special variant of
hashing trees which is a basis for proposed fast version of
the DROP algorithms. Construction of the new algorithms
also requires utilization several supporting data structures.
Moreover hashing has to be used for a few of subgoals.
The last section compares learning time and complexity of
the original and new DROP algorithms. We also analyze the
average accuracies of the new and original algorithms on a
wide range of small and medium-sized datasets. Finnaly we
move our focus to instance selection for large datasets. The
new algorithms are compared with other algorithms LSH-IS
of complexity O(m logm) [13] and PSC [14] in terms of
accuracy, reduction and speed.

II. DROP ALGORITHMS

Not all instance selection algorithms can be easily sped
up. Upon an analysis of DROP algorithms proposed in [12],
we have found a way to speed them up by applying local-
ity sensitive hashing methods and additional data structures,
which leads to more sophisticated procedures, compared to
the original DROPs. The main concept of DROP2 is to delete
all vectors whose removal does not change the classification
results on the remainder of the set D.

This idea produces the definition of the set A, which
simplifies the testing of the changes in classification to the
elements of A, in contrast to testing on the whole of D:

A(x, k) = {x′ : x ∈ Nk(x′)}, (1)

where Nk(x′) is the set of the k nearest neighbors of x′.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

The ‘OrderByNearestEnemy’ below defines an ascending
order of instances (in D) with respect to the distance to their
nearest enemy (the nearest instance from an opposite class).
The scheme of the algorithm is presented in Alg. 1.

Algorithm 1: Drop2(D)
Data: D = [instance1, . . . , instancem]
Result: vectors selected from D

1 begin
2 order = Reverse(OrderByNearestEnemy(D))
3 do
4 changes = false
5 for i ∈ order do
6 if not Di.pruned and Improvement(i) ≥ 0

then
7 Prune(i)
8 change = true

9 while changes;
10 return all Di, where not Di.pruned

The ‘Improvement(i)’ means the difference in the numbers
of valid classifications without and with i-th instance. If the
i-th instance is redundant it becomes pruned by ‘Prune(i)’.
To check the improvement the algorithm only has to visit
the elements of A, but if pruning is necessary, each A(xj , k)
where j ∈ A(xi, k) must be updated and this forces several
searches through all elements of D. Those elements will be
optimized in the next section, but the current cost is O(m2).

Authors of DROP2 proposed its modification, the DROP3,
which starts the procedure with a cleaning, see Alg. 2. Clean-
ing is an elimination of inconsistent instances. An inconsistent
instance is one whose neighbors are mostly from a different
class. The test of inconsistency is performed for each instance.

Algorithm 2: Drop3(D)
Data: D = [instance1, . . . , instancem]
Result: vectors selected from D

1 begin
2 order = Shuffle([1, . . . ,m])
3 for i ∈ order do
4 if Di.label 6= Classify(i) then
5 Prune(i)

6 Drop2(D)
7 return Di, where not Di.pruned

Wilson et. al. also proposed the DROP4 which differs
from the DROP3 in the strength of cleaning. In DROP4 an
inconsistent instance is one whose neighbors are mostly from
a different class, but additionally, the deletion of this instance
would not decrease classification accuracy. Please see the Alg.
3 for details.

Algorithm 3: Drop4(D)
Data: D = [instance1, . . . , instancem]
Result: vectors selected from D

1 begin
2 order = Shuffle([1, . . . ,m])
3 for i ∈ order do
4 if Di.label 6= Classify(i) then
5 if not Di.pruned and Improvement(i) ≥ 0

then
6 Prune(i)

7 Drop2(D)
8 return Di, where not Di.pruned

III. FAST DROP ALGORITHMS

To construct a faster version of the DROP algorithms, it
is necessary to use much more sophisticated data structures.
One of the main data structures is needed to facilitate fast
computation of nearest neighbors. In the past, several concepts
were introduced for calculating nearest neighbors like the r-
trees [15], the vantage-point trees [16] or kd-trees [17], but
those methods have (complexity) problems in multidimen-
sional spaces as it was discussed in [18]. Additionally, fast
search for nearest neighbors is not enough to construct fast
versions of the DROP algorithms. This is why we decided to
base on locality sensitive hashing (LSH) initially proposed in
[19] and the forests of LSH for a more accurate approximation.
LSH allows for computation of an approximation of nearest
neighbors in an estimated time of O(logm) in contrary to
O(m). The forests or trees will be aided by hash sets or binary
heaps to cope with multiple traversals through the trees.

In fact we used a modified version of LSH—the random
regions tree (RRT). Moreover we construct two types of
trees. One tree is a static tree which is not modified after
construction. Another one is ready to have instances removed
from, whilst maintaining all functionality. This is necessary to
prune instances from D as in the DROP algorithms.

The first version of random regions tree was presented in
[20] and now we made additional modifications, mostly to
facilitate work with huge datasets, especially with multiple
duplicates or with unordered attributes. Another reason for
modifications was to make additional savings on execution
time compared to our previous implementations—in the new
version hashes can be shared by some RRTs which enables
further optimizations.

LSH was proposed in [19]. The main idea of LSH is to
independently and uniformly draw random hyperplanes which
divide the space Rn into regions (bins) of similar objects.
The bins contain a set of points and they serve as a source of
potential neighbors of any point in the given bin. Sometimes a
point may be situated near a border of its bin—in such cases
not all of its actual nearest neighbors can be found in the given
bin.

A. Random regions tree

In our algorithm, we construct the LSH tree in a slightly
different way compared to [19]. First, we construct hashed
data by addition of a bit of noise to data and multiplication
with random hashes:

H = (D + ε)×R (2)

where ε is a bit of noise (εij = rand([−10−4, 10−4])∗σj), σj
is the standard deviation of j-th attribute. R is n × h matrix
of uniform random values in [−1, 1) and h = d(1.2 log(m)e
defines the maximal depth of the tree. The addition of noise
yields the elimination of hash multi-duplication (in case of
duplicated data instances).

Next, we start divisions into two subtrees with appropriate
subsets of vectors. The divisions at the same depth use the
same hashes (i.e. the same random directions), while the
partition procedures set individual shifts of the hyperplanes.
In every partition of a node, the division is shifted to keep a
balance not worse than β (each branch has a fraction of at
least β vectors in a node). Thanks to that the divisions are
effective—always divide items of a node in good proportion.

The balanced version of partitioning resembles a typical
partition3 operation. This strategy keeps the depth of the tree
small. The tree is quite strongly balanced and there are no
useless divisions, compared to [19]. Also, thanks to using the
same hashes at all nodes of a given level construction of data
multiplication by hashes is faster than in [20]. The split of
a new node is continued, if their corresponding number of
vectors is still too big compared to the desired number of
neighbor candidates. The meta-code of the algorithm starts
with the construction of random regions tree, Alg. 4.

The non-leaf nodes have their sub-nodes defined. All nodes
have a defined interval of data and in case of a leaf it is a
bin. Additionally, the pivot point is stored to define the final
shift of the random hyperplane. This information is necessary
to define a classification process that has to traverse the tree
from the root node to an appropriate bin and then select nearest
neighbors among the bin items.

Such more careful construction of the RRT is necessary
because the tree will be used many times after construction
in contrast to the quick sort algorithm where the sort finishes
after all partitions.

B. Forest of random regions trees and other ingredients of fast
DROP algorithms

Because the trees are constructed on the base of sharp
planes, it is highly recommended to use a forest of trees to
overcome sharp approximation. First it was introduced in [18]
and we also decide to use a forest in place of a single tree,
indeed we use typically 8 trees in the forest.

However to keep the computational complexity possibly
small, besides the trees in the forest we use additional data
structures: an array of trees, an array of heaps, an array of
hash sets, an array of sets of associate instances, and an array
of arrays (stores the nearest neighbors for each instance). The
heaps (one per instance) are used to accumulate the candidates

Algorithm 4: RRTree(H, left, right, bCount, depth)
Data: H hashed data Eq. 2
[left, right) interval of the current split
h is maximal depth of a tree Eq. 2
depth the depth of current tree node
ids an array of vector indices
β = .25 partition threshold of minimal balance
α = 1− (β + .5)/2 threshold: whether to continue
splitting
bCount minimal count of elements in a bin
Result: ids array of bins defined by nodes, initially:

[1, . . . ,m]
1 begin
2 div = partition(ids,H, left, right, β);
3 if depth+ 1 < h&&(div − left) ∗ α > bCount

then
4 node.left =

RRTree(H, left, div, bCount, depth+ 1)
5 else
6 node.left = newnode(left, div);

7 if depth+ 1 < h&&(right− div) ∗ α > bCount
then

8 node.right =
RRTree(H, div, right, depth+ 1, bCount)

9 else
10 node.right = newnode(div, right);

11 return node

found in trees while looking for neighbors. This serves as a
cache, making the number of calls to tree searches smaller. The
hash sets (one per instance) store the information on whether
an instance was previously added to given instances neighbors
heap from another tree. Those structures cooperate to keep the
complexity possibly small. The utilization of those structures
in most important parts of algorithms is presented below.

The initialization of both algorithms starts from building the
forest (initiating heaps, sets of associate neighbors and nearest
neighbors).

The construction of the forest was presented in Alg. 5. In
the first step it constructs the trees, then the heaps are filled
with neighbors candidates from leaves. Last part of the forest
construction builds structures storing the neighbors of each
instance and the associated instance sets (A).

The RefillHeap (Alg. 6) tries to find neighbors from ap-
propriate tree buckets (in each of the trees). Additionally it
optimizes the structure of a tree if necessary. The instances
from the trees are moved to the heap and an appropriate hash
set.

In DROP2-4 algorithms, the instances are being pruned
from time to time. Alg. 7 is responsible for pruning of a given
instance from the forest (from each of the trees). A pruned
instance is removed from the hash set of the instances added
to the heap. Additionally, a pruned instance is removed from

Algorithm 5: ForestBuild(D, treecount, k, C)
Data: D = [instance1, . . . , instancem]
treecount the number of trees in forest (default 8)
C used to control the number of neighbor candidates
bCount = C ∗ k/treecount minimal number of
elements in bin

1 begin
2 for i ∈ [1, . . . , treecount] do
3 Hi = (D + εi)×Ri;

trees[i] = RRTree(Hi, 1,m, bCount);
4 for i ∈ [1, . . . ,m] do
5 RefillHeap(i)

6 for i ∈ [1, . . . ,m] do
7 for j ∈ [k + 1, . . . , 1] do
8 neighbor = minheapi.Pop()
9 neighborsi[j] = neighbor

10 Dneighbor.A.Add(i)

Algorithm 6: RefillHeap(id)
Data: id - index of instance to refill for

1 begin
2 for tree ∈ forest do
3 for candidate ∈ tree.bucket[id] do
4 // bucket is moved up a tree if count in a

node is to small
5 // only not pruned are yielded from a bucket
6 if idx /∈ addedid then
7 minheapid.Push((candidate,

Distance(id, candidate)))
8 addedid.Add(candidate)

an appropriate array of neighbors and a new neighbor has to
be found, and the associated structures have to be adjusted
as well (see Alg. 8). Those procedures of operating on these
structures are similar to those employed by us in [20].

Tree pruning was presented in Algorithm 9. First, an
appropriate leaf node is selected, and then conditions are

Algorithm 7: Prune(i)
Data: id - index of instance to prune

1 begin
2 Did.pruned = True
3 for tree ∈ forest do
4 tree.Prune(id)

5 for a ∈ Did.A do
6 addeda.Remove(id)
7 ReplaceNeighbor(a, id)

Algorithm 8: ReplaceNeighbor
Data: id - index of instance to replace neighbor for
nid - index of instance to replace

1 begin
2 neighborsid.Remove(nid)
3 do
4 if minheapid.isSmall then
5 RefillHeap(id)

6 neighbor = minheapid.Pop()
7 if not Dneighbor.pruned then
8 neighborsid[0] = neighbor
9 Dneighbor.A.Add(id)

10 while Dneighbor.pruned;

Algorithm 9: TreePrune
Data: id - index of the instance to be pruned

1 begin
2 node = tree.leaves[id]
3 decrement by one counts in a tree from node up
4 while node.parent has two small children do
5 node=node.parent

6 if node has two small children then
7 rewrite children to node without gaps

8 if node has small density then
9 rewrite node without gaps

tested on the path from the selected node to the root in
order to optimize the tree structures if necessary (to keep
the complexity low). Both the path and the representation of
buckets can be compressed (the latter by removal of gaps in
the buckets).

The usage of the forest of random regions trees—the
nearest neighbors search, can be seen in Alg. 10. First, we
collect candidate instances from each tree and then the nearest
neighbors are selected among them. Because the number of
trees and bin size is O(1), the classification cost is O(logm)
(O(logm) is the expected length of the longest path from the
root node to a leaf).

Now, the computation of the badly-classified instance count,
or the calculation of the improvement used in DROP2-4
algorithms, based on the fast neighbors search, is much faster.

The DROP2 algorithm needs to start the main loop in
decreasing order of distances to the nearest enemy (opposite
class instance). Plain calculation of distance between given
instance and its nearest enemy is time consuming, but it is
presented in Alg. 11 that such distances can be calculated
quickly (O(m logm)). The algorithm constructs a jungle as a
set of forests: one forest to contain the instances of one class.
Then the nearest enemies for all instances are calculated in a
total time of O(m logm). The nearest enemy is the nearest
one of nearest neighbors from all classes except the class of

Algorithm 10: NearestNeighbors(x, trees, k, c)
Data: x define whose neighbors have to be found
tree[i], i = 1, . . . , t an array of random trees, tree[i]
consists of the root node and ids an array of vector
indices
k desired number of neighbors
Result: NN set of k nearest neighbors

1 begin
2 foreach Ti do
3 I = items of the bin nearest to x in tree tree[i]
4 N = N ∪ I
5 NN = find k nearest neighbors in N

Algorithm 11: OrderByNearestEnemy(p)
Data: D = [instance1, . . . , instancem]
Result: order of D by distance to nearest enemy

1 begin
2 jungle = LSHForest for each class
3 for i ∈ [1, . . . ,m] do
4 for forest ∈ jungle do
5 if forest.class 6= Di.label then
6 distances[i] = min(distances[i],

forest.kNN(i, 1))

7 return Ordering(distances)

the given instance. Finally, the estimated complexity DROP
algorithms is O(m logm) what can be seen in next section.

IV. EXPERIMENTAL ANALYSIS

We performed an analysis of several aspects of the new
algorithms: accuracy, complexity and stability of behavior
over different datasets from UCI Machine Learning Repository
[21]. In all tests, we used 10-fold stratified cross-validation and
all learning machines were learning on the same sets of data
partitions.

The first portion of tests compares the original DROP
algorithms with the new ones. This, however, enforces using
small and medium datasets in this comparison. Next, the
second portion of the test concentrates on the big datasets to
test the behavior of algorithms with O(m logm) complexity.

To visualize the performance of all algorithms we present
average accuracy for each benchmark dataset and for each
learning machine. Additionally, we present the average reduc-
tion of dataset size in separate tables. Ranks are calculated for
each machine for a given dataset D. The ranks are calculated
as follows: First, for a given benchmark dataset D the averaged
accuracies of all learning machines are sorted in descending
order. The machine with the highest average accuracy is
ranked 1. Then, the following machines in the accuracy order
whose accuracies are not statistically different from the result
of the first machine are ranked 1, until a machine with a
statistically different result is encountered. That machine starts

the next rank group (2, 3, and so on), and an analogous
process is repeated on the remaining (yet unranked) machines.
Notice that each cell of the main part of Table I is in a
form: acc+ std(rank), where acc is average accuracy (for a
given data set and given learning machine), std is its standard
deviation and rank is the rank described just above. If a given
cell of the table is in bold it means that this result is the best
for given data set or not worse than the best one (rank 1 =
winners).

It can be seen that the results of fast DROP are even slightly
better than of the original algorithms. The mean rank for fast
DROP3 is 1.4 and for original DROP3 1.56 (smaller=better),
similarly the numbers of wins are 31 (fast) and 24 (original),
and the fast DROP3 has 6 unique wins as well. Similar
behavior can be observed on DROP4. The mean rank of the
fast version is 1.42 and it is 1.53 for the original. The number
of wins was greater for the fast version: 32 compared to
29. Concluding, the fast versions perform slightly better than
original versions.

Figure 1 presents an analysis of learning time used by the
fast and original DROP algorithms. We have tested the time for
different numbers of instances of the MNIST8M dataset [22].
On the OX axis is the number of instances. The OY axis of the
upper plot is time and on the lower plot OY is the proportion
of time to the number of instances. Both plots clearly show
that the LSH-based versions are much faster. Additionally,
the bottom plot shows that the estimated complexity of LSH
versions is O(m logm), because in the case of fast DROP
algorithms the plot lines are straight (plot of the log1 with
a log-scaled OX is a straight line). Meanwhile, looking at
the upper plot, we see the computation times for the original
DROP grow very quickly.

The next part of the analysis concentrates on selected big
datasets. In three tables we present the analysis of the accuracy
Table II, of the redundancy Table III and a combination
of accuracy and redundancy Table IV. The performance of
LSH-DROP3 and LSH-DROP4 is compared to a few other
algorithms: LSH-IS-S, LSH-IS-F [13], PSC [14] and LSH-
kNN (this is a kNN which uses our RRT forest for neighbor
searching). The highest performance is achieved for LSH-
kNN: mean rank is 1.3 and the number of wins is 7. Among
the instance selection algorithms, the smallest mean rank of
2.2 was achieved by LSH-DROP3. The greatest number of
wins (3) among instance selections was achieved by LSH-IS-
S. PSC had the worst performance, with a mean rank of 4.1.

But it is interesting to compare the above results with
reduction strength. The reduction is not very large in the
case of LSH-IS algorithms. We have tested several different
configurations of LSH-IS and only the best ones are pre-
sented. We have selected 4 best configurations to show how
it changes, depending on parametrization. For the meaning
of LSH-IS parameters we strongly recommend to read [13].
The difference is average reduction between LSH-IS and LSH-
DROP algorithms is vast: the reduction of LSH-IS varies from

1log because we divide time by the number of instances.

TABLE I
ACCURACIES COMPARISON FOR DROP AND LSH-DROP ALGORITHMS.

Drop3 LSHDrop3 Drop4 LSHDrop4

arrhythmia 52.9±21(1) 53.5±20(1) 54.3±23(1) 51.7±22(1)
autos 56.7±11(2) 57.6±11(2) 64.9±12(1) 65.4±12(1)
balance-scale 80.4±4.1(2) 82.7±3.7(1) 79.8±4.3(3) 81±4.6(2)
blood-transfusion 75.1±4.6(2) 76.1±4.7(1) 71.3±5.8(3) 72±5.9(3)
breast-cancer-
diagnostic

93.6±2.8(2) 94.4±3(1) 93.4±3.2(2) 94.1±2.6(1)

breast-cancer-
original

95.2±2.5(1) 95.2±2.2(1) 94.7±2.8(2) 95.1±2.2(1)

breast-cancer-
prognostic

72.4±9.9(2) 74.4±8.2(1) 67±10(4) 68.9±9.4(3)

breast-tissue 63.2±14(2) 64.2±13(1) 65.7±14(1) 64.3±14(1)
car-evaluation 79.5±2.8(2) 86.2±2.7(1) 79.8±2.8(2) 86.5±2.5(1)
cardiotocography-1 70.9±2.9(1) 70.7±3.1(1) 71.1±3(1) 71±3.2(1)
cardiotocography-2 87.8±1.8(2) 88.3±1.8(1) 87.3±2(3) 88±2.3(1)
chess-rook-vs-pawn 90.5±1.6(2) 89.6±1.7(3) 91±1.6(1) 90±1.8(3)
cmc 45.2±3.4(1) 45.1±3.9(1) 43±3.9(2) 42.9±3.9(2)
congressional-
voting

91.1±5.5(1) 89.3±6.2(2) 89.3±7.3(2) 89.1±6.8(2)

connectionist-
bench-sonar

78.7±8.9(2) 78.4±9(2) 80.5±7.9(1) 80.5±7.6(1)

connectionist-
bench-vowel

94.4±3.7(3) 93.8±4(3) 96±3(1) 95.3±3.5(2)

cylinder-bands 60.9±8.3(2) 61.5±8.4(2) 62.7±8.6(1) 62.8±9(1)
dermatology 87.3±4.3(1) 87.6±5.6(1) 87.6±4.7(1) 87.7±5.1(1)
ecoli 84.8±5.2(1) 84.4±5.3(1) 84.1±4.8(1) 83.8±5.7(1)
glass 68.3±8.4(1) 67.4±8.6(1) 67.2±9.4(1) 67.9±9.7(1)
habermans-survival 69.5±7(1) 70.1±7.1(1) 67.8±6.9(2) 68.7±6.5(1)
hepatitis 81.4±13(1) 82.3±12(1) 82.4±13(1) 83.4±12(1)
ionosphere 84±5(1) 84.1±4.9(1) 80.5±7.4(2) 83.2±5.5(1)
iris 93.9±6.2(1) 94.1±6.1(1) 93.9±6.2(1) 94.3±5.6(1)
libras-movement 76.6±6.2(3) 76.4±6.1(3) 81.5±6.4(1) 80.2±5.3(2)
liver-disorders 59±8(1) 58.8±8.3(1) 60.3±8.2(1) 59.7±7.9(1)
lymph 75.5±11(2) 76.1±12(1) 77.2±11(1) 75.6±12(1)
monks-problems-1 94.7±2.9(1) 94.8±3(1) 94.6±2.9(1) 95.1±3.1(1)
monks-problems-2 58.7±5(1) 55.7±6.2(3) 57.4±6.2(2) 53.7±6.6(4)
monks-problems-3 93.4±3.5(1) 93.5±3.5(1) 93.4±3.5(1) 93.5±3.6(1)
parkinsons 86.9±7.6(1) 86±7.7(2) 87.8±7.4(1) 88.2±7.3(1)
pima-indians-
diabetes

72.1±5.5(1) 72±5.1(1) 70.4±5(2) 70.5±5.2(2)

sonar 78.7±8.9(2) 78.9±8.4(2) 80.5±7.9(1) 79.8±8(1)
spambase 88±1.8(2) 88.4±1.7(1) 87.6±1.6(3) 87.8±1.6(2)
spect-heart 75.5±8.4(2) 75.2±8.8(2) 77.6±7.7(1) 77.6±7.5(1)
spectf-heart 69.5±7.8(1) 69.7±8.4(1) 68.2±8.9(1) 69.2±8.6(1)
statlog-australian-
credit

77.5±4.9(1) 77.7±4.9(1) 77.7±5.7(1) 77.3±5.1(1)

statlog-german-
credit

68.1±4(2) 69.4±4.1(1) 66.2±4.4(3) 66.4±5.2(3)

statlog-heart 76.4±7.6(1) 76.1±7.3(1) 75.8±7.5(1) 76.1±7.5(1)
statlog-vehicle 68.2±4.8(1) 67.8±4(1) 67.4±4.4(1) 67.4±4.5(1)
teaching-assistant 40.9±11(3) 42.8±12(2) 45.5±13(1) 45.8±12(1)
thyroid-disease 90.7±2.3(3) 93.6±0.79(1) 90.7±1.5(3) 91.8±0.95(2)
vote 90.8±6.4(1) 91.2±6(1) 90.9±5.5(1) 90±6.5(1)
wine 93.4±5.9(1) 92.1±6.1(2) 93.5±5.7(1) 92.6±6.1(1)
zoo 45±13(2) 44.4±12(2) 49.3±13(1) 48.3±12(1)

Mean 76.4±6.5 76.7±6.5 76.6±6.7 76.8±6.6
Mean Rank 1.56±0.099 1.4±0.099 1.53±0.12 1.42±0.11
Wins[unique] 24[2] 31[6] 29[3] 32[0]

0.45 to 0.52 and the reduction of LSH-DROP varies from
0.82 to 0.84—this is a huge difference. Of course it was
possible to configure LSH-IS algorithms for higher reduction,
but it would be at the expense of accuracy. In cases where
LSH-IS have better accuracies than LSH-DROP algorithms,
at the same time, LSH-IS has a far lower reduction than LSH-
DROP—compare results for penbased and poker datasets.

102 103 104 105 106 107

0

0.5

1

1.5

2

·104

instances

tim
e

DROP3
DROP4

LSH-DROP3
LSH-DROP4

102 103 104 105 106 107

0

10

20

30

40

50

instances

tim
e/

#
in

st
an

ce
s

DROP3
DROP4

LSH-DROP3
LSH-DROP4

Fig. 1. O(m logm) time consumption of LSH versions of DROP algorithms.

Similar behavior was observed in the case of small and middle
datasets and we did not find a parametrization that kept both
high accuracy and a good level of reduction for LSH-IS.

The average reduction of the PSC algorithm was a little
smaller than those of LSH-DROP algorithms.

Table IV presents a combination of accuracy and reduction.
The sequences of accuracies and reductions (for each dataset
and for each learning machine separately) were multiplied and
analyzed in the same way as accuracy and reduction. This
test favors those machines which have high accuracy whilst
maintaining a high reduction at the same time. In this case,
LSH-DROP3 is a very clear winner. LSH-DROP3 has the
number of wins equal to 9 (of 10) and the mean rank was
1.1, far superior to the rest of the algorithms.

In the last analysis we focus on complexity and reduction for
various numbers of instances (spanning from 125 to 4M). The
test was performed on the MNIST8M dataset [22]. Results
are shown on Figure 2 The first sub-figure presents time
relations of algorithms on a log-log scale. It is clear that the
slowest is the PSC algorithm, except for very small datasets.
In the middle are two LSH-DROP algorithms and the fastest
are the LSH-IS-S and the LSH-IS-F algorithms. The LSH-
IS algorithm is up to 15 times faster than DROP algorithms.
In the middle sub-figure on the OY axis is the proportion of
time to the number of instances. With this figure, it is easy to
see whether the complexity of the algorithm is O(m logm),

TABLE II
ANALYSIS OF ACCURACIES FOR BIG DATASETS.

LSH-IS-S 4OR LSH-IS-F 4OR LSH-IS-S 6OR LSH-IS-F 5OR LSH-Drop3 LSH-Drop4 PSC LSHkNN

Penbased 99.34±0.24(1) 99.34±0.22(1) 99.37±0.19(1) 99.35±0.23(1) 98.44±0.41(2) 98.55±0.39(2) 95.85±0.61(3) 99.41±0.24(1)
Nursery 83.22±1.4(2) 82.96±1.1(2) 83.6±1.4(2) 82.61±1.3(2) 77.99±1.3(3) 78.03±1.1(3) 86.62±2.5(1) 82.71±0.75(2)
Magic 71.18±1.1(5) 72.65±1.4(4) 72.42±1.2(4) 73.35±1.2(3) 81.31±1.1(1) 80.28±1.1(2) 69.18±1(6) 82±0.34(1)
Letter 95.15±0.33(2) 94.16±0.44(4) 95.51±0.43(1) 94.44±0.37(3) 91.99±0.62(5) 91.9±0.52(5) 90.52±0.85(6) 95.25±0.48(2)
KR vs. K 51.32±0.55(5) 52.28±0.95(4) 51.33±0.6(5) 52.37±0.97(4) 54.65±0.49(2) 54.29±0.63(3) 55.19±0.86(1) 55.4±1(1)
Census 91.99±0.12(5) 92.33±0.13(3) 92.07±0.094(4) 92.36±0.13(3) 93.61±0.091(1) 92.42±0.19(3) 69.68±0.69(6) 93±0.14(2)
KDDCup99 99.88±0.015(4) 99.89±0.016(3) 99.89±0.02(3) 99.9±0.021(3) 99.91±0.017(2) 99.92±0.012(2) 98.82±0.94(5) 99.96±0.0077(1)
CovType 82.21±0.58(6) 82.7±0.59(5) 84.21±0.38(3) 83.75±0.43(4) 90.93±0.092(2) 90.9±0.13(2) 82.28±0.23(5) 93.8±0.1(1)
KDDCup99.1M 99.75±0.068(4) 99.77±0.058(4) 99.8±0.062(3) 99.81±0.051(3) 99.96±0.015(2) 99.95±0.014(2) 98.62±0.42(5) 99.98±0.0032(1)
Poker 59.36±0.33(1) 59.32±0.2(1) 59.28±0.17(1) 59.3±0.36(1) 56.53±0.23(2) 55.72±0.21(3) 55.3±1.5(3) 59.21±0.3(1)

Mean 83.34±0.47 83.54±0.51 83.75±0.45 83.72±0.51 84.53±0.44 84.2±0.43 80.21±0.96 86.07±0.34
Mean Rank 3.5±0.61 3.1±0.46 2.7±0.47 2.7±0.35 2.2±0.38 2.7±0.32 4.1±0.66 1.3±0.16
Wins[unique] 2[0] 2[0] 3[1] 2[0] 2[1] 0[0] 2[1] 7[3]

TABLE III
ANALYSIS OF REDUCTION FOR BIG DATASETS.

LSH-IS-S 4OR LSH-IS-F 4OR LSH-IS-S 6OR LSH-IS-F 5OR LSH-Drop3 LSH-Drop4 PSC

Penbased 0.19±0.02(4) 0.2±0.02(3) 0.13±0.009(6) 0.16±0.01(5) 0.94±0.002(2) 0.93±0.001(2) 0.94±0.002(1)
Nursery 0±0(3) 0±0(3) 0±0(3) 0±0(3) 0.8±0.008(2) 0.79±0.006(2) 0.9±0.006(1)
Magic 0.82±0.01(3) 0.84±0.01(2) 0.79±0.01(4) 0.82±0.01(3) 0.88±0.003(1) 0.84±0.004(2) 0.75±0.003(5)
Letter 0.36±0.02(6) 0.49±0.02(4) 0.27±0.02(7) 0.44±0.02(5) 0.81±0.003(1) 0.81±0.003(2) 0.75±0.006(3)
KR vs. K 0.27±0.04(4) 0.47±0.03(2) 0.18±0.03(5) 0.41±0.02(3) 0.5±0.002(1) 0.49±0.002(2) 0.4±0.007(3)
Census 0.32±0.003(5) 0.32±0.003(4) 0.31±0.002(7) 0.32±0.003(6) 0.96±0.0007(1) 0.94±0.0004(2) 0.93±0.0002(3)
KDDCup99 0.98±0.001(4) 0.98±0.001(3) 0.97±0.001(6) 0.97±0.0008(5) 0.99±0.0002(2) 0.99±0.0003(2) 1±0.0001(1)
CovType 0.88±0.009(2) 0.9±0.008(1) 0.85±0.008(4) 0.88±0.007(3) 0.84±0.001(5) 0.82±0.001(6) 0.78±0.001(7)
KDDCup99.1M 0.98±0.0009(4) 0.98±0.0009(3) 0.98±0.001(6) 0.98±0.0007(5) 1±0.0001(2) 1±0.0002(2) 1±0.0002(1)
Poker 0.002±2E-05(4) 0.002±2E-05(4) 0.002±2E-05(4) 0.002±2E-05(4) 0.65±0.0007(1) 0.59±0.001(2) 0.46±0.004(3)

Mean 0.48±0.01 0.52±0.01 0.45±0.008 0.5±0.008 0.84±0.002 0.82±0.002 0.79±0.003
Mean Rank 3.9±0.4 2.9±0.3 5.2±0.5 4.2±0.4 1.8±0.4 2.4±0.4 2.8±0.7
Wins[unique] 0[0] 1[1] 0[0] 0[0] 5[5] 0[0] 4[4]

TABLE IV
ANALYSIS OF REDUCTION*ACCURACIES FOR BIG DATASETS.

LSH-IS-S 4OR LSH-IS-F 4OR LSH-IS-S 6OR LSH-IS-F 5OR LSH-Drop3 LSH-Drop4 PSC

Penbased 0.19±0.02(4) 0.2±0.02(3) 0.13±0.009(6) 0.16±0.01(5) 0.92±0.004(1) 0.92±0.004(1) 0.91±0.006(2)
Nursery 0±0(3) 0±0(3) 0±0(3) 0±0(3) 0.62±0.01(2) 0.62±0.008(2) 0.78±0.02(1)
Magic 0.59±0.008(5) 0.61±0.01(3) 0.57±0.008(6) 0.6±0.007(4) 0.72±0.01(1) 0.67±0.009(2) 0.52±0.009(7)
Letter 0.34±0.02(6) 0.46±0.02(4) 0.26±0.02(7) 0.42±0.02(5) 0.75±0.006(1) 0.74±0.004(2) 0.68±0.006(3)
KR vs. K 0.14±0.02(5) 0.24±0.02(3) 0.091±0.01(6) 0.21±0.01(4) 0.27±0.003(1) 0.26±0.003(2) 0.22±0.003(4)
Census 0.3±0.003(5) 0.3±0.003(4) 0.29±0.002(7) 0.29±0.003(6) 0.9±0.001(1) 0.87±0.002(2) 0.65±0.006(3)
KDDCup99 0.97±0.001(3) 0.97±0.001(2) 0.97±0.001(5) 0.97±0.0008(4) 0.99±0.0002(1) 0.99±0.0003(1) 0.99±0.009(1)
CovType 0.73±0.002(5) 0.74±0.002(3) 0.72±0.004(6) 0.74±0.003(4) 0.76±0.002(1) 0.75±0.001(2) 0.64±0.002(7)
KDDCup99.1M 0.98±0.001(3) 0.98±0.001(3) 0.98±0.001(5) 0.98±0.0008(4) 0.99±0.0002(1) 0.99±0.0002(1) 0.98±0.004(2)
Poker 0.0012±1E-05(4) 0.0012±1E-05(4) 0.0012±1E-05(4) 0.0012±2E-05(4) 0.37±0.001(1) 0.33±0.001(2) 0.26±0.008(3)

Mean 0.42±0.007 0.45±0.008 0.4±0.006 0.44±0.006 0.73±0.004 0.72±0.003 0.66±0.008
Mean Rank 4.3±0.4 3.2±0.2 5.5±0.4 4.3±0.3 1.1±0.1 1.7±0.2 3.3±0.7
Wins[unique] 0[0] 0[0] 0[0] 0[0] 9[6] 3[0] 2[1]

because in the case of O(m logm) complexity the plot lines
should be straight (should not grow faster than linearly).
Looking at the plots, it is clear that the LSH-DROP3-4 and
LSH-IS-F has O(m logm) complexity.

The third sub-figure of Figure 2 clearly shows a strange
behavior of the LSH-IS algorithm in terms of reduction. This
means that the configuration of LSH-IS should be tuned for
every number of instances to keep an adequate reduction rate.
The reductions of LSH-DROP3-4 are much greater.

V. SUMMARY

The new proposed versions of DROP algorithms are much
faster than the existing ones. The complexity of the fast version
is O(m logm), while the complexity of the original DROP
algorithm is O(m3) (estimated complexity is over O(n2)).
The new, fast versions of DROP algorithms proved themselves,
offering a good balance between high accuracy and a strong
reduction of dataset volume. Experimental results clearly prove
their attractiveness.

102 103 104 105 106 107

10−2

10−1

100

101

102

103

104

instances

tim
e

LSH-DROP3
LSH-DROP4

LSH-IS-S-4OR
LSH-IS-F-4OR
LSH-IS-S-6OR
LSH-IS-F-5OR

PSC

102 103 104 105 106 107

0

2

4

instances

tim
e/

#
in

st
an

ce
s

LSH-DROP3
LSH-DROP4

LSH-IS-S-4OR
LSH-IS-F-4OR
LSH-IS-S-6OR
LSH-IS-F-5OR

PSC

102 103 104 105 106 107

0

0.2

0.4

0.6

0.8

1

instances

re
du

ct
io

n

LSH-DROP3
LSH-DROP4

LSH-IS-S-4OR
LSH-IS-F-4OR
LSH-IS-S-6OR
LSH-IS-F-5OR

PSC

Fig. 2. Analysis of complexity and reduction.

The LSH-DROP algorithms are much more stable than
LSH-IS algorithms, however LSH-DROP algorithms are
slower. There is no tricky selection of configuration parameters
in the case of LSH-DROP. The LSH-DROP algorithms have a
good reduction factor while the accuracies remain very close
to the accuracies of kNN.

REFERENCES

[1] T. M. Cover and P. E. Hart, “Nearest neighbor pattern classification,”
Institute of Electrical and Electronics Engineers Transactions on Infor-
mation Theory, vol. 13, no. 1, pp. 21–27, Jan. 1967.

[2] S. Garcia, J. Derrac, J. Cano, and F. Herrera, “Prototype selection for
nearest neighbor classification: Taxonomy and empirical study,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 34,
no. 3, pp. 417–435, 2012.

[3] N. Jankowski and M. Grochowski, “Comparison of instances selection
algorithms: Ii. Algorithms survey,” in Artificial Intelligence and Soft
Computing, ser. Lecture Notes in Computer Science, L. Rutkowski, J. H.
Siekmann, R. Tadeusiewicz, and L. A. Zadeh, Eds. Poland, Zakopane:
Springer-Verlag, 2004, vol. 3070, pp. 598–603. [Online]. Available:
http://www.is.umk.pl/ norbert/publications/04-zakopane-NJMG.pdf

[4] M. Blachnik, Metody bazujące na prototypach w zastosowaniu do
eksploracji danych. Silesian Technical University, 2019.

[5] M. Kordos, “Optimization of evolutionary instance selection,” in Arti-
ficial Intelligence and Soft Computing, ser. Lecture Notes in Artificial
Intelligence. Springer-Verlag, 2017, vol. 10245, pp. 359–369.

[6] M. Blachnik and W. Duch, “LVQ algorithm with instance weighting for
generation of prototype-based rules,” Neural Networks, vol. 24, no. 8,
pp. 824–830, 2011.

[7] R. M. Cameron-Jones, “Instance selection by encoding length heuristic
with random mutation hill climbing,” in Proceedings of the Eighth
Australian Joint Conference on Artificial Intelligence, Australia, 1995,
pp. 99–106.

[8] D. S. Broomhead and D. Lowe, “Multivariable functional interpolation
and adaptive networks,” Complex Systems, vol. 2, no. 3, pp. 321–355,
1988.

[9] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: a
new learning scheme of feedforward neural networks,” in International
Joint Conference on Neural Networks. Budapest, Hungary: IEEE Press,
2004, pp. 985–990.

[10] ——, “Extreme learning machine: theory and applications,” Neurocom-
puting, vol. 70, no. 1–3, pp. 489–501, 2006.

[11] N. Jankowski, “Comparison of prototype selection algorithms
used in construction of neural networks learned by SVD,”
International Journal of Applied Mathematics and Computer
Science, vol. 28, no. 4, pp. 719–733, 2018. [Online]. Available:
https://www.amcs.uz.zgora.pl/?action=paper&paper=1464

[12] D. R. Wilson and T. R. Martinez, “Reduction techniques for instance-
based learning algorithms,” Machine Learning, vol. 38, no. 3, pp. 257–
286, 2000.

[13] Álvar Arnaiz-González, J.-F. Díez-Pastor, J. J. Rodríguez, and C. García-
Osorio, “Instance selection of linear complexity for big data,”
Knowledge-Based Systems, vol. 107, pp. 83–95, 2016.

[14] J. A. Olvera-López, J. A. Carrasco-Ochoa, and J. F. Martínez-Trinidad,
“A new fast prototype selection method based on clustering,” Pattern
Analysis and Applications, vol. 13, no. 2, pp. 131–141, 2009.

[15] Y. Manolopoulos, A. Nanopoulos, A. N. Papadopoulos, and Y. Theodor-
idis, R-Trees: Theory and Applications. Springer, 2006.

[16] P. Yianilos, “Data structures and algorithms for nearest neighbor search
in general metric spaces,” in In Proceedings of the ACM-SIAM Sympo-
sium on Discrete Algorithms, 1993, pp. 311–321.

[17] R. Brown, “Building a balanced k-d tree in O(kn logn) time,” Journal
of Computer Graphics Techniques, vol. 4, no. 1, pp. 50–68, 2015.

[18] M. Bawa, T. Condie, and P. Ganesan, “LSH forest: self-tuning indexes
for similarity search,” in Proceedings of the 14th international confer-
ence on World Wide Web, Chiba, Japan, 2005, pp. 651–660.

[19] S. Har-Peled, P. Indyk, and R. Motwani, “Approximate nearest neighbor:
Towards removing the curse of dimensionality,” Theory of computing,
vol. 8, pp. 321–350, 2012.

[20] N. Jankowski and M. Orliński, “Fast algorithm for prototypes
selection—trust-margin prototypes,” in Artificial Intelligence and Soft
Computing, ser. Lecture Notes in Computer Science, L. Rutkowski,
R. Scherer, M. Korytkowski, W. Pedrycz, R. Tadeusiewicz, and J. Zu-
rada, Eds., vol. 11508. Springer, 2019, pp. 583–594.

[21] C. J. Merz and P. M. Murphy, “UCI repository of machine learning
databases,” 1998, http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[22] G. Loosli, S. Canu, and L. Bottou, “Training invariant support vector
machines using selective sampling,” in Large Scale Kernel Machines,
L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, Eds. Cambridge,
MA.: MIT Press, 2007, pp. 301–320.

