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Abstract—In recent years, deep learning has revolutionized
the field of computer vision and has achieved state-of-the-art
performance in a variety of applications. However, training
a robust deep neural network necessitates a large amount of
hand-labeled training data, which is time-consuming and labor-
intensive to acquire. Active learning and transfer learning are
two popular methodologies to address the problem of learning
with limited labeled data. Active learning attempts to select the
salient and exemplar instances from large amounts of unlabeled
data; transfer learning leverages knowledge from a labeled
source domain to develop a model for a (related) target domain,
where labeled data is scarce. In this paper, we propose a novel
active transfer learning algorithm with the objective of learning
informative feature representations from a given dataset using a
deep convolutional neural network, under the constraint of weak
supervision. We formulate a loss function relevant to the research
task and exploit the gradient descent algorithm to optimize the
loss and train the deep network. To the best of our knowledge, this
is the first research effort to propose a task-specific loss function
integrating active and transfer learning, with the goal of learning
informative feature representations using a deep neural network,
under weak human supervision. Our extensive empirical studies
on a variety of challenging, real-world applications depict the
merit of our framework over competing baselines.

Index Terms—active learning, transfer learning, deep learning,
image recognition

I. INTRODUCTION

Deep learning algorithms automatically learn a discrimi-

nating set of features and have depicted commendable per-

formance in a variety of applications. Architectures such as

Convolutional Neural Networks (CNNs), Recurrent Neural

Networks (RNNs), Generative Adversarial Networks (GANs)

etc., have created a paradigm shift in computer vision appli-

cations and have depicted tremendous performance improve-

ments in several tasks, including image recognition [1], object

detection [2], multimodal emotion recognition [3] and image

segmentation [4] among others. However, training a deep

neural network requires a large volume of labeled training

data, acquiring which is an expensive process in terms of

time, labor and human expertise. Thus, developing intelligent

machine learning models under the constraint of weak human

supervision has attracted significant research attention in re-

cent years.

Active learning (AL) and transfer learning (TL) or domain

adaptation (DA) are two popular techniques to address the

problem of limited labeled data. AL algorithms automatically

identify the most informative samples from a large collection

of unlabeled data. This tremendously reduces human anno-

tation effort, as only a few samples that are identified by

the algorithm, need to be labeled manually. Further, since

the model gets trained on the exemplar instances, its gener-

alization capability is typically much better than a standard

passive learner, where the training data is sampled at random

from the underlying population [5]. TL algorithms handle

the problem of learning with weak supervision by utilizing

abundant labeled data in one domain to develop a model

for a related domain of interest, where there is a paucity

of labeled data [6]. The domain of interest is referred to as

the target domain and the other domain is called the source

domain. The probability distributions generating the data in

the two domains are different, which implies a difference in

their joint probability distributions: PS(X,Y ) 6= PT (X,Y ).
Since target domain samples are scarce, it is challenging to

accurately compute P̂T (X,Y ). The main objective of DA is

to approximate the distribution P̂T (X,Y ) using information

from the source domain, in order to develop an accurate

prediction model for the target domain. To this end, the

source and target domains are assumed to be correlated, where

PS(X) 6= PT (X) but PS(Y |X) ≈ PT (Y |X) ; that is, the

marginal distributions of the source and target are different,

but their conditional distributions are the same [6]. Both active

learning and transfer learning have been used with remarkable

success in a variety of computer vision applications [7]–[10].

Even though there have been a few research efforts to

combine AL and TL, none of them have specifically focused

on the problem of training a deep learning model, with the

goal of learning informative feature representations from a

given dataset. In this paper, we propose a novel framework

called Deep Active Transfer Learning (DATL), to address this

challenge. Specifically, we attempt to answer the following

research question: We attempt to train a deep CNN in a target

domain of interest. We are given NL
T labeled samples and NU

T

unlabeled samples in the target domain (NL
T � NU

T ). We are

also given NS labeled samples in a related source domain;

however, there is a probability distribution difference between

the source and the target. A query budget k is given, which

denotes the number of labels that can be purchased in the

target domain. Which k samples should we select from the set

of unlabeled target samples, in order to induce a deep CNN

with maximum generalization capability? This is depicted in
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Fig. 1. Active Transfer Learning problem setup. We are given labeled data (green triangles) from a source domain, a small amount of labeled data (green
circles) and a large amount of unlabeled data (red circles) from a target domain. There is a probability distribution difference between the two domains
(denoted by the triangles and the circles). We are allowed to query the labels of k unlabeled target samples. Our objective is to select the k most informative
samples so that a deep CNN trained on this data has maximum generalization capability. Best viewed in color.

Figure 1. Specifically, we attempt to address the following

three challenges through a single integrated framework:

• Leverage the labeled data in the source domain by

addressing the probability distribution difference between

the source and the target

• Identify the most exemplar unlabeled target samples for

manual annotation

• Learn informative feature representations from the data

using a deep neural network (CNN)

To this end, we propose a novel loss function encompassing

the aforementioned challenges and train the CNN by optimiz-

ing the loss using gradient descent. This is the first research

effort to integrate AL and TL through a joint, task-specific

loss function, with the goal of reducing the human annotation

effort in inducing a deep learning model. Although validated

on vision data in this research, the proposed framework is

generic and can be used in any application to optimize the

human effort in training deep models. The rest of the paper is

organized as follows: we present a survey of related techniques

in Section II; the details of our framework are presented in

Section III; our empirical studies are detailed in Section IV;

and we conclude with discussions in Section V.

II. RELATED WORK

In this section, we present a survey of active learning, trans-

fer learning and the few active transfer learning algorithms

developed to combine the two methods.

Active Learning: Active learning is a well-researched

topic in the machine learning literature. Pool-based batch

mode active learning (BMAL) is the most common variant

where the learner is exposed to a pool of unlabeled samples

and it iteratively queries samples for annotation. Uncertainty

sampling is the most common active learning strategy, where

unlabeled samples furnishing the maximal classification un-

certainty are queried for annotation. The uncertainty of an

unlabeled sample can be computed in many different ways,

such as Shannon’s entropy [11], its distance from the decision

boundary for SVM models [12], the extent of disagreement

among a committee of classifiers regarding its label [13],

and the expected model change [14] among others. Multiple

criteria such as uncertainty, representativeness and diversity

can also be combined to quantify the information content

of an unlabeled sample [15]. The Fisher information matrix

has also been exploited as a metric of model uncertainty to

develop AL algorithms [10]. Matrix partitioning techniques

have been studied to identify a batch of informative unlabeled

samples for AL [16]. Adversarial techniques using GANs have

also been used for active learning [17]. Recently, there has

been a body of research focusing on novel extensions of AL

such as actively completing a data matrix [18], active video

summarization [19], active learning with novel query types

[20] and active learning with imperfect / noisy oracles [21]

among others.

Transfer Learning: Domain adaptation (DA) or transfer

learning is also a well-studied problem in machine learn-

ing. Before deep learning became popular, researchers pri-

marily relied on hand-crafted features for DA [22], [23].

DA techniques using deep models have outperformed their

non-deep counterparts due to the highly informative feature

representations learned by the deep networks. Tzeng et al.

[7] proposed the Deep Domain Confusion (DDC) algorithm

where the Maximum Mean Discrepancy (MMD) was used

to quantify the domain disparity and learn domain invariant

features. Long et al. [24] proposed the Deep Adaptation

Networks (DAN) model where the MMD loss was applied in

all the fully connected layers (fc6, fc7 and fc8) of the AlexNet,

with promising empirical performance. The Residual Transfer

Network (RTN) architecture, proposed by Long et al. [25],

incorporated a residual layer in the network and used MMD to

address domain disparity. DA has also been used to learn dis-

criminating hash codes for the source and target data, while ad-

dressing the probability distribution difference between them

[26]. The Generative Adversarial Networks (GANs) proposed

by Goodfellow et al. [27] is one of the hallmarks of deep

learning research. Several recent techniques have explored

adversarial training for domain adaptation, such as the Domain

Adversarial Neural Network (DANN) which incorporates a

domain classifier, whose gradient is reversed when learning

the feature extractor weights [28], the Coupled Generative

Adversarial Network (CoGAN) model, which shares weights



at different layers of the GAN to train a coupled network,

and the combination of CoGAN with Variational Autoencoder

(VAE) [29] to develop an image translation network [8] among

others. Concepts from Wasserstein GAN have also been used

for domain adaptation [30]. The adversarial methods based on

GANs have depicted commendable empirical performance.

Active Transfer Learning: Even though AL and TL are

extensively studied separately, there have been relatively few

research efforts to combine the two methodologies. Initial

research efforts in this direction performed transfer and active

learning in two separate stages, which may cause redundancy

or information overlap between the instances selected from

the source and target domain data [31]–[33]. For instance,

Saha et al. [34] combined uncertainty region sampling with

several transfer learning concepts and provided an analysis

of label complexity and error rates. A Bayesian framework

for active transfer learning was proposed in [35], based on

prior-dependent learning. Chattopadhyay et al. [36] proposed

JOTAL – an integrated framework that performs transfer and

active learning simultaneously by solving a single convex

optimization problem. The framework computes the weights

of source domain data and selects the samples from the

target domain data simultaneously, by minimizing a common

objective of reducing distribution difference between the data

set consisting of re-weighted source and the queried target

domain data, and the set of unlabeled target domain data.

Kale and Liu proposed the Transfer-accelerated, Importance

Weighted Consistent Active Learning (TIWCAL) algorithm,

where the main idea was to use transfer learning to initialize

the active learner using data from a related task [37]. The

active learner can thus make more informed queries in the

early rounds, which can potentially address the cold-start prob-

lem. The same authors also proposed the Hierarchical Active

Transfer Learning (HATL) algorithm which exploits the cluster

structure of the data shared between the source and target

domains to perform transfer learning by imputing the labels

of the unlabeled target data, and to generate effective label

queries during active learning [38]. Active transfer learning

has also been used in regression applications, such as recom-

mender systems [39] and estimating the yield of vineyards

from images of grapes [40]. Even though the fields of active

learning and transfer learning have significantly progressed

independently (especially with the growing popularity of deep

learning), active transfer learning has not progressed much

beyond the aforementioned research.

All the active transfer learning methods work on hand-

engineered features which need to be supplied as an input

to the algorithms. Motivated by the unparalleled success of

deep neural networks to learn informative feature sets, we

propose an active transfer learning framework, specifically

tailored to train deep models. Our framework can address the

domain disparity between the source and the target, identify

the exemplar samples from the unlabeled target data for

manual annotation, and simultaneously learn a representative

set of features from the data using a deep CNN. We now

describe our framework.

III. PROPOSED FRAMEWORK

As shown in Figure 1, we are given data from two domains:

source and target. The data in the source domain are all

labeled: DS = {xi, yi}
NS

i=1
. In the target domain, we are

given a small number of labeled samples: DL
T = {xj , yj}

NL

T

j=1

and a large number of unlabeled samples: DU
T = {xj}

NU

T

j=1
.

We are also given a budget k, which denotes the number of

samples that can be labeled from the unlabeled target set.

Our objective is to select the k most informative samples

from DU
T and get them labeled by human annotators, so that

a deep neural network trained on this data has maximum

generalization capability on unseen test data from the target

domain. Instead of using an off-the-shelf network trained on

a different dataset, for a different application, we propose

to formulate a novel loss function specific to the application

in question and train the network to optimize that loss. Our

network will then get specifically tailored to our application

and can potentially depict improved learning performance. Our

loss function consists of three components: (i) supervised loss

on labeled data, which encourages the network to be consistent

with the labeled data, that is, incur minimal prediction error on

the labeled source and target samples; (ii) a strategy to address

the disparity between the source and target domains and learn

feature representations accordingly; and (iii) unsupervised

loss on unlabeled target data, which encourages the network

to deliver high confidence predictions on the unlabeled target

set. These are detailed below:

A. Supervised Loss on Labeled Data

The goal of this term is to ensure that the network furnishes

accurate predictions on the labeled data. Let DL = DS∪D
L
T =

{x1, x2, . . . , xnL
} be the labeled source and target data with

corresponding labels {y1, y2, . . . , ynL
}. We used the standard

cross-entropy (CE) loss to estimate the classification error:

LCE =
1

nL

nL∑

i=1

L(f(xi), yi)

where

L(f(xi), yi) = −

C∑

j=1

1(yi = j) log fj(xi) (1)

Here C is the total number of classes, 1 is the indicator

function and f(xi) = [f1(xi), f2(xi), . . . , fC(xi)]
T is a prob-

ability vector (obtained using the softmax activation of the

deep network) with fj(xi) being the probability that sample

xi is assigned to category j.

B. Disparity between Source and Target Domains

Our strategy to address the domain disparity between the

source and the target is inspired by the adversarial learning

framework proposed by Ganin et al. [28]. Our objective is to

learn features in such a way that a domain classifier trained to

differentiate source and target samples has high error, that is,

source and target domain features become indistinguishable.



This is implemented by incorporating a cross entropy loss

Ld on the domain classifier and maximizing it (since we

desire high error) using stochastic gradient descent (SGD).

Ganin et al. introduced the concept of a gradient reversal

layer (GRL) between the feature extractor and the domain

classifier. The GRL acts as an identity transformation during

forward propagation; during back-propagation, it takes the

gradient from the subsequent level and multiplies it by −1
before passing it to the preceding layer. Running SGD in this

model essentially becomes equivalent to updating the weight

parameters of the deep network. Please refer [28] for more

details about this algorithm.

C. Unsupervised Loss on Unlabeled Target Data

We propose a class alignment (CA) loss on the unlabeled

target data to ensure that the network furnishes high confidence

predictions on the unlabeled target set. Since this is a multi-

class problem, each unlabeled target sample can belong to

exactly one of the C classes. We assume the presence of M

samples from each class j in the labeled source data, where

j ∈ {1, 2, . . . , C}, and let w
jm
S be the mth source output

from class j. The fundamental idea is to ensure that the output

wi
T of an unlabeled target sample xi is similar to all the M

source outputs from a particular class j and dissimilar to all the

other classes (we used the dot product to compute similarity).

Enforcing similarity with all the M data points results in a

more robust target data class assignment. We define a measure

to capture this idea, which quantifies the probability that the

target sample xi is assigned to class j:

pij =

∑M

m=1
exp〈wi

T , w
jm
S 〉

∑C

c=1

∑M

m=1
exp〈wi

T , w
cm
S 〉

(2)

Here, 〈·, ·〉 denotes the dot product between two vectors,

the exponential function exp(.) has been used for ease of

differentiability and the denominator ensures that the meaure is

normalized, that is,
∑

j pij = 1. When the output of the target

sample is similar to exactly one class and dissimilar to all the

other classes, the probability vector pi = [pi1, pi2, . . . , piC ]
tends to be a one-hot vector, with one entry high and the

others low. This implies that the unlabeled target sample

aligns well with exactly one of the classes, and can thus be

interpreted as having low prediction uncertainty (entropy). The

class alignment loss is therefore defined to capture the entropy

of the target probability vectors:

LCA = −
1

nU
T

nU

T∑

i=1

C∑

j=1

pij log pij (3)

where nU
T denotes the number of unlabeled target samples.

Minimizing this loss produces probability vectors pi that tend

to be one-hot vectors, that is, the unlabeled target data sample

outputs are similar to source data outputs from one and

only one class. This ensures that the deep network furnishes

confident predictions on the unlabeled target data. Computing

the similarity with M source samples ensures that the feature

representations are learned based on a common similarity

between multiple source category data points and the target

data point. Note that the probability values in Equation (3)

are derived using the novel class alignment score in Equation

(2) and not using class prediction probabilities, as done

conventionally.

The overall loss function to train the deep network can thus

be written as:

L = LCE − λ1Ld + λ2LCA (4)

where λ1 and λ2 are weights governing the relative importance

of the terms. Since the overall loss function needs to be

minimized, we have a negative sign in front of Ld, as we would

like to maximize the cross entropy loss of the domain classifier

(as explained in Section III-B). SGD was used minimize the

loss and train the network.

D. Query Strategy for Active Learning

Once the deep CNN was trained, the unlabeled target

samples were passed through the network and the value of the

class alignment loss LCA (Equation (3)) was computed for

each sample. Since the network was trained to minimize the

class alignment loss, the unlabeled target samples furnishing

the highest values of this term were deemed the most infor-

mative from an active learning perspective. The top k samples

sorted by the LCA score were therefore queried for manual

annotation.

E. Network Architecture

The architecture of the CNN used in this study is shown in

Figure 2. It consists of 3 components, a feature extractor, a

domain classifier and a label classifier. We used two convolu-

tional layers with filters of size 3× 3 as the feature extractor.

The input images to the first convolutional layer were scaled to

128×128 pixels. Each of the convolutional layer is followed by

tanh activation function and a max-pooling layer performing

spatial pooling over a 3 × 3 window. A batch normalization

layer follows to reduce the shift in the hidden unit values.

The domain classifier is composed of a gradient reversal

layer (as discussed in Section III-B) followed by a fully

connected layer with 128 units and a tanh activation function.

A batch normalization layer and dropout regularization layer

follow the fully connected layer. The sigmoid output layer

predicts the domain of the sample. The input to the category

/ label classifier comes from the feature extractor output. This

component of the network comprises of a fully connected

layer with 128 units followed by a tanh activation function

and an output softmax layer which predicts the label of the

sample. The network was trained for 50 epochs using the SGD

optimizer with a learning rate of 10−5. We used a Google

cloud compute instance with a n1-standard-4 4vCPUs machine

type with 15 GB memory. The instance had a NVIDIA Tesla

P100 GPU with 16 GB memory attached to it, accelerating

the processing and training of our model.



Fig. 2. Architecture of the deep convolutional neural network used in our study. The network is trained using mini-batches consisting of source samples (red),
labeled target samples (green) and unlabeled target samples (blue). The cross-entropy loss for the domain classifier operates on all three types of samples;
the cross-entropy loss for the category / label classifier operates only on the labeled source and target samples; the class alignment loss operates only on the
unlabeled target samples. Best viewed in color.

IV. EXPERIMENTS AND RESULTS

In this section, we present an empirical analysis of our

framework against relevant baselines. Besides the learning

peformance, we studied the effects of the size of the labeled

source set, labeled target set and batch size on the predictive

performance. These are presented in the following sections.

A. Datasets and Feature Extraction

We validated the performance of DATL on 9 transfer tasks

(source-target pairs) across 4 datasets. These are detailed

below. Note that our objective in this research was to study

the performance of active transfer learning algorithms, and not

to outperform the state-of-the-art error rates on these datasets.

We therefore did not replicate the exact train/test splits used in

previous research on these datasets, where the objective was

to achieve the lowest prediction error rates.

Office: This is a popular benchmark dataset for object

recognition in the DA computer vision community [41]. It

contains images of everyday objects in an office environment

and has 3 domains: Amazon, Webcam and DSLR.

Office-Home: This dataset was recently introduced and has

4 domains: Art (artistic depictions of objects in the form of

sketches, paintings, ornamentation, etc.), Clipart (collection

of clipart images), Product (images of objects without a

background, akin to the Amazon category in the Office dataset)

and Real-World (images of objects captured with a regular

camera) [26].

MNIST and USPS: We also studied the performance of

our framework on two handwritten digits datasets, MNIST

and USPS [42], which contain images of handwritten digits

from 10 classes. Both these datasets are extensively used in

computer vision research. While in the previous two datasets

we study the performance on different domains within a

dataset, here we study the performance across two different

datasets, to comprehensively evaluate our proposed method.

Feature Extraction: The comparison baselines used in this

research (detailed below) work only on hand-crafted features.

For fair comparison, we extracted deep features (using our

untrained network) from each image and passed them as inputs

to the baseline methods.

B. Experimental Setup

In each experiment, we are given a source set and a target

set. The target set was divided into three parts: an initial

labeled training set, an unlabeled set and a test set. The number

of labeled target samples was much less than the number of

unlabeled target samples, to appropriately mimic a real-world

application. For a given batch size k, each algorithm queried

k samples from the unlabeled target set, which were labeled

and appended to the labeled set. The underlying classification

model was updated and the accuracy was evaluated on the test

set. The process was continued until some stopping criterion

was satisfied (taken as 15 iterations in this work). Similar to

all the previous active transfer learning research, our objective

was to study the growth in accuracy on the target test set,

with increasing number of iterations. Each experiment was

conducted 3 times (with different initial training, unlabeled

and test sets) and the results were averaged to rule out the

effects of randomness. The parameters λ1 and λ2 were both

taken as 1 based on preliminary experiments.

C. Comparison Baselines

The problem setup of active transfer learning is depicted in

Figure 1 and is different from both active and transfer learning.

To facilitate fair comparison, we used the following active

transfer learning algorithms as comparison baselines in our

work (and not algorithms that are designed for only active

learning or only transfer learning): (i) Random Sampling: a

batch of k samples is selected at random from the unlabeled









[22] S. Pan, I. Tsang, J. Kwok, and Q. Yang, “Domain adaptation via transfer
component analysis,” in International Joint Conference on Artificial

Intelligence (IJCAI), 2009.
[23] D. Pardoe and P. Stone, “Boosting for regression transfer,” in Interna-

tional Conference on Machine Learning (ICML), 2010.
[24] M. Long, Y. Cao, J. Wang, and M. Jordan, “Learning transferable

features with deep adaptation networks,” in International Conference

on Machine Learning (ICML), 2015.
[25] M. Long, H. Zhu, J. Wang, and M. Jordan, “Unsupervised domain

adaptation with residual transfer networks,” in Advances of Neural

Information Processing Systems (NIPS), 2016.
[26] H. Venkateswara, J. Eusebio, S. Chakraborty, and S. Panchanathan,

“Deep hashing network for unsupervised domain adaptation,” in IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
[27] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances of Neural Information Processing Systems (NIPS), 2014.

[28] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Lavi-
olette, M. Marchand, and V. Lempitsky, “Domain-adversarial training
of neural networks,” Journal of Machine Learning Research (JMLR),
vol. 17, 2016.

[29] D. Kingma and M. Welling, “Auto-encoding variational bayes,” in arXiv

preprint arXiv:1312.6114, 2013.
[30] J. Shen, Y. Qu, W. Zhang, and Y. Yu, “Wasserstein distance guided

representation learning for domain adaptation,” in Association for the

Advancement of Artificial Intelligence (AAAI), 2018.
[31] Y. Chan and H. Ng, “Domain adaptation with active learning for word

sense disambiguation,” in Association of Computational Linguistics

(ACL), 2007.
[32] X. Shi, W. Fan, and J. Ren, “Actively transfer domain knowledge,” in

European Conference on Machine Learning (ECML), 2008.
[33] P. Rai, A. Saha, H. Daume, and S. Venkatasubramanian, “Domain

adaptation meets active learning,” in NAACL HLT 2010 Workshop on

Active Learning for Natural Language Processing, 2010.
[34] A. Saha, P. Rai, H. Daume, S. Venkatasubramanian, and S. DuVall,

“Active supervised domain adaptation,” in European Conference on

Machine Learning (ECML), 2011.
[35] L. Yang, S. Hanneke, and J. Carbonell, “A theory of transfer learning

with applications to active learning,” Machine Learning, vol. 90, no. 2,
2012.

[36] R. Chattopadhyay, W. Fan, I. Davidson, S. Panchanathan, and J. Ye,
“Joint transfer and batch mode active learning,” in International Con-

ference on Machine Learning (ICML), 2013.
[37] D. Kale and Y. Liu, “Accelerating active learning with transfer learning,”

in IEEE International Conference on Data Mining (ICDM), 2013.
[38] D. Kale, M. Ghazvininejad, A. Ramakrishna, J. He, and Y. Liu,

“Hierarchical active transfer learning,” in SIAM Data Mining Conference

(SDM), 2015.
[39] L. Zhao, S. Pan, E. Xiang, E. Zhong, Z. Lu, and Q. Yang, “Active

transfer learning for cross-system recommendation,” in Association for

the Advancement of Artificial Intelligence (AAAI), 2013.
[40] X. Wang, T. Huang, and J. Schneider, “Active transfer learning under

model shift,” in International Conference on Machine Learning (ICML),
2014.

[41] K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual category
models to new domains,” in European Conference on Computer Vision

(ECCV), 2010.
[42] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” in Proceedings of IEEE, 1998.




