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Abstract—Neural networks are increasingly being moved to
edge computing devices and smart sensors, to reduce latency
and save bandwidth. Neural network compression such as quan-
tization is necessary to fit trained neural networks into these
resource constrained devices. At the same time, their use in
safety-critical applications raises the need to verify properties
of neural networks. Adversarial perturbations have potential
to be used as an attack mechanism on neural networks, lead-
ing to “obviously wrong” misclassification. SMT solvers have
been proposed to formally prove robustness guarantees against
such adversarial perturbations. We investigate how well these
robustness guarantees are preserved when the precision of a
neural network is quantized. We also evaluate how effectively
adversarial attacks transfer to quantized neural networks. Our
results show that quantized neural networks are generally robust
relative to their full precision counterpart (98.6%–99.7%), and
the transfer of adversarial attacks decreases to as low as
52.05% when the subtlety of perturbation increases. These results
show that quantization introduces resilience against transfer of
adversarial attacks whilst causing negligible loss of robustness.

Index Terms—neural network, verification, adversarial attack

I. INTRODUCTION

Deep neural networks are widely used in everyday appli-
cations, from healthcare [24] and finance [9] to self driving
vehicles [23] and aircraft collision avoidance systems [17].
They are capable of classifying data into a finite set of classes
to a high degree of accuracy, by training on a set of inputs and
corresponding classes. However, even high accuracy on a given
data set does not guarantee the network’s robustness against
adversarial attacks [35]. Adversarial attacks are given by small
modifications to the input of a neural network which can
cause the network to misclassify. Figure 1 gives an example
of a benign and an adversarial input image for a given neural
network. As use of deep learning is growing in safety critical
scenarios, it becomes crucial to be able to verify that a network
will behave as expected.

Many techniques exist to generate adversarial attacks. They
follow several ideas: efficiently search the input space for ad-
versarial examples using optimization techniques [26], exploit
sensitive features of a specific input and modify these to search
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Fig. 1. Example of an image from MNIST dataset [8] correctly classified
as a 4 by a neural network and the same image, slightly modified, which is
misclassified by the same network as a 6.

for nearby adversarial examples via the Fast Gradient Sign
Method (FGSM) [13], attacks through geometric transforma-
tions [10], and generative adversarial networks, where two
models are pitted against each other in order to learn the input
data generation distribution and generate adversarial examples
around inputs or from noise [12].

Defenses aim to strengthen a network’s resilience to ad-
versarial attacks and include adding adversarial examples to
the training dataset [35], transforming inputs, e.g. reducing
input dimensionality [14]. Some approaches (e.g. [15], [17],
[18], [32], [39]) formally verify a network’s robustness to
adversarial attacks, which involves giving proven guarantees
of correct classification modulo constrained inputs.

In this paper, we will be working with one such tool,
the Deep Learning Verifier (DLV) [15]. Unlike all other
papers on neural network verification, we are interested in
a different verification scenario, where a trained and verified
neural network is quantized in order to be efficiently deployed.

Our research questions are: do the robustness guarantees
transfer from full precision neural networks to their quan-
tization form? To what degree? And can quantization be
favourable for robustness? These research questions are mo-
tivated by (a) increasing demand for deploying deep learning
on special purpose hardware, and (b) increasing pressure to
guarantee that such applications are secure.

a) Deep Learning on Special Purpose Hardware: There
is a rising number of implementations of deep learning on
special purpose hardware AI accelerators (e.g. using FP-
GAs [37]), mobile phones [20], and special-purpose robotics
hardware. Due to hardware resource constraints, these proces-
sor architectures are often incapable of accommodating state-
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of-the-art, “full precision” deep neural networks, and hence
require compression techniques to produce faster and less
memory-intensive models, e.g. to speedup convolutional neural
networks on embedded GPUs [29]. There are two categories
of approximation algorithms for neural networks: quantization
and weight reduction. Quantization [16] reduces the precision
of weights and/or activations, reducing the memory size and
bandwidth requirements, which can increase the throughput
speed of the network. In some cases, precision is reduced to
binary values [7], with very little reduction in accuracy com-
pared to a full-precision model. Weight reducing algorithms
remove redundant parameters, reducing the number of weights
and activations in the network, and as with quantization, can
result in negligible accuracy loss [38]. Quantization can be
built into the training process e.g. using the Xilinx FINN
framework [37] for FPGAs, or performed after training a
network e.g. using Tensorflow LITE [1].

Little work has examined the effect that compressing a
neural network has on its robustness. Verification methods
for binarized neural networks have been proposed (e.g. [27].)
Due to network parameters having binary values, scalability
of techniques can be substantially increased [5]. Lin et al [21]
generate adversarial examples via FGSM [13]. They observe
that quantized networks misclassify examples generated within
a smaller radius from the original image. This differs from the
verification approach but raises the question of whether quan-
tized networks are less robust than full-precision networks. The
first aim of this paper is to systematically study this question.

b) Security Implications: The majority of adversarial
attacks on neural networks happen in a black-box manner, i.e.
without access to the network’s architecture or parameters.
This is possible because adversarial inputs tend to transfer
across networks trained for the same task. Two neural net-
works trained with different hyperparameters (i.e. different
numbers and sizes of hidden layers and different activation
functions) or trained on a different subset of the training
examples are sensitive to the same adversarial examples [35].
Universal adversarial attacks, i.e. small, image-agnostic per-
turbations which result in misclassification when applied to
different images, generalize across different neural networks
[25]. It has been shown that adversarial inputs span a contigu-
ous subspace, where the subspaces generated for two models
contain a significant overlap [36].

Quantization has been used successfully as a defense mech-
anism against adversarial attacks. This can be achieved by
compressing inputs to filter adversarial noise [28] or by
compressing network parameters during training resulting in
a more robust network [19], [30]. Poor transfer of adversarial
examples across networks with different levels of low-bitwidth
quantization has been observed [4].

The networks studied in these works are retrained during
quantization. In contrast, we are interested in the impact
on verifiable robustness when parameters of full-precision
networks are quantized but not retrained. Little is known about
how well adversarial attacks transfer from full precision to this
kind of quantized neural networks. This is relevant for black-

box attacks when attackers do not know whether the neural
network they attack is quantized. Providing the first insights
into this problem is the second main aim of this paper.

In order to study these research questions, we introduce the
notion of relative robustness. Intuitively, a quantized neural
network is robust relative to its full precision version if, when-
ever the full precision network is proven robust against adver-
sarial attacks, its quantized version remains robust against the
same attacks. In this paper, we use the DLV framework [15]
to verify robustness of full precision networks (Section III).
We say that a quantized neural network is robust relative to a
full precision network for a given input, if the quantized neural
network correctly classifies the perturbed inputs generated by
the DLV when verifying the full-precision network.

The key results of this paper are:

• Quantised networks are generally robust relative to their
full precision counterpart, e.g. for 98.63-99.69% of inputs
from the MNIST and CIFAR-10 datasets (Section IV-B).

• Notably, transfer of adversarial attacks to quantized net-
works is surprisingly low. It is also dependent on the
nature of the perturbation, e.g. as low as 52.05% transfer
for subtle adversarial perturbations and as high as 89.61%
for sharp perturbations on CIFAR-10 (Section IV-C).

II. BACKGROUND

A. Neural Networks and Quantized Neural Networks

Neural networks are machine learning systems capable of
learning to classify previously unseen inputs, typically after
training on a set of human-labeled inputs.

Definition II.1 (Neural Network). Let X ⊆ Rn for some n ∈
N and Y ⊂ N. A neural network N is a function N : X → Y
which transforms an input x ∈ X to a classification yx ∈ Y .

Let N(x) = Φi(Φi−1(. . .Φ1(x))), for some functions
Φ1, . . . ,Φi. We call 0, . . . , i layers of N , and Φ1, . . . ,Φi the
activation functions of N . The activation ai,x of a layer i
for an input x ∈ X is calculated by applying the activation
function Φi to the activation ai−1,x of the previous layer i− 1:

ai,x = Φi(Φi−1(...Φ1(x)))

Thanks to the abstract use of activation functions, the above
definition captures a broad range of architectures. In particular,
we assume that an activation function may subsume operations
with weight matrices. For example, to define a fully-connected
input layer, it suffices to say that Φ1 =

∑
(x × w0,1),

where w0,1 is the weight matrix connecting layers 0 and 1.
Similarly for convolutional layers, their shapes are determined
by the shapes and sizes of weight matrices associated with
the activation functions of those layers. Generally, we use
w0,1, . . . , wi−1,i to refer to weight matrices associated with
the activation functions of layers 1, . . . , i, respectively. We
use notation A and W to refer respectively to the sets of all
activations and all weights for a neural network N .



We say a neural network is a full-precision neural network
(FPNN) if its weights and activations are full precision 32-bit
floating point values.

Definition II.2 (Quantized Neural Network). Given an FPNN
N : X → Y with weights W and activations A, an n-bit
quantized neural network (QNN) NQ is a function NQ : X →
Y with n-bit precision weights WQ and activations AQ which
approximate W and A, respectively.

B. Adversarial Perturbations

Definition II.3 (Dataset). A dataset D ⊆ X is made up of
inputs x ∈ D each with a corresponding ground-truth label,
lx ∈ LD where LD ⊂ N. A neural network N trained on D
has input space X and output space Y = LD.

Perturbed inputs known as adversarial perturbations are
statistically likely to cause misclassifications across different
networks trained with different architectures and even trained
on different data sets. The formal definition is as follows:

Definition II.4 (Adversarial Perturbation). Let N be a neural
network trained on D, x ∈ X be an input to N and lx ∈ LD
be the ground-truth label for x. If the output classification
yx = N(x) is yx = lx, the input x has been correctly labeled
by N . An adversarial perturbation is a vector ε ∈ X which
can be used to generate a a perturbed input x′ = x+ ε.

If yx′ 6= lx′ , the adversarial perturbation is effective.
If yx′ = lx′ , the adversarial perturbation is ineffective.

C. Deep Learning Verifier (DLV) Tool

We define neural network robustness similarly to [15], [17],
[32], [39]. A neural network is verified as robust with respect
to an input image if it correctly classifies all images within a
small region around the image.

This work uses the Deep Learning Verifier (DLV) tool [15]
to verify that a neural network is robust. DLV generates a set of
perturbed images within a certain region around input images
in the colour space. This generated set effectively “covers” the
region. We use these generated sets to test the robustness of
quantized neural networks. The region is parameterized by a
radius and set of manipulations.

1) Manipulations: The notion of manipulations was intro-
duced in [15] in order to discretise the search space. Manipu-
lations can be defined to represent camera scratches, weather
or any application-specific modification to input images. In the
context of this work, a manipulation is a change to a single
pixel value, with manipulation step size |δ| equal to a value
between 0, no change, and 1. In the greyscale dataset MNIST,
+1 represents change from black to white and -1 represents
change from white to black. For CIFAR-10, the change is
made to one of 3 colour channels: +1 applied to the R channel
will turn a pixel red. The choice of channel is random.

With the same search radius but a smaller manipulation step,
more pixels may be modified, but the change to each pixel is
smaller. Table I provides examples of perturbed inputs gen-
erated for different values of search radius and manipulation
step size. In examples (d) and (g), many more pixels have

TABLE I
THE EFFECT OF MODIFYING SEARCH RADIUS AND MANIPULATION STEP

SIZE ON ADVERSARIAL IMAGES GENERATED BY DLV.

|δ| = ±0.25 |δ| = ±0.5 |δ| = ±1

r=10

(a) 4 misclassified (b) 1 misclassified (c) 2 misclassified
as 6 as 9 as 7

r=20

(d) 7 misclassified (e) 5 misclassified (f) 0 misclassified
as 2 as 6 as 7

r=40

(g) 7 misclassified (h) 6 misclassified (i) 9 misclassified
as 2 as 2 as 2

been modified than in (f) and (i) respectively, but the change
to each individual pixel is less sharp. Smaller manipulation
steps create a more subtle difference to pixels, making the
perturbed image less distinguishable from the original.

2) Search Radius: The radius r in the input space X is
defined as the Manhattan distance between two images. All
possible combinations of manipulations δ are applied to the
original image to exhaustively cover the region defined by
radius r. DLV does this by building a complete and covering
ladder, using an SMT solver. If the image corresponding
to every node on the ladder is classified correctly by the
network, it is certified as robust for that image, manipulation
step and search radius. If an image on the ladder results in
misclassification, it is an effective adversarial perturbation.
Existence of such an image shows that the neural network
is not robust (within the given parameters).

DLV is more likely to find effective adversarial perturba-
tions with a greater search radius, however the perturbed image
is more obviously altered from the original input image. As
can be seen from Table I, (a), (d) and (g) increasing radius
for a constant manipulation step size increases the number of
pixels that have been changed. Increasing manipulation step
size for a constant radius decreases the number of pixels that
have been changed, but increases the intensity of the change.

Definition II.5 (Neural Network Robustness). A network N
is robust for input image x ∈ D with network classification
yx ∈ Y , within radius r with respect to manipulations δ if
generating an exhaustive list of perturbations ε where |ε| < r



Fig. 2. Verifying Robustness of FPNNs and QNNs

Fig. 3. The test dataset, D, is split into two sets: the correctly classified
inputs, Lcc, and incorrectly classified inputs, Lic. The inputs in Lic are
ignored. From Lcc, inputs are verified as robust for: the full precision and
quantized network, RFP

Q , the full precision but not the quantized network,
RFP , the quantized but not full precision network, RQ, neither network, R0.

from combinations of manipulations δ, does not generate a
perturbation such that yx+ε 6= yx.

III. METHODOLOGY

Figure 2 shows the steps to count the number of perturbed
images that DLV uses to check the robustness of a FPNN
and/or the QNN. The FPNN is trained using Keras [6]. First,
the FPNN is used to identify correctly classified images.
Misclassified images are discarded. Second, we have modified
DLV to either produce effective adversarial perturbations (an
image set EP , described shortly) from a single image that
prove the FPNN is not robust, or to otherwise produce in-
effective perturbed images IP that were correctly classified,
verifying the FPNN robust. Third, we use TensorFlow LITE
to quantize the 32-bit FPNN to produce the 8-bit QNN. Lastly,
the ineffective adversarial perturbations IP are tested against
the QNN and if no misclassifications occur then we define the
QNN as robust relative to the FPNN for the original image,
otherwise the QNN is not relatively robust.

Fig. 4. Images in the RFP set: adversarial pertubations of images from
MNIST which were correctly classified by the FPNN but misclassified by the
QNN. From left to right: 2 misclassified as an 8, 2 misclassified as a 9 and
7 misclassified as a 0. Manipulation step is ±1.

All accompanying code for this paper is available online1.
Let N be a full precision network and NQ the correspond-

ing quantized network. Figure 3 refers to the following data
sets: the full dataset D, the set of incorrectly classified images:

Lic = {x ∈ D|N(x) 6= lx},

the set of correctly classified images:

Lcc = {x ∈ D|N(x) = lx}.

For every x ∈ Lcc with classification yx, a set of perturbed
images is generated using DLV by applying all possible
perturbations ε, made up of manipulations of step size δ within
search radius r (Definition II.4).

For a given network N and an image x ∈ Lcc, the set of
ineffective adversarial perturbations IP , generated by DLV by
exhaustively performing manipulations in the search radius is:

IP(N, x) = {ε ∈ perturb(x)| |ε| < r,N(x) = N(x+ ε)}

The set of effective adversarial perturbations EP is:

EP(N, x) = {ε ∈ perturb(x)| |ε| < r,N(x) 6= N(x+ ε)}

Each image x ∈ Lcc is then categorised according to the
robustness of the full precision network N , either as robust
(R) or not robust (RNOT ):

R = {x ∈ Lcc|EP(N, x) = ∅}

RNOT = {x ∈ Lcc|EP(N, x) 6= ∅}

Four image sets are then calculated from these. The set
of images RFPQ are those for which DLV verified the full
precision N as robust, and the quantized network NQ correctly
classifies all adversarial perturbations of the original image
which were ineffective on N :

RFPQ = {x ∈ R|∀y ∈ IP(N, x), NQ(y) = lx}

The image set for which N is robust but NQ misclassifies
one or more adversarial perturbations of the original image
which were ineffective on N is:

RFP = {x ∈ R|∃y ∈ IP(N, x), NQ(y) 6= lx}

Examples of MNIST images in RFP are in Figure 4.

1https://github.com/KirstyRD/RelativeRobust

https://github.com/KirstyRD/RelativeRobust


Fig. 5. Images in the RQ set: perturbations of images from MNIST which
were misclassified by the FPNN, but correctly classified by the QNN. From
left to right: 0 misclassified as a 6, 8 misclassified as a 3 and 9 mislcassified
as a 7. Manipulation step is ±0.25

TABLE II
RELATIVE ROBUSTNESS: PERCENTAGE OF IMAGES IN R WHICH ARE ALSO

IN RFP
Q , FOR MNIST AND CIFAR-10 DATASETS.

D r |δ| |R| |RFP
Q | Relative Robustness

MNIST 10 ±1 2323 2312 99.53%
20 ±1 648 646 99.69%

± 1
4

3282 3239 98.69%

CIFAR-10 20 ±1 1814 1797 99.06%
± 3

4
2039 2020 99.07%

± 1
2

2352 2325 98.85%
± 1

4
2775 2737 98.63%

The image set for which N is not robust but NQ correctly
classifies the effective adversarial perturbation y for N gener-
ated by DLV from the original image is:

RQ = {x ∈ RNOT |∀y ∈ EP(N, x), NQ(y) = lx}

Examples of MNIST images in RQ are in Figure 5.
The image set for which N is not robust and NQ also

misclassifies the effective adversarial perturbation y is:

R0 = {x ∈ RNOT |∀y ∈ EP(N, x), NQ(y) 6= lx}

where |RFPQ |+ |RFP |+ |RQ|+ |R0| = |Lcc|.

Definition III.1 (Relative Robustness). Given a data set D,
input x ∈ D with the class label lx, an FPNN N that is robust
for x and the set IP(N, x), NQ is robust relative to N if
∀x′ ∈ IP(N, x), NQ(x′) = lx.

IV. EVALUATION

This section uses the methodology from Section III to
evaluate robustness in three ways. (1) Section IV-A evalu-
ates the robustness of an FPNN against perturbed images
with different labels, to analyse whether the susceptibility to
adversarial attack may depend on targeting specific classes.
(2) Section IV-B evaluates the relative robustness (Definition
III.1) of 8-bit QNNs of different neural networks with two
datasets, MNIST and CIFAR-10. (3) Section IV-C evaluates
the transferability of adversarial attacks, found for FPNNs, to
their QNN counterparts.

The network used to analyse the MNIST dataset has 2 hid-
den layers, each with 512 neurons using the ReLU activation
function, and a dropout of 0.2. The network used for CIFAR-
10 experiments has 2 hidden layers, each with 256 neurons
also using the ReLU activation function, and dropout of 0.5.

A. Adversarial Robustness Across Labels

Figure 6 presents the percentage of inputs for each class
which resulted in an effective adversarial attack (i.e. perturbed
images that fool the network) by DLV for different parameter.
The MNIST test set is made up of 10,000 inputs with between
892 and 1135 inputs for each of the 10 classes. Certain
classes, e.g. 1, 4 and 9, are more frequently found to be
susceptible to attack, especially for smaller DLV search spaces
with δ values 0.25 and 0.5. The same network is more often
verified as robust for labels 0, 2 and 6, i.e. DLV cannot find
effective adversarial perturbations around these inputs using an
exhaustive search. A difference of up to 63.87% adversarial
discovery is observed between labels 1 and 6 for r = 10,
δ = 0.5. These results show that black box adversarial attacks
may have far greater success if targeting specific labels, e.g.
by perturbing MNIST digit 1 rather than 6.

B. Relative Robustness of QNNs

Table II shows the relative robustness of two QNNs. The
robust test sets IP for each element in R were generated for
each network and set of parameters, by checking the 10,000
images in MNIST test dataset and 10,000 in CIFAR-10 test set
using DLV. The size of IP varies between 7119 and 19801.
The number of inputs in |R| for which all perturbations in
the associated IP are correctly classified by the QNN are
then recorded, along with the percentage. Figure 4 provides
examples of perturbed inputs from IP for three images
in |RFPQ |. The drop in test accuracy of the network after
quantization is 0.03% for MNIST and 0.00% for CIFAR-10.

These results show there is very little difference in adversar-
ial robustness between full-precision networks and their quan-
tized counterparts. Relative robustness ranges from 98.63% to
99.69% and changes negligibly with variation of DLV param-
eters. In each case where an input was not verified as relatively
robust, only one of the images in IP was misclassified. This
follows from observations [22] that adversarial examples are
found in certain subspaces of the input space.

The quantization applied in this paper works by making
small distinct changes to the value of each parameter in the
FPNN. We hypothesize that the FPNN’s adversarial subspaces
of the input space are very similar to those of the QNN. The
perturbations are generated in the FPNN’s “safe” subspaces of
the input space. The small number of misclassifications by the
QNN suggest that the safe subspaces of the QNN and FPNN
overlap to a high degree.

C. Transfer of Adversarial Attacks to QNNs

The sets EP for each element in RNOT were generated for
each network and set of parameters, by checking the 10,000
images in MNIST and 10,000 in CIFAR-10 test dataset using
DLV. Table III shows the number of sets which transfer from
RNOT to R0, and the percentage. Figure 5 provides examples
of images from EP sets corresponding to images in R0.

Adversarial inputs from EP transfer well for large values
of |δ|, where adversarial noise is sharp, e.g. in Table I, (c), (f)
and (i) where a single manipulation step δ modifies a pixel by



Fig. 6. Percentage of inputs from the MNIST test dataset per label for which at least one effective adversarial perturbation is found by DLV for the FPNN.

TABLE III
ADVERSARIAL TRANSFER: PERCENTAGE OF PERTURBED IMAGES WHICH

FOOL THE FPNN, BUT ARE CORRECTLY CLASSIFIED BY THE QNN.

D |δ| r |RNOT | |R0| Adversarial Transfer

MNIST ± 1
64

10 116 70 60.34%
20 96 76 79.17%

± 1
32

10 228 176 77.19%
20 212 146 68.87%

± 1
16

10 446 392 87.89%
20 458 392 85.59%

± 1
8

10 975 925 94.87%
20 1154 1077 93.33%

± 1
4

10 1500 1456 97.07%
20 3548 3448 97.18%

± 1
2

10 3393 3351 98.76%
20 7157 7064 98.70%

±1 10 8647 8551 98.89%
20 9888 9756 98.66%

CIFAR-10 ± 1
64

10 219 114 52.05%
20 224 118 52.68%

± 1
32

10 340 193 56.76%
20 376 208 55.32%

± 1
16

10 469 275 58.64%
20 576 340 59.03%

± 1
8

10 627 428 68.26%
20 666 447 67.12%

± 1
4

10 962 741 77.03%
20 1286 981 76.28%

± 1
2

10 1157 993 85.82%
20 1723 1477 85.72%

±1 10 1714 1536 89.61%
20 2255 2017 89.45%

±1. Where the adversarial noise is more subtle, e.g. in Table
I, (a), (d) and (g) and Figure 5 where |δ| = ±0.25, fewer
adversarial attacks transfer. This is shown in Table III where
for radius 10 on MNIST, |δ| = ± 1

64 results in 60.34% transfer,
whereas |δ| = ±1 results in a transfer of 98.89%. Doubling the

radius to 20 increases the number of pixels which are modified.
For manipulations |δ| = ± 1

64 , doubling the radius increases
adversarial transfer by 18.83% to 79.17%. Adversarial transfer
is more successful when the difference between the original
image and perturbed image is more sharp.

When perturbations resemble subtle noise e.g. with |δ| =
± 1

64 and r = 10, quantization appears to remove this noise,
possibly due to reduced precision acting as a filter, reducing
adversarial transfer to 52.05%. Adversarial transfer is more
successful for larger values of r, when more pixels have been
modified by the tool, reducing the effectiveness of the filter.

The difference in adversarial transfer (Table III) is much
more substantial than the loss of robustness caused by quanti-
zation (Table II), suggesting that neural network quantization
could act as a defense mechanism, particularly when an
attacker is unaware of the quantization, without affecting the
usefulness of a neural network during normal use.

V. CONCLUSION

It has been widely shown that accuracy can generally be
preserved after quantization (e.g. [2], [33]), but one might
expect that quantizing a neural network would negatively
affect its robustness. However, this paper shows that not only
can robustness be preserved, it can also be increased by the
quantization process.

Quantized neural networks, which in this paper are only
0.03% less accurate than full-precision, are found to be robust
to adversarial perturbations for 98.07–99.69% of the inputs
that the corresponding FPNN is robust to. Notably, our results
suggest that quantizing a neural network can reduce the
transfer of adversarial examples to 52.05%, possibly because
quantization acts as a filter for adversarial noise. In addition,
we find that neural networks are significantly more robust
for certain classes in a dataset. We observed up to 63.87%
difference in robustness between two classes in MNIST.

The small drop in precision and robustness after quan-
tization alongside a large drop in adversarial transfer sug-
gests that quantization can improve a network’s resilience to
adversarial attack overall. Quantization of a network could
therefore be favourable in applications where robustness is
the goal, rather than targeting resource constrained hardware



accelerators which, until now, has been the primary motivation
for neural network compression.

A. Related Work

The literature studying adversarial attacks and neural net-
work robustness splits into two big groups of methods.
Machine learning approaches [14], [35] usually study these
problems from a statistical point of view, including evolution-
ary or gradient descent algorithms for producing attacks and
modelling defenses [31], or studying geometric properties of
classifiers relative to the given data [10].

In contrast, verification approaches [15], [17], [18], [32],
[39] study methods that can certify, or give proven guarantees,
of certain properties of neural networks. This paper belongs to
the second group of methods. Similarly to machine learning
approaches, we generate perturbations and evaluate network
performance. However, our focus is on properties of neural
networks that were first verified and then quantized. This
distinguishes our methodology from other machine-learning
approaches that study robustness (but not verification) of
quantized neural networks [4], [19], [28], [30].

There exist related papers that verify properties of bina-
rized [5], [27] or quantized [3] neural networks. In these
approaches binarization and quantization are used as means of
reducing the proof search space and/or satisfying the practical
engineering requirements of the chosen prover. For example,
there are limitations to how real numbers are implemented in
constructive provers like Coq, while SAT and SMT solvers
cannot handle real-valued non-linear functions. In contrast to
these papers, we consider the scenario when a full precision
neural network (of arbitrary complex architecture) is verified,
and is later quantized when deployed in edge devices. We are
interested in the scenario where verification after quantization
is not feasible because it may be a dynamic, possibly even run-
time, process and because there may not be enough resources
to perform verification after quantization or at run-time.

Finally, in machine learning literature, quantization has been
used successfully as a defense mechanism against adversarial
attack. This can be achieved by compressing a network’s input
or parameters.

1) Input Quantization as a Defense: Input compression
can defend against adversarial attack by acting as a filter for
adversarial noise. The aggressive quantization which would be
required to remove all noise could result in a loss of image
quality, making classification more difficult. In [28] variable
JPEG compression is used to apply stronger quantization to
image regions which have lower classification saliency.

2) Network Quantization as a Defense: Binarized nets
were shown to misclassify fewer adversarial attacks than full
precision networks, with substantially fewer misclassifications
when binarized networks were presented with white-box at-
tacks, cf. [11]. In [4] attack methods were tested on a full
precision model and 4 low-bitwidth models. Poor transfer of
attacks generated on each of these networks was observed
when tested on other networks, with the lowest transfer to

and from binarized networks. Attacks which rely on non-
approximated gradients applied directly to QNNs are almost
as effective as when applied to FPNNs, despite these attacks
not transferring well across models of different precision. The
authors suggest this is due to gradients of the different models
misaligning.

Literature varies in the methods of quantization. For exam-
ple, [19] adds a quantization layer as the input layer of a
network. In this case, quantization is not linear, the threshold
for each quantized value is determined during training. This
layer acts as a filter, followed by a full-precision network.
Applying quantization to the full network [30], one can learn
the quantization thresholds for the activations in the network.
Adversarial examples are included during the training which
determines the threshold values.

Our work confirmed the previous results showing that quan-
tisation of neural networks can improve adversarial robustness.
But in addition, our studies highlighted several aspects of this
problem that have not been studied before.

Firstly, most of the previous approaches measured how the
level of quantization applied to the network affects its robust-
ness against a fixed number of randomly generated attacks.
We answered a different question: given a chosen mode of
quantisation of a neural network, do changes in subtlety of the
perturbations (i.e. varying search radius and manipulation step)
influence its effectiveness against the attack. The previous
papers found that more quantization resulted in a greater
increase in the accuracy against adversarial attack. We found
that, the more subtle the perturbation is, the more effective
quantization is against adversarial attack. For attacks that
perturb more pixels, and perturb more drastically, quantization
may be less effective. This effect has not been observed prior
to this work.

Secondly, due to the focus on verification, we apply post-
training quantization on a verified neural network. Thus,
unlike the related papers, we do not retrain during or af-
ter quantization. Retraining modifies the parameters of the
network as well as its precision, resulting in two distinct
networks. Keeping a tighter link between the verified full
precision network and its quantized counterpart was key for
the chosen verification scenario.

B. Future Work

1) Increasing the variety and the complexity of neural
networks: All models used in this work are multi-layer per-
ceptrons. An investigation on how different types of networks
respond to quantization would be interesting. As we generated
attacks in a black-box manner, all our experiments could easily
be repeated with different models. Our preliminary studies of
varying neural network architectures showed similar trends to
those we presented in this paper, but this question requires a
more systematic study.

2) Comparing DLV performance with other verification
tools: DLV was used in this paper because it generates an
exhaustive set of perturbed images within the search param-
eters. DLV perturbs images by randomly picking pixels and



modifying the surrounding pixels. It often generates horizon-
tal lines in the background pixels. It does not use domain
knowledge to recognise the “important” pixels, so it would be
interesting to repeat the experiment with different verification
methods.

3) Relation to one-pixel attacks: The subtlety of adversarial
perturbations generated by DLV was varied in our experi-
ments, however these perturbations are more perceptible than
recent literature on adversarial attacks. The extreme example
is effective adversarial perturbations by modifying just a single
pixel [34]. Future work would investigate the transfer of
imperceptible adversarial attacks from full precision networks
to quantized networks.
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[4] Bernhard, R., Moëllic, P., Dutertre, J.: Impact of low-bitwidth quanti-
zation on the adversarial robustness for embedded neural networks. In:
Int. Conf. on Cyberworlds. pp. 308–315. IEEE (2019)

[5] Cheng, C.H., Nührenberg, G., Huang, C.H., Ruess, H.: Verification of
binarized neural networks via inter-neuron factoring. In: Working Conf.
on Verified Software: Theories, Tools, and Experiments. pp. 279–290.
Springer (2018)

[6] Chollet, F., et al.: Keras: Deep learning library for theano and tensorflow.
URL: https://keras. io/k 7(8), T1 (2015)

[7] Courbariaux, M., Bengio, Y.: Binarynet: Training deep neural net-
works with weights and activations constrained to +1 or -1. CoRR
abs/1602.02830 (2016)

[8] Deng, L.: The MNIST database of handwritten digit images for machine
learning research [best of the web]. IEEE Signal Processing Magazine
29, 141–142 (2012)

[9] Ding, X., Zhang, Y., Liu, T., Duan, J.: Deep learning for event-driven
stock prediction. In: 24th Int. Joint Conf on AI (2015)

[10] Engstrom, L., Tsipras, D., Schmidt, L., Madry, A.: A rotation and a
translation suffice: Fooling cnns with simple transformations. CoRR
abs/1712.02779 (2017)

[11] Galloway, A., Taylor, G.W., Moussa, M.: Attacking binarized neural
networks. In: 6th Int. Conf. on Learning Representations, Conf. Track
Proc. OpenReview.net (2018)

[12] Goodfellow, I., et al.: Generative adversarial nets. In: Advances in neural
information processing systems. pp. 2672–2680 (2014)

[13] Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and Harnessing
Adversarial Examples. In: 3rd Int. Conf. on Learning Representations,
Conf. Track Proc. (2015)
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