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Abstract—Cardiac arrhythmia is the leading cause of death
worldwide that occurs due to irregular heartbeats obtained using
an electrocardiogram (ECG) signal. The occurrence of irregular
beats among the normal beats is very rare thereby creating
the problem of data imbalance. This paper proposes a deep
convolution conditional generative adversarial network model for
ECG generation that owns the imbalanced distribution among
different beat classes, namely normal, supraventricular ectopic
beats, ventricular ectopic beats, and fusion beats as recommended
by the Association for the Advancement of Medical Instrumen-
tation (AAMI). Convolution neural network based generator
and discriminator models are investigated that incorporates the
class label information in addition to the conventional input
for effective generation of minority class of beats. Different
loss functions and noise distributions have been individually
explored for obtaining an effective model. Moreover, the model
convergence was improved with the introduction of the parameter
twist that allows the gradient to backpropagate at a faster
pace during early stages of training. The effectiveness of the
model was tested on a standard benchmark MIT-BIH dataset
and the quality of generated signals was measured using seven
quantitative measures.

Index Terms—Electrocardiogram, conditional generative ad-
versarial network, deep convolution generative adversarial net-
work.

I. INTRODUCTION

Cardiac arrhythmia causes millions of deaths annually
around the world [1]. The major reason behind the arrhythmia
is the occurrence of irregular heartbeats obtained from an
electrocardiogram (ECG) signal. These beats can be diagnosed
through supervised machine learning methods [2]–[4]. A major
drawback of these methods is the requirement of labelled
data in huge quantity that is difficult to obtain in practice
[5]. Although the open source data solves this problem but
it sometimes do not satisfy the criteria for a study and often
misses out on relevant information. Recently, the researchers
sought off to synthetically generate ECG data using prede-
fined synthesisers and machine learning techniques including
generative adversarial networks (GANs) [6]–[16].

A. Need for GANs

GANs [17] learn to generate synthetic data by mapping
latent input noise to the data distribution. GANs have de-
picted exceptional performance in the domain of computer
vision by generating very real looking synthetic images [18]–
[20]. GANs have also been used to generate synthetic music

and speech signals [21] using an algorithm called WaveNet.
Donahue et al. produced raw waveform audio (WaveGAN)
using DCGAN [22] and generated different sound signals
using unconditional autoregressive models. GANs have also
been employed for the generation of single-channel electroen-
cephalogram (EEG) signal [23].

B. Related Work

Initially data augmentation was performed using interpola-
tion and extrapolation but these methods were limited by the
density of the given data. Mc Sharry et al. produced synthetic
ECG signals [6] with user defined heart rate characteristics
using three coupled ordinary differential equations. Clifford et
al. [7], [8] presented a nonlinear model that generated electro-
cardiogram signal using a 3-D vectorcardiogram formulation.
Cao et al. [9] generated conventional twelve lead ECG signals.
The problem with the aforementioned mathematical models is
the reliability on independent systems and predefined functions
making it difficult to gather enough information about the
global characteristics of an ECG signal.

Recently, researchers have been employing GANs for
biomedical signal generation. Brophy et al. [15] used Wasser-
stein GANs (WGANs) [24] with gradient penalty to syntheti-
cally generate sinusoidal, photoplethysmogram, and ECG sig-
nals by converting the time series signal to rasterized images
and feeding it to GANs. The new images generated from
GANs are converted back to time series signals. However, the
generated signal quality is limited by the image resolution.
Haradal et al. [10] used LSTM model to augment ECG
and EEG datasets and compared the performance with other
existing data augmentation methods and conveyed that GANs
are more suitable than conventional methods for augmenting
minority classes. Zhu et al. [12] used bidirectional LSTM
and CNN for ECG generation. Zhou et al. [13] proposed
Beat GAN for Anomalous Rhythm Detection and provided
explainable results to pinpoint the anomalous segment but used
the latent input noise obtained using the data itself, making
it biased. Delaney et al. [14] generated synthetic sinusoidal
and normal ECG using two bidirectional LSTMs and CNN in
addition to a minibatch discrimination layer. Wang et al. [16]
employed an auxiliary classifier GAN to generate normal, left,
and right bundle branch block, premature atrial contraction
, and premature ventricular contraction beats for single and
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consecutive heartbeat abnormality detection. The problem in
the aforementioned methods is that these methods have not
generated the class of beats recommended by AAMI [25].
Hence, the minority class data still needs to be augmented.
We came across only one work by Golany et al. [11] in which
they proposed a personalized GAN that synthesizes minority
class beats such as supraventricular and ventricular ectopic
beats, and fusion beats in which they employed a combination
of two losses, namely mean square and binary cross entropy
loss using an LSTM model. The current literature still lacks
the quantitative metrics needed to verify the generated signal
quality.

C. Our Contributions

We aim to generate AAMI [25] recommended four beat
classes, namely normal (N), supraventricular ectopic beats
(SVEB), ventricular ectopic beats (VEB) and fusion of ven-
tricular and normal beat (F) using a deep convolution con-
ditional generative adversarial network. CNNs are preferred
over recurrent neural networks as they provide better results
over time series signals in the literature [5]. We investigated
two different loss functions, cross entropy and mean square
loss independently in the discriminator. Uniform and gaussian
noise were also provided as an input to the generator for
generating synthetic signal. A new parameter twist was also
introduced for faster loss convergence during the training
phase. We evaluated the generated beats quantitatively using
seven evaluation metrics namely, Frechet Inception Distance
(FID), Dynamic Time Warping (DTW), Euclidean Distance
(ED), Pearson Correlation (PC), Maximum Mean Discrepancy
(MMD), Kullback Leibler Divergence (KLD), and Time Warp
Edit Distance (TWED). The results depicted that our model
effectively generated different classes of beats.

The organization of the paper is as follows. Section II
provides the database description and the preprocessing steps.
Section III provides an overview of the ECG generation
methodology. Section IV provides the experimental setup.
Section V discusses upon the results and section VI provides
conclusion with the future scope.

II. DATA DESCRIPTION

Massachusetts Institute of Technology-Beth Israel Hospital
(MIT-BIH) Arrhythmia database [26] is used for experimen-
tal purpose. It consists of annotated normal and clinically
significant arrhythmic beats sampled at 360 Hz. We used
the modified limb lead II signal for this work. Paced beat
recordings were discarded, namely 102, 104, 107, and 218.
The annotations provided in the dataset categorize the beats
into 15 different classes (f, /, N, L, e, R, j, Q, A, J, a, V, S,
E, F), each denoting a different type of beat. We follow the
AAMI [25] recommended beat types, namely N including (N,
L, e, R, j), SVEB including (A, J, a, S), VEB including (V,
E), F, and Q. Q class was discarded since it was marginally
represented and represents the heartbeats that are unclassified
as mentioned in the database.

A. Preprocessing

The MIT-BIH records were contaminated with noises such
as Power Line Interference (PLI), i.e., high-frequency noise
(50 or 60 Hz) and Baseline Wander (BW), i.e., low-frequency
noise. Hence, a notch filter was employed to remove PLI,
and a mean median filter was employed to remove BW
[27]. The beats of length 260-time ticks were extracted that
represent 234 ms and 486 ms before and after the R-peak,
respectively at 360 Hz sampling rate. No resampling was
performed to minimize the loss of information. The minority
class beats (SVEB, VEB, F) were augmented using window
warping technique as proposed in [13]. Then uniform noise
U [0.1, 0.15], was added to increase the number of beats and
make them equal to the normal beats. We represented a single
heartbeat as hb(i) = {v1, ..., v260}, where vt denotes voltage
at time t.

III. ECG GENERATION METHODOLOGY

A. Generative adversarial networks

Generative adversarial networks (GANs) proposed by Ian
Goodfellow [17] in 2014, belong to the class of generative
models that deploy a neural network for both the discrim-
inator and the generator. In 2015, Radford et al. proposed
the deep convolutional GAN (DCGAN) to generate synthetic
images [28] using CNN to improve stability in training. GANs
consist of a generator network G(z), where z represents the
latent input noise and a discriminator network D(x), where
x represents the input to the discriminator. GANs learn to
generate synthetic data until the Nash equilibrium between the
two networks is attained via adversarial training. G(z) maps
the latent input noise to the probability distribution of real
data Pr and the discriminator network learns to discriminate
between the real and generated samples. Formally, G and D
play a minmax game with two players where the evaluation
function is defined using Eq. 1.

min
G

max
D

V (D,G) = Ex∼pr(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))]
(1)

where pr(x) and pz(z) are the distributions of the real
and synthetically generated data, respectively. Both, generator
and discriminator are learned by alternately maximizing and
minimizing V (G,D) until pz(z) is indistinguishable from the
true connectivity distribution. Figure 1a represents basic GAN.

B. Proposed DCCGAN Model

We employed deep convolution GAN (DCGAN) [28] be-
cause of its stable training in addition to the superior perfor-
mance on several tasks as compared to conventional GANs.
Since our task is to generate class-specific heartbeats (N,
SVEB, VEB, and F), the conventional architecture of GAN
had to be modified. A new condition, namely class infor-
mation, was incorporated in GAN, which led to the use of
Conditional GANs (CGANs) [29]. The conditional training of



(a) GAN (b) Conditional GAN

Fig. 1: Basic Architecture of GAN and CGAN.

(a) Generator Network (b) Discriminator Network

Fig. 2: Illustration of Generator and Discriminator Network.

the DCGAN based models may be referred to as deep convo-
lution conditional generative adversarial network (DCCGAN).
In DCCGANs, G and D are provided with labels as well
as the conventional input transforming G(z) to G(c, z) and
D(x) to D(c, x), where c represents the class information.
Figure 1b shows the structure of the proposed DCCGAN.
The architecture details of G and D is illustrated in Figure
2a and Figure 2b. The underlying heartbeat distribution for
a given arrhythmic beat class is denoted by the conditional
probability p(hb|c), where hb depicts the heartbeat and c
depicts the arrhythmic beat class. Given a set of heart-beats
{hb1, ..., hbK} the generator tries to fit p(hb|c) and generate
new synthetic heartbeats that resemble to the real heartbeats
of a desired class very closely in order to deceive the dis-

criminator. Training of DCCGAN, details of Generator, and
discriminator are provided in subsequent sections.

C. Generator
The generator receives a sequence z = {zn}Nn=1 where

N is the length of latent input and a corresponding class
label c, where c ∈ {Z+ ∪ 0}. The latent input z of length
N is randomly sampled from a noise (gaussian or uniform)
distribution. The generator then produces a series G(zn) ∈ Rk
of fixed length k, where k is the same as the dimension of
the real training signal. G tries to approximate underlying
real heartbeat distribution provided class label p(hb|c) and
generates synthetic ECG heartbeats for a corresponding ar-
rhythmic class c to deceive the discriminator. The objective of
generator is to minimize log-probability of discriminator such
that the D correctly assigns negative labels to the synthetically
samples generated by the G. G is optimized by providing the
generated signal (heartbeat) as input to D thereby optimizing
its parameters so that D predicts synthetic signal (heartbeat)
as a real signal. The generator loss is depicted by Eq. 2:

L(G) = − logD(G(z)) (2)

where, Gz is the generated heartbeat from the generator
network. Figure 2a depicts the architecture of the generator
used in this work.

D. Discriminator
The discriminator D(hb) ingests real time series xn ∈ RT

and fake time series G(zn) ∈ RT , where, T represents the
dimension of the training data, separately and outputs the prob-
ability that denotes whether hb originates from the original
beats or synthetically generated beats. The discriminator loss
is described using Eq. 3:

L(D) = − logD(hbreal)− log(1−D(hbg)) (3)

where, hbreal and hbg represents ECG heartbeat obtained
from training and generator network, respectively.

E. Modified Loss Function
Since the DCCGAN consists of class label c, the modified

loss function takes into account the original beats, synthetically
generated beats, and class label is represented by Eq. 4:

min
G

max
D

V (D,G) = Ec,x∼pr(c,x)[logD(c, x)]+

Ex∼pr(x),z∼pz(z)[log(1−D(G(z, x), x))]
(4)

where, pr(x) and pz(z) are the data distributions of the
original and synthetically generated beats, respectively.

IV. EXPERIMENTAL SETUP

A. System Configuration
The experiments were performed on a workstation with Intel

Core i5-6500 CPU with 3.6 GHz frequency, 16 GB RAM, and
an Nvidia 1050 Ti GPU with 4 GB of VRAM. The models
were developed using Python library keras as it is optimised
for faster training on GPUs.



B. Generator Architecture

The input layer of generator takes two inputs, a latent input
z from a noise distribution and a random integer for class
label c, where z = 100, and c ∈ {0, 1, 2, 3}. Figure 2a
represents the architecture of our generator and Table I depicts
in-depth details of our generator. The label incorporation in
the generator can be performed in many ways. We used an
embedding layer followed by a dense (FC) layer of a size
similar to the input and then concatenated it with the input
data. The generator model is constructed using a CNN based
architecture to adapt to time series nature of ECG. We used
1-Dimensional convolution layers in addition to upsampling
that composedly work as a deconvolution layer. 1-D CNNs
are employed because of their well suited behaviour towards
time series signals [5]. Between the convolution layers, we
have employed batch normalization [30], ReLU activation,
and upsampling by a factor of two. In the last layer sigmoid
activation is employed. Parameters represent the feature maps,
filter size, and stride in case of convolution layers and number
of neurons in case of dense or fully connected layers.

TABLE I: Detailed Generator Architecture

Layer Input Size Parameters Output size
Embedding 1, 100*1 50 1*50, 100*1

Dense 1*50, 100*1 100 100*1, 100*1
Reshape 100*1, 100*1 - 100*1, 100*1

Concatenate 100*1, 100*1 - 100*2
UP1 100*2 2 200*2

Conv1 200*2 32*16,10,1 191*512
BN-ACT-UP2 191*512 - 382*512

Conv2 382*512 32*8,4,2 191*256
BN-ACT-UP3 191*256 - 382*256

Conv3 382*256 32*4,4,2 191*128
BN-ACT-UP4 191*128 - 382*128

Conv4 382*128 32*2,4,2 191*64
BN-ACT-UP5 191*64 - 382*64

Conv5 382*64 32*1,4,2 191*32
BN-ACT-UP6 191*32 - 382*32

Conv6 382*32 1,4,2 191*1
BN-ACT-FLAT 191*1 - 191

Dense-ACT 191 260 260

C. Discriminator Architecture

Discriminator ingests an input layer with a dimension sim-
ilar to beat length and a random integer for class label. Label
is incorporated in a similar fashion to the generator. Figure 2b
represents the architecture of our discriminator and Table II
depicts in-depth details of our discriminator. 1-D CNN layers
are used with batch normalization [30] and Leaky Rectified
Linear Unit activation in between 1-D CNN layers except the
last layer where sigmoid activation function is employed.

D. DCCGAN Architecture

DCCGAN draws k random numbers from a noise distri-
bution N and a random integer for class label. DCCGAN
is comprised of the generator followed by the discriminator.
Figure 1b illustrates the specific structure of DCCGAN, where
the details of G and D are depicted in Figure 2a and 2b.

TABLE II: Detailed Discriminator Architecture

Layer Input Size Parameters Output size
Embedding 1, 260*1 50 1*50, 260*1

Dense 1*50, 260*1 260 1*260, 260*1
Reshape 1*260, 260*1 - 260*1,260*1

Concatenate 260*1,260*1 - 260*2
Conv1 260*2 32,4,2 130*32

BN-ACT 130*32 - 130*32
Conv2 130*32 32*2,4,2 65*64

BN-ACT 65*64 - 65*64
Conv3 65*64 32*4,4,2 33*128

BN-ACT 33*128 - 33*128
Conv4 33*128 32*8,4,2 17*256

BN-ACT 17*256 - 17*256
Conv5 17*256 32*16,4,2 9*512

BN-ACT 9*512 - 9*512
Flatten 9*512 - 4608

Dense-ACT 4608 1 1

E. Discriminator Training

The discriminator training involved two phases during each
epoch: (i) training over m real ECG samples and (ii) training
over m randomly generated samples via generator network.
Firstly, the D was provided with a random batch of real data
X ∈ Rm×T , that produces d real as the loss obtained during
the training over real samples. Secondly, the D was provided
with a batch of fake data Z ∈ Rm×T , that produces d fake
as the loss obtained during the training over fake samples.
The average of these two losses can be taken as the overall
discriminator loss during that epoch. A “twist” phenomenon
was also introduced during the training phase, where the
generated sampled were assigned the label of 0.1 in place of 0,
and similarly, the real data samples were assigned the label of
0.9 in place of 1. This allowed the model to converge faster by
alleviating the problem of vanishing gradient during the early
phase of training. Adam optimizer [31] was employed during
the training with LR = 0.0002. as suggested in [28].

F. DCCGAN Training

After training the discriminator, the parameters of discrim-
inator were frozen so that they do not get updated during
the training of the generator. During the training of GAN,
m random noise sequences {z1, ..., zm} are sampled from
noise distribution pz and fed to G. G then generates fake
samples that are provided with the class label of 0.9 ,i.e.,
labels corresponding to the original beats and are provided as
input to the D. D returns high error that is backpropagated to
generator network in order to optimise G weights. Now again
the D is trained as explained in IV-E. The aforementioned
steps are repeated for several number of batches and force the
loss of generator and discriminator to alternately maximize and
minimize the value function V (G,D) as provided in Eq. 1 and
achieve the Nash Equilibrium by approximating the generator
probability distribution pz(z) to the original beats distribution.
The training is not stopped by monitoring the losses as the
GAN training is highly unstable in nature. Adam optimizer



[31] was employed during the training of discriminator with
LR = 0.0002 as suggested in [28].

G. Evaluation Metrics

The model performance is measured by the quality and
diversity of the generated signals. The generated signals cor-
responding to a class should persist low entropy (quality),
whereas the entropy across signals of that class should be high
(diversity). The former property forces the signal to resemble
that particular class, and the later property alleviates the
chances of mode collapse in the generator. Regarding the for-
mer property, we calculate the class-wise scores, and regarding
the later property, we calculate the probability distribution of
generated data Pg and real data Pr of each class individually.
We used seven evaluation metrics namely, Frechet Inception
Distance (FID), Dynamic Time Warping (DTW), Euclidean
Distance (ED), Maximum Mean Discrepancy (MMD), Pearson
Correlation (PC), Kullback Leibler Divergence (KLD) and
Time Warp Edit Distance (TWED).

Frechet Inception Distance Evaluates synthetic signals
based on the statistical information of generated beats com-
pared to the statistical information of real beats [32]. FID can
be calculated using Eq. 5.

d2((µ1, σ1), (µ2, σ2)) = ||µ1 − µ2||2+
Tr(σ1 + σ2 − 2 ∗

√
σ1 ∗ σ2)

(5)

where, µ1, µ2 are the mean of real and synthetically
generated beats. σ1, σ2 are the covariance matrix or the second
moment for the real and synthetically generated beats. Tr
refers to the trace linear algebra operation (element sum) along
the main diagonal of the square matrix.

Maximum Mean Discrepancy Calculates the distance be-
tween the mean of Pr and Pg . However, the variance of
probability distributions might be different [33]. Gaussian
MMD can be calculated using Eq. 6.

MMD2 =
1

n(n− 1)

n∑
i=1

n∑
j 6=1

κ(xi, xj)−

2

nm

n∑
i=1

m∑
j=1

κ(xi, yj) +
1

m(m− 1)

m∑
i=1

m∑
j 6=1

κ(yi, yj)

(6)

where, κ(x, x′) =
k∑
j=1

e−αj‖x−x′‖2 with bandwidth α equal

to the pairwise distance between the joint data.
Dynamic Time Warping Estimates dissimilarity between

two varying time series signals [34]. It optimally aligns the
two time series signals and calculate the distance between
them. Since the heartbeats become either fast or slow naturally,
DTW becomes more suitable in these type of situations [13].
Accumulated cost is calculated using Eq. 7.

Di,j = f(xi, yj) +min{Di,j−1, Di−1,j , Di−1,j−1} (7)

where f(xi, yj) = (xi − yi)2, for i = {1, ..., N} and j =
{1, ...,M} where N and M is the lengths of signal x and y.
Fast DTW was employed for approximating DTW, owing to
this the computational complexity is reduced to O(N) [35].

Euclidean Distance Quantifies the distance between gen-
erated signal x and real signal y. ED can be calculated using
Eq. 8.

dED(x, y) =

√√√√ N∑
k=1

(xk − yk)2 (8)

where N is number of samples in signal.
Pearson Correlation Measures the strength of linear cor-

relation between two signals. It varies from −1 ≤ PC ≤ 1.
Higher the value of PC better the correlation between the
signals. However, the drawback is its sensitivity towards
outliers, as a single outlier reduces the correlation hugely. PC
between signal X and Y is calculated using Eq. 9.

PC(X,Y ) =

∑n
i=1(Xi −X)(Yi − Y )√∑n

i=1(Xi −X)2
√∑n

i=1(Yi − Y )2
(9)

where, Xi, Yi are individual samples of signal X and Y . X
and Y are the mean of X and Y and n is the length of signal.

Kullback Leibler Divergence KLD represents the amount
of information loss while approximating one distribution with
the other [36]. However, KLD is not symmetric. KLD between
Pr and Pg defined on the same probability space is provided
by the Eq. 10.

DKL(Pr||Pg) =
N∑
i=1

Pr(xi). log
Pr(xi)

Pg(xi)
(10)

where, DKL(Pr||Pg) is often called the information gain
achieved if Pg is used instead of Pr. Pr(x) is one of the
signal obtained from distribution Pr.

Time Warp Edit Distance It represents the elastic distance
metric which enables warping in time domain and integrates
the edit distance with Lp−norms and is denominated using a
stiffness parameter, ν and a mismatch penalty, λ [37]. TWED
between signals x and y can be calculated using Eq. 11.

g(xi, yj) = min{g(xi, yj) + δ(xi, yj), g(xi−1, yj)

+ δ(xi), g(xi, yj−1) + δ(yj)}
(11)

where, i = {1, 2, ..., N}, j = {1, 2, ...,M}, g(x0, y0) =
0, δ(xi, yj) = cost(xi,yj) + cost(xi−1,yj−1) + 2ν.|i − j|,
δ(xi) = cost(xi,xi−1)+λ+ν, δ(yj) = cost(yj,yj−1)+λ+ν,
g(xi, y0) = g(x0, yj) =∞, and cost(xi, yj) = |xi−yj |2. The
dissimilarity value g(xN , yM ) between Pr and Pg is defined as
the TWED metric. Twenty four possible constant combinations
for λ = [0, 0.2, 0.4, 0.6, 0.8, 1] and ν = [0.001, 0.01, 0.1, 1]
were computed to obtain a series of TWED values. The
minimum of the obtained values is considered as the final
TWED value.



A lower score of FID, MMD, DTW, ED, KLD and a high
value of PC depicts that the two distributions are similar to
each other and have a high correlation.

V. RESULTS AND DISCUSSION

We mainly discuss two sets of experiments which involve
the use of two different types of noises, gaussian and uniform
noise in addition to two different loss functions, binary cross
entropy and least square loss [38]. Firstly, we took the data of
all four classes namely N, SVEB, VEB and F. Secondly, we
used the data of only three minority classes namely SVEB,
VEB and F. The purpose of breaking down the experiments
in these two broad categories was to observe the impact of
majority (normal) class over the minority (SVEB, VEB and
F) class during data generation. The hierarchy of the conducted
experiments is provided in figure 3. We split the experiments in
three levels: class (three or four), type of input noise (uniform
or gaussian), and the loss function (least square or log loss).

In our initial experiment, the DCCGAN generated similar
type of signals for a class with no diversity in the generated
signals regardless of the latent input provided to the model.
This problem was bound to happen as our model was sus-
ceptible to mode collapse, i.e., even though the discriminator
was classifying the real and generated signals correctly, it
was unable to differentiate between multiple generated signals.
We alleviated this problem by performing batch wise training
using a batch size of 256. During batch wise training the model
was updated only at the end of each batch providing the model
a combined error of multiple samples. Using this the GAN was
now able to differentiate between multiple generated signals
with respect to different latent noise input.

Initially we used three different loss functions that includes:
(i) wasserstein loss [24], binary cross entropy and least square
loss [38]. Out of these, the wasserstein loss did not converged
even after 400 batches whereas the log loss and least square
converged after 100 and 60 batches, respectively. Hence, we
did not consider the wasserstein loss for the rest of this work.

Input to the generator was also changed to observe the
effect of noise on generated signals. For this purpose, we used
two types of noises: Gaussian (Normal) and uniform noise
distribution. The normal noise distribution is represented as
N (µ, σ) where µ = 0 and σ = 1 and the uniform noise
distribution is represented as U(a, b), where a = 0 and b = 1.

The model with uniform noise as input to generator and
binary cross entropy loss in the discriminator is described as

Fig. 3: Illustration of different Set of experiments performed.

Uni BCE. Model with uniform noise and least square loss
is described as Uni MSE. Model with gaussian noise and
binary cross entropy loss is described as Gaus MSE. Model
with gaussian noise and least square loss is described as
Gaus MSE.

The network size of both generator and discriminator was
also increased by two layers of Conv(x ∗ y)-BN-ACT aka
CBA(x ∗ y). Two CBA layers were appended after the second
last activation layer in the discriminator with CBA(32*32)-
CBA(32*64). Two CBA layers were appended after the con-
catenate layer in the generator with UP-CBA(32*32)-UP-
CBA(32*64). The bigger models with uniform noise as input
and binary cross entropy loss is represented as Big BCE and
with least square loss is described as Big MSE. The training
procedure of the original DCCGAN was also modified by
allowing the generator to be trained twice for each batch. This
training procedure with binary cross entropy loss is referred
to as Gen2 BCE and the training procedure with least square
loss is referred to as Gen2 MSE.

Due to the limited computational power available, it was
not possible to calculate the evaluation metrics with the
complete dataset after every iteration. Therefore, only 200 real
and generated samples of each class were compared against
each other after every five batches for model performance
evaluation.
Data Generation for Four Classes
Table III depicts the average performance over all four classes
(N, SVEB, VEB, and F) for all the models. Uni BCE model
outperforms all other models on all evaluation metrics except
the metric DTW and TWED. Gaus MSE performed better
than Uni BCE for DTW and TWED. The model size was
increased to inspect whether the learning capacity of smaller
models was sufficient to learn the real data distribution. But
increasing the size of the model did not favour the data
generation capability of our DCCGAN.

TABLE III: Evaluation Metrics for all Models for Four Classes

Model FID MMD DTW ED PC KLD TWED
Uni BCE 12.47 0.10 30.92 0.22 0.52 0.08 9.91
Uni MSE 13.79 0.10 31.68 0.23 0.52 0.09 9.49
Gaus BCE 22.35 0.16 38.22 0.29 0.39 0.13 7.52
Gaus MSE 18.94 0.13 29.48 0.26 0.38 0.11 6.94
Big BCE 25.74 0.18 42.70 0.31 0.10 0.14 6.98
Big MSE 21.53 0.16 41.30 0.28 0.39 0.13 5.08

Gen2 BCE 24.60 0.18 42.60 0.30 0.16 0.14 7.66
Gen2 MSE 15.71 0.12 33.04 0.25 0.44 0.10 7.23

The models using MSE loss tend to perform better for all
the metrics. Uni BCE is an exception to this, as it performs
better than its MSE counterpart. This might happen because
discriminator only discriminates between the real and fake
signal when BCE loss is employed. This means that BCE loss
is only concerned with the labels (correct or incorrect) whereas
MSE loss is concerned with how correct and incorrect the
generated signals is as compared to the real signal. So MSE
loss penalizes the large errors heavily that in turn results in a
large update in generator weights as compared to BCE loss.



Big BCE and Gen2 BCE models miserably failed to per-
form for any metric except the TWED. The reason behind
this behaviour might be the more number of parameters in
Big BCE and overfitting in the case of Gen2 BCE.

As Uni BCE model outperforms the other models in most
of the evaluation metrics. We report the detailed class wise
results for all metrics in Table IV. The results depict a very
high pearson correlation of generated normal class (N) data
as compared to the real data due to highly imbalanced class
distribution in the dataset.

TABLE IV: Class wise Evaluation using Uni BCE Model

C FID MMD DTW ED PC KLD TWED
N 14.46 0.11 41.68 0.24 0.69 0.10 10.64
S 4.77 0.04 12.68 0.14 0.51 0.03 9.33
V 13.46 0.10 32.47 0.23 0.48 0.08 9.57
F 17.19 0.13 36.84 0.27 0.40 0.12 10.10

Figure 4 depicts the discriminator loss d real, d fake and
gan curves for the Uni BCE model when all the classes were
used. Although we trained the models for more than 400
batches, but the optimum values for all the evaluation metrics
were obtained at around 330th batch. All three losses are
showing a zigzag curve in the early phases of training before
stabilizing for a short period of time at around batch 310 to
320. However, the losses again increased after that instance.
All the losses were around 0.5 at batch 330 but the gan loss
increased after that and d loss stabilised after that. It is also
worth mentioning that the nest metrics obtained were also
generated during this batch itself.

Fig. 4: Loss curves for all classes for Uni BCE Model

Data Generation for Three Classes
Table V depicts the average performance of the models for
three classes (SVEB, VEB, and F) on all the evaluation
metrics. We can see that the model Uni BCE, Gaus MSE,
and Gem2 MSE performed better among all other models for
various evaluation metrics. The larger GANs were unable to
perform at par as compared to their smaller counterparts due
to limited data availability of minority classes.

The models using MSE loss tend to perform better for all
the metrics except Uni BCE with the same reason as before.
We report the detailed class wise results for all metrics for

TABLE V: Evaluation Metrics for all Models on Three Classes

Model FID MMD DTW ED PC KLD TWED
Uni BCE 14.97 0.11 31.30 0.24 0.50 0.09 5.13
Uni MSE 20.75 0.15 35.45 0.28 0.34 0.11 21.25
Gaus BCE 21.47 0.16 38.13 0.28 0.04 0.12 17.28
Gaus MSE 14.41 0.11 29.96 0.24 0.47 0.08 14.97
Big BCE 21.51 0.16 40.17 0.28 0.08 0.12 10.87
Big MSE 17.24 0.13 35.24 0.26 0.41 0.10 8.96

Gen2 BCE 20.85 0.15 36.93 0.28 0.22 0.11 15.90
Gen2 MSE 16.11 0.12 28.94 0.25 0.44 0.09 6.73

the classes SVEB, VEB, F using the model Gaus MSE in
Table VI. The results depict a very high PC of generated
fusion beats (F) data as compared to the real data due to the
data augmentation applied in II-A. A specific pattern can be
observed among all the classes ,i.e., SVEB shows the best
performance as compared to VEB and VEB better than F.
This pattern arose because the data augmentation technique
augmented the F beat data highest, then VEB data and SVEB
the lowest.

TABLE VI: Class wise Evaluation using Gaus MSE Model

C FID MMD DTW ED PC KLD TWED
S 7.84 0.06 21.73 0.18 0.35 0.04 14.77
V 14.86 0.11 30.66 0.25 0.48 0.08 14.57
F 20.54 0.15 37.50 0.29 0.57 0.13 15.57

Figure 5 depicts the loss curves for the Gaus MSE model
when three classes were used. Although we trained the models
for more than 400 batches, but the optimum values for all the
evaluation metrics were obtained at around 71th batch and
after that the model performance deteriorated. An erratic loss
curve can be observed for all batches except the range 60 to
100, at this range the GAN loss converged at provided us the
best performance.

VI. CONCLUSIONS

We proposed a deep convolution conditional generative
adversarial network model for generating normal as well as
abnormal beats comprising of supraventricular ectopic beats,
ventricular ectopic beats, and fusion beats. We experimented
with different loss functions such as log loss, least square

Fig. 5: Loss curves for 3 classes for Gaus MSE Model



loss and wasserstein loss in the discriminator in addition to
uniform and gaussian noise as an input to the generator. Soft
labels were used for faster training of the model. The quality
of generated beats was evaluated using seven quantitative
indicators on the standard MIT-BIH benchmark database and
found that our model effectively generates different classes
of beats. Moreover, the loss curves were analysed to identify
if the training was ideally successful. If the loss converges,
the GAN succeeds in learning the desired data distribution
during the training phase. As the loss curves exhibits an erratic
behaviour during the training, further research is required to
stabilise GANs during training.
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