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Abstract—We introduce and compare two prediction systems
on the task of replicating human decisions regarding patient
admittance in a typical American emergency department. The
data-set used describes the patient trajectories in a 65,000 patient
per-year emergency department in the United States. Among
the descriptive attributes those of prime importance are the
severity of the patient’s condition and the time they waited to
be admitted from the waiting room to the department proper. A
recurrent neural network (RNN) is developed to learn the task
of selecting the next patient from the waiting-room/queue to be
admitted for treatment which is then compared to a heuristic-
based selection algorithm currently used in industry for hospital
simulation applications. We demonstrate achievable accuracies
of 75.29% and 84.97% using the RNN, depending on the type of
the data preprocessing used. These accuracies are only potentially
and theoretically achievable, respectively. The former’s validity
hinges on whether certain “anomalous cases” are outliers or not,
the second is achieved with the assumed existence of a method
for labeling these same cases as anomalous as part of the RNN’s
input, which may or may not be achievable, pending further
consultation with industry experts. Our conclusions hinge on
whether or not such cases are outliers though in either case
a more sophisticated data-set is desired. If they are not outliers
then a more detailed data-set is likely necessary to apply machine
learning, or at least our methods, meaningfully to this prediction
problem for use in simulated, or real world, hospitals.

Index Terms—Emergency Departments, RNN, Flow Optimiza-
tion, Hospitals

I. INTRODUCTION AND BACKGROUND

Emergency departments (EDs) are expensive and compli-
cated systems critical to the mission of the hospitals they
are embedded in. So much so that any process optimizations
made can be pivotal to their successful operation at, or
beyond, their previous levels. Before enforcing any changes
in their processes or flows hospitals evaluate the effect of
the considered modification using simulators [19]–[23]. The
purpose of modeling and constructing an autonomous patient
admittance predictor in this work is thus primarily to improve
the quality of these simulations. Obviously the more realistic

the components that make up the simulation the better the
simulation represents the real world situation and the better
will be the decisions made on the basis of that simulation.
Our focus in this work is the component which selects the
next patient to be admitted from the emergency department’s
waiting room. While the general rule of “most sever case first”
is trivially simulated there are a number of deviations from
such a pattern witnessed in normal hospital operation. These
include “fast-track-beds” [10] and those caused by constraints
in resource availability which, among others, can cause a naive
algorithm to model real hospitals poorly. By examining this
algorithm and constructing a new prediction system we hope to
compare their usefulness for these simulations which are used
to answer questions impacting operational efficiency, cost,
and patient well-being. Potentially, a successful autonomous
admittance system could be used beyond simulation to auto-
mate the patient admittance task, this could save money, free
staff for other duties, and enforce consistency and fairness in
admissions.

A. Emergency Department Flow

“An emergency department is a medical treatment facility
specializing in emergency medicine and the acute care of
patients who present without prior appointment; either by their
own means or by that of an ambulance” [12].
A patient entering the ED will pass through 4 stages as
described below and illustrated in Figure 1.

Stage 1, Triage: Triage assigns an emergency severity index
(ESI) to each patient. This value ranges from 1-5 and indicates
the severity of their condition with 1 being the most severe.
Table I presents the meaning of each level.

Stage 2, Waiting to be treated: After being assigned an ESI
the patient is admitted into the waiting room. Mathematically
the waiting-room acts as a queue out of which patients are
admitted into the ED proper. Ideally this queue is a priority
queue where a patient’s priority is computed from their ESI
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Fig. 1. Flowchart of ED visit

TABLE I
ESI LEVELS DESCRIPTIONS [25]

Level Description
ESI 1 Patient requires immediate intervention to avoid death.
ESI 2 Emergency, patient is in a high risk condition, vitals are

dangerously abnormal.
ESI 3 Urgent, multiple medical personnel are required to stabilize

the patient but vitals are not dangerously abnormal.
ESI 4 Semi-Urgent, one staff member is required to stabilize the

patient.
ESI 5 Non-Urgent, The patient is already in a stable condition.

and time already spent waiting. For patients of identical
ESI and wait time the queue resolves these ties randomly.
Deviations may occur from expected queue behavior due to
human decision on the part of the patients (they might leave),
staff, or on the basis of resource (medical personnel, beds,
equipment, etc...) availability (a patient might not be admitted,
even if they would be otherwise, due to the unavailability
of a necessary resource, like a doctor specialized in their
condition).

Stage 3, Admittance and treatment: Once a patient is admit-
ted they are treated as necessary including them being assigned
a bed, administration/prescription of drugs, and the performing
of any needed medical imaging.

Stage 4, Departure: Once patients are able to return home
they are discharged along with medical advice, equipment,
and prescriptions to any needed medications. An alternative
exit to the process comes when triaged patients leave the ED
without being seen, a desertion most often due to wait times
the patient deems unacceptable. A third transition to departure
occurs when a fully admitted patient leaves before treatment is
complete. These last two methods of departure are anomalous
and unwanted events that, when they do occur, occur most
often with low severity patients. Higher severity patients are
understandably less likely/able to desert.

The contents of the rest of this paper are as follows:
Section II talks about this area’s related work, section III about
our dataset and related methodology, section IV contains the
results of our tests and a discussion of them, and, lastly, section
V contains our future work.

II. RELATED WORK

Many papers [1]–[5] suggest that an ED can be modeled
using discrete event simulation techniques. Discrete event
simulation systems operate as a sequence of events across time
where each event occurs at a particular time and on occurring
the system marks the change.

Most of the work we found in this area was conducted in
the simulation of an entire hospital, or one of its departments,
to analyze flaws and anomalies such as long wait times and the
associated patient desertion. [6] presents a hospital simulation
tool MedModel which allows its users, hospital directors, to
examine the complex operational and planning issues that
emerge from the interaction of all the hospital’s subsystems.
[6], [7] present more focused simulation models, rare in that
most simulations simulate entire hospitals with less detail
rather than a detailed view of one department. The simulation
is of all events (an event being any time a patient has
something done to them in the system: they are admitted, they
are treated, they are discharged, etc...) in the ED of a specific
hospital named “The Cooper Health System” with the goal of
reducing of the total length of the stay of each patient in the
ED. [8] performed a functional analysis of a simulated hospital
and discovered that most of a patient’s time in the institution
is spent waiting and proposed an operational procedure to
reduce the waiting times in all scenarios. [9] presents a method
of improving the patient flow in emergency departments by
employing a dynamic priority queue, circumventing problems
with FIFO, LIFO, and static priority queues, and suggesting
the use of a dynamic priority “M/M/c” queue instead. [10]
discussed the practice of emergency departments introducing
fast-tracks-beds to improve patient safety and reduce waiting
times. [11] surveyed queuing theory applications on health
care systems and reported that congestion in the waiting-
rooms happens when there is “poor quality of service” in
the hospital. In [14] we presented a potential solution to the
desertion phenomenon ( itself called: “left without being seen
by doctor” in industry) that becomes increasingly common
when a patient waits a long time before being admitted. When
a patient leaves like this it is a loss for the both parties: the
patient isn’t treated and the hospital losses potential revenue.
Each patient’s “leaving-probability” is calculated according to
their waiting times and ESI level, similar to how their priority



in the queue is calculated. When the leaving-probability of
the patient reaches around 80%, their priority in the queue
increases and they are informed.

III. DATASET AND METHODOLOGY

The dataset used in this work contained around 65,000
records, though of them only 39,130 records presented data
describing queues containing more than one patient (those
describing single person queues were removed since a queue
that only ever consists of one person, where that person is then
called in, does not require prediction) and was collected at a
private US hospital over a period of one year. The attributes
of a patient in it are patient-ID, age, sex, ESI level, arrival
time of the patient, length of time between arrival in waiting
room (AIWR) and admittance to ED proper, length of time
between AIWR and termination of treatment, length of time
between AIWR and checkout from hospital, departure time of
the patient, and total length of the stay of the patient in the
hospital.

This data-set allows us to reconstruct a waiting-room queue
as it evolves across a given day and we can use the time a
patient waited before being admitted to the ED proper, and
their ESI level, to calculate a derived value, the probability a
patient will be called at the end of their xth waited minute. This
metric, a patient’s “calling-probability”, is produced from the
data-set using a random forest as a function approximator. The
function in question can be seen in Equation 1 but only works
for combinations of ESI and waiting time extant in the data-
set. Given each patient’s calling-probability we can compare
those patients which have the highest calling-probability in any
given queue with the patients that were, in fact, admitted out of
that queue, and see how closely they map to one another. This
work concerns the use of the above described data-set to train
and/or test systems which predict which patient is called into
the ED from the waiting-room at any given calling occurrence.

P (CL,W ) =
cL,W

(cL,W + ncL,W )
(1)

P(CL,W) (the calling probability) for a patient of ESI level
L, with a wait time of W, equals cL,W (a count of observed
patients of that ESI level and w-time that were called in
on their W th waited minute) divided by the total number
of patients witnessed in the dataset with those same charac-
teristics whether called in (cL,W) or not (ncL,W) on the W th

minute. Calling-probabilities are specific to ESI level and are
calculated as though a patient’s likelihood of being admitted is
independent of the other patients in the queue. Figure 3 shows
the plotted calling-probabilities against time after AIWR for
ESI levels 1 (crosses) and 5 (circles).

Because we needed a continuous function and our formula
only works for combinations of ESI and wait-time extant in
our dataset we needed to use a function approximator and
selected a random forest as described below. The approximated
function was then used to calculate calling-probabilities. The
curves in Figure 3 do look similar to log curves suggesting the
application of logistic regression when trying to model them,

however this is more suitable for classification problems than
regression problems [15].

For the uninitiated: “A random forest is a meta estimator
that fits a number of classifying decision trees on various
sub-samples of the data-set and uses averaging across each
to improve predictive accuracy and control over-fitting.” [13]
To build our random forest we used the sklearn library version
3.2.4.3.2 and achieved an accuracy, averaged over all ESI
levels, of 96%. During training we used a test-train-split of
80% train and 20% test, used a max depth of 3, and set the
number of estimators (Number of trees in the forest) to 10.
The models were then exported and were the functions used
to calculate the calling-probabilities for the data-set as it was
transformed.

A. Conversion of the data-set to the required form

In reference to Figure 2 the transformation of the data-set
from its original form to one acceptable for training the RNN
was straightforward.

a) This is the original patient centered form of the data.
Each record describes a patient’s visit to the ED with their ID,
a time-stamp of when they arrived in the waiting-room, their
ESI level, etc...

b) From a. the queues are reconstructed and in the queue
reconstruction form each record documents an instance of a
patient in the waiting-room/queue being called and admitted
into the ED proper. The values of how long a patient waited in
the waiting-room, and what their ESI level was, are combined
in form c via the function approximated by our random forest.
It should be noted that the first attribute indicates the time
since the “start-of-day” that has elapsed when a patient was
called from the queue. Thus, if the start-of-day is 8:00am and
a patient is called out of the queue at 9:02am, the entry for
this attribute would be 62 minutes.

c) The calling-probability form of the data introduces the
calling-probabilities which are ultimately used to judge and/or
calculate the patient admission predictions that the prediction
systems we tested make.

d) We drop attributes which are extraneous to the neural
network and then expand the data in e., achieving the final
form.

e) The neural-network form of the data is that which our
neural net accepts as input. Each record is one labeled input
that the neural net can be trained or tested with. Since our
neural net required fixed length inputs the variable nature of
the size of the queue is expressed in occupation of a queue
with an upper limit of n patients where n = 49. Each non-
zero calling-probability in the array represents one patient in
the queue while absences in queues below 49 patients are
indicated as 0. The label for the input (one input is one queue)
is not a patient ID but instead a calling probability indicating
that the selection, by a prediction system, of any patient with
that calling probability would be a “correct” prediction.



Fig. 2. Conversion of original data-set to records of queues

Fig. 3. Calling-probabilities against time for ESI’s 1 5.

B. Implementation

The near “pick-most-severe” algorithm: This algorithm,
drawn from industry used simulations, nearly implements the
obvious heuristic of picking the patient with the lowest ESI
first but mildly modifies it with wait time considerations. In-
creasingly large weights, scaling up as ESI falls, are multiplied
by each patient’s wait time to produce a score and the patient
with the highest score gets selected. The weights on the lowest
ESI levels are so large as to dwarf the effect of even the longest
reasonable waiting times for higher ESI levels.

The recurrent neural network: Our RNN was trained on
the transformed version of the data-set described earlier and
was implemented using the Keras 2.3.0 library [17]. The
training had a train-validation-test split of 64% training, 16%
validation, and 20% testing and was trained for 100 epochs

with a batch size of 100. The loss function was “means squared
error” and the optimiser was the popular adam optimiser [18],
The architecture consisted of 4 computation layers, the first
being a “long short-term memory” (LSTM) layer with the
rest being densely connected layers. A 25% dropout was used
between layers one and two and layers two and three. The
activation function used was the hyperbolic tangent function
(tanh) because of the nature of our input. In order to retain our
input’s expected dimensions we almost always had to pad them
with 0s (padding was needed when there were fewer than 49
people in the queue) and we needed these null value’s effects
to be propagated forward. Tanh, unlike sigmoid or softmax,
allows 0 as a neural value. Our layer dimensions, starting from
input and ending in output, are, in order: 49, 130, 65, 32, 16,
1, as seen in Figure 4. While doing so did not meaningfully
changing the accuracy achieved we did achieve a 50% speedup
in training using a CuDNNLSTM layer, a CUDA implemented
version of an LSTM layer able to be run using a GPU [24].

IV. RESULTS AND DISCUSSION

The tests performed to examine the success of each predic-
tion system are straightforward. For each queue, at each step
of it’s evolution, each system’s prediction of which patient is
admitted (predicted patient) is compared to which patient was
actually admitted (actual patient), as seen in the data, which
is considered our “expected/accurate” choice. The industry
algorithm achieved a baseline accuracy of 44.04%, meaning it
replicated 44.04% of the choices a human made. In several
cases the calling probabilities of the actual and predicted
patients were rather close and if we broaden the notion of
accuracy for “agreement” between actual and predicted patient
we can see that accuracy, naturally, improves.



Fig. 4. Neural Network Architecture(Generated by Keras)

TABLE II
ACCURACY MEASUREMENTS WITH ALGORITHM

Diff in calling-probability
of actual and predicted
patients deemed ”accu-
rate”

Accuracy of the algo-
rithm’s predictions per
level of acceptable error

== 0.0 ∼ 40%
≤=0.1 ∼ 49%
≤=0.2 ∼ 58%
≤=0.3 ∼ 65%
≤=0.5 ∼ 80%

Table II shows the accuracy archived by the algorithm as
the allowed difference in calling probability between the actual
and predicted patient is increased. The allowed difference
is the number of percentage points the actual and predicted
patients’ calling probabilities are allowed to differ by and still
have the prediction count as accurate. In the first row, with
the intuitive level of no allowed difference, the algorithm is
only accurate if it selects the actual patient or one with an
identical calling-probability. An accuracy of 80% is achievable
but only at the cost of widening the notion of accuracy by
an unacceptable 50 percentage points. All such results are
achieved on the raw data-set, which is, of course, formed for
neural input but has none of the so called “anomalous cases”
removed.

The neural net, which is trained on this same data-set,
and variants thereof ( which will be explained), performs, with
a return to a strict definition of an accurate choice, at a level of
44.15% accuracy (averaged across the results of a 5-fold cross
validation), which is hardly an improvement on the industry
algorithm. This suggested to us, at the point when we got that
result, that the algorithm’s poor performance might not be due
to its simplicity.

What we mean by anomalous cases needs to be explained
before the rest of our results are presented. What we call an
anomalous case is any admittance witnessed in the data-set
where there is at least a 50 percentage point difference between
the calling probability of the actually admitted patient and the

patient predicted to be admitted by the industry algorithm. The
fundamental identity of these anomalous cases is unknown
to us as the data-set does not characterize them enough to
describe them meaningfully. We do not know how many
varieties there are, what conditions in the hospital produce
them, and indeed they are known to us in only a mathematical
sense, and an assumed one at that, constructed to investigate
our models’ largest sources of error. We suspect these cases,
based on conversation with an industry expert, to be made up
of fast-track-bed cases or those admission anomalies caused by
the availability of medical staff or other resources optimized
for treating a patient causing that patient to be admitted earlier
or later than was predictable. A variant of the data-set which
removes these anomalous cases allows the RNN to perform
at an accuracy of 75.29%, demonstrating a significant amount
of the network’s error came from them but that a significant
amount more remains. The thus removed cases amount to
20.5% of the data-set and cannot, we originally supposed, be
dismissed as outliers, at least en masse, though an industry
expert assured us that they can be considered as such. The
industry algorithm achieved an accuracy on this reduced data-
set of 47.01% demonstrating that it is indeed sub-optimal, at
least when tested with this data-set, even in the absence of
obviously tough to predict outcomes.

Comparing these two results we can tentatively advance
the RNN as a superior prediction system, not that it is
surprising that the more expressive neural network is able to
outperform a heuristic. If we assume all anomalous cases have
an explanation (one was a fast-track-bed case, another was
a burn case and the staff specializing in burns had nothing
else to do just then so the patient was admitted very early,
etc...) which could somehow be made present/indicated in the
data a predicting system receives as input then we can assume
that a more sophisticated data-set with these signals would
allow the NN to perform better on the whole data-set than the
industry algorithm simply by perceiving and computing on
these additional characteristics. Lacking knowledge of what
exactly these anomalous cases were we augmented our data
by simply adding a binary flag to each input indicating whether
it was or was not input for an anomalous case. This boosted
the RNN’s accuracy to 84.97% which is interesting in that
such a performance boost was achieved without actually being
able to characterize any anomalous case but by its presence.
This suggests to us that perhaps even something as simple
as one new input flag, if producible as part of a patient’s
triage, perhaps by some kind of system, or personnel, aware
of resource availability issues at the time of their admittance,
might be enough to let a NN achieve usefulness in simulation,
and perhaps outside of it. Unfortunately it was beyond the
scope of this work to attempt to interrogate the NN to learn
how it was using this additional information.

Since our only way of detecting anomalous cases is an
after-the-fact (anomalous cases are only known after a choice
has been made by the industry algorithm and which can be
compared to a reality which seems anomalous) significant
discrepancy between the algorithmically and actually selected



patients we cannot, at this time, produce a system that per-
forms on real world data at more than an accuracy of 44.15%.
However if, as we were told, the anomalous cases do indeed
represent outliers, we can report a system which performs at
the much more useful 75.29%; much depends on whether the
anomalous cases can indeed be considered outliers. Pursuing a
more expressive data-set, and reevaluating our methods using
it, is part of our future work.

TABLE III
ACCURACY AND ERROR METRICS FOR THE RNN

Data Category R2 RMSE MSE MAE
Raw dataset 44.15% 0.231094 0.053404 0.162643
Anomalous cases
removed

75.29% 0.122312 0.014960 0.081476

Anomalous cases
flagged

84.97% 0.106931 0.011434 0.058311

Table III presents the performance of the neural network in the
form of the averaged r2 (accuracy) scores, mean square errors,
root mean square errors, and mean absolute errors. Given the
failure to perform well on the raw data-set these results are
presented not as a useful measure of what can be practically
achieved on real world data but to demonstrate the superior
performance of the RNN when compared to the industry
algorithm, especially if the anomalous cases are indeed to be
disregarded. The last data-set, again, flags anomalous cases
and returns them to the data-set. The reader should consider
the results on the last data-set only theoretically achievable
with a data-set more descriptive of the patients and the cir-
cumstances within the hospital, including a focus on available
resources. Figure 5 shows the drop in loss as the training
progressed for each data-set variant. What are we to make

Fig. 5. Root mean squared error per data-set variant across epochs

of these results? Clearly the naive algorithm insufficiently
models the real world data (though this does not mean it’s
guiding rule is itself flawed, we do not comment on the relative
superiority of its rule or whatever rules the real world data may
be the result of). The RNN performs well enough to be a step
up as a part of a simulator but only if the problematically

uncharacterized anomalous cases are eliminated, which may
or may not be unrealistic. Though the confidential nature
of healthcare data may be an impediment to such work we
feel that it would be possible to achieve greater accuracy if
more information about what we generically call “anomalous”
cases were known, and not in the purely mathematical way
we detect them now. Further, there is a wide gulf between a
difference of 50 percentage points (the threshold between the
calling probabilities of predicted and actual patient we take
to be indicative of an anomalous case) and a difference of 0.
Characterising that gap, especially when the difference rises
beyond +- 10 percentage points, is likely necessary to improve
accuracy further, likely in the form of more detailed data. We
hope to continue our work on this data-set’s more detailed
decedents.

That the RNN performs as well as it does (a 2x boost to
accuracy) when the anomalous cases are flagged is intriguing
and suggests there is some rule yet to be recognized by us
which could be of use even in the presence of the barest
indication of a patient destined to be admitted anomalously.

V. FUTURE WORK

Our current plan is to consult subject matter experts, first to
attempt to characterize the anomalous cases and then to see if
we can be given an even mildly augmented data-set marking
them (assuming one is producible). Another possible step
forward is to make a patient’s calling-probability calculated
in a way so that it is considered dependent on the other
occupants of the waiting room at that time. Outside of ED
queue work we can construct further components to be added
to the simulations used in research. One such project concerns
the prediction of rates of patient arrival to the ED based on
the current weather, the season of the year, and any recent
public holidays. This work could facilitate better scheduling
of medical staff and resources to cope with rises and falls in
demand.
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