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Abstract—Despite the successful application of Deep Rein-
forcement Learning (DRL) in a wide range of complex tasks,
agents either often learn sub-optimal behavior due to the
sparse/deceptive nature of rewards or require a lot of interactions
with the environment. Recent methods combine a class of
algorithms known as Novelty Search (NS), which circumvents
this problem by encouraging exploration towards novel behav-
iors. Even without exploiting any environment rewards, they
are capable of learning skills that yield competitive results in
several tasks. However, to assign novelty scores to policies, these
methods rely on neighborhood models that store behaviors in an
archive set. Hence they do not scale and generalize to complex
tasks requiring too many policy evaluations. Addressing these
challenges, we propose a function approximation paradigm to
instead learn sparse representations of agent behaviors using
auto-encoders, which are later used to assign novelty scores to
policies. Experimental results on benchmark tasks suggest that
this way of novelty-guided exploration is a viable alternative to
classic novelty search methods.

Index Terms—Reinforcement Learning, Exploration, Novelty
Search

I. INTRODUCTION

One of the goals of artificial intelligence is to develop
agents that learn to perform any given task by interacting with
an unknown environment. Recent progress in this regard has
been achieved through reinforcement learning techniques in
combination with deep learning (DRL). These were applied
successfully to a wide range of complex tasks including
playing games [14], [31], navigating complex environments
[13], [35], and controlling robots [6], [28]. Nevertheless, RL
faces several challenges that limit its application in real-world
systems. First of all, the learning is purely based on sparse
reward signals which are available only when agents reach
the goal state. Especially in tasks dealing with long horizons,
propagating reward signals to past actions poses a significant
challenge of temporal credit assignment and requires a large
number of roll-outs to learn a suitable policy. Addressing
this challenge, a multitude of methods have been proposed
including shaping rewards [15], curriculum learning [7] and
temporal difference methods that extend bootstrapping using
multi-step returns [2], [29].

Second of all, for many real-world problems, the design of
reward functions can be challenging and susceptible to several
concerns [1]; (i) reward hacking: the agent may maximize the
reward without performing the intended task. For example, in
a system that learns to ride bicycle [23], the agent had learned

to ride in circles around its starting position because the reward
function was chosen such that positive reward is given every
time progress is made towards the goal but, on the other
hand, no penalty was given for not reaching the goal position
(ii) deceptiveness: the reward functions can be deceptive.
Consider, for example, an agent learning to navigate in a grid
environment with a reward function that rewards positions
close to the goal position. Simple policy learning without
adequate exploration may get stuck in deceptive walls and fail
to reach the target. Inverse reinforcement learning methods
[16], [33] tackle this by inferring reward functions directly
from expert demonstrations while simultaneously learning a
policy for solving the given task. Alternatively, approaches
that involve human interaction [11], [20] rely on obtaining
preferences about policies from human trainers to learn desired
optimal behavior.

Third of all, agents interacting in RL environments en-
counter the exploration-exploitation dilemma. If the agent
greedily takes actions with high action-value, it may fail
to uncover alternate actions that may yield better payoffs
later on. In several RL solutions, exploration is still mostly
random and performed using simple methods such as epsilon-
greedy strategies, or Gaussian or Boltzmannian policies. While
approaches such as count-based exploration [17], intrinsic
or curiosity [18] have been studied recently, they either re-
quire enumerating over state-action spaces or require learning
state-transition models rendering them impractical for high-
dimensional tasks. Alternatively, exploration is also achieved
in parameter space of deep neural networks using black-box
evolutionary algorithms such as Evolution Strategies (ES) [25],
[26] which have been found to have faster training wall-
clock times and scale better than traditional RL algorithms.
Yet, deceptiveness and sparseness in reward signals still cause
longer training times in ES thus demanding a more directed
exploration instead of random exploration.

This work belongs to the class of methods known as Novelty
Search (NS) [9], [10] which are well suited to promote directed
exploration in sparse/deceptive problems. The principal idea
is to incorporate a domain-specific behavioral characteristic
(BC) that captures agent’s behavior and then to encourage the
agent to perform different (novel) behaviors than exhibited
earlier. For instance, [4] considers “final position of agent”
as the BC while [9] uses “distance travelled by agent” in a
bipedal locomotion task and found that optimizing novelty of
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this BC is superior to optimizing the standard reward objective.
In general, BCs can be defined by domain experts based
on the task at hand directly leveraging expert knowledge.
Our work is based on an approach [4] that integrates a
novelty objective into the standard reward objective which
has shown to improve exploration in several benchmark tasks.
However, such an approach has several drawbacks. Typically,
an archive set of fixed size is used to store observed policies
and their behaviors. To compute novelty of a given policy,
its nearest neighbors are first retrieved and a simple metric
then assigns scores to the given policy based on distance to
its neighbors. As complex tasks require a large dimensional
behavior characteristic and evaluate a large number of policies,
finding nearest neighbors on such a large archive set becomes
a bottleneck computationally. Also, it may not generalize well
as only a limited set of policies can be stored in the archive
set.

In this work, we alleviate these concern of scalability
and generalizability pertaining to novelty search methods.
In particular, we propose to take a function approximation
perspective and employ an auto-encoder to learn representation
of agent behaviors. Instead of using distance based methods for
computing novelty, they can be encoded using auto-encoders.
Then, reconstruction errors can be used as novelty bonuses to
policies. The main idea is that novel behaviors tend to produce
relatively larger errors than behaviors observed in the past.
This way of assigning novelty scores to policies based on their
reconstruction error can encourage robust exploration towards
less visited areas of behavior space. Further, in order to encode
diverse set of behaviors and to encourage generalization, we
propose to use a sparse variant of auto-encoder namely k-
sparse auto-encoders. More importantly, we learn this model
concurrently along with the learning policy. Therefore, our
main contribution is a simple, scalable and efficient explo-
ration approach using novelty scores for policies along with a
detailed experimental evaluation against classic novelty search
and policy gradient methods.

II. RELATED WORK

Exploration is an actively studied area in reinforcement
learning. Several methods have been proposed to promote
directed exploration in RL; The general theme of most ap-
proaches is to encourage agent to visit states that are seldom
visited. Early work [27] in this regard proposed to learn a
curiosity model which predicts future events using history
of interactions with environment. The arising prediction error
is then seen as intrinsic reward that drives towards creative
solutions. Methods [3], [17] that assign novelty scores based
on visitation counts either on raw states or encoded states were
also proposed. On the other hand, approaches that maximize
the information theoretic objectives [5], [8] to learn exploration
strategy by encouraging diversity. Methods that are most
related to our approach are convolutional auto-encoders [34] to
encode the given observation to hash codes upon which count-
based exploration rewards are generated, forward dynamics
model [18], [32] that learn one-step state dynamics from pre-

vious states and actions; and use prediction error as exploration
rewards. Extending on previous methods, an interesting work
[19] proposed to use disagreement arising from an ensemble of
forward models as intrinsic rewards to policy learning. While
most previous work considered generating exploration bonuses
at each step using input observation space, in contrast, our
work focuses on encoding episodic agent behaviors in novelty
search methods.

III. PRELIMINARIES

A. Markov Decision Process

Typically, a standard reinforcement learning setting of an
agent interacting with an environment; The environment is
formulated as an infinite-horizon discounted Markov Decision
Process (MDP) defined by a tuple 〈S,A,T ,R, λ〉 where S
is a set of states, A is a set of actions available to the agent,
R is the reward function, T is the transition probability. and
λ ∈ (0, 1) is a discount factor. At each time step t, the
agent receives an observation ot about the state st of the
environment, performs an action at, and receives a scalar
reward rt. Upon an action at, the environment transitions to
a new state st+1 according to the function T (st+1, st,at)
and returns with a scalar reward rt = R(st+1, st,at).

Planning in MDP is achieved by following a policy function
π(st,at) which maps each state-action pair (st,at) to the
probability of selecting the action in the particular state;
Therefore, our goal is to find an optimal policy that maximizes
the return discounted by λ ∈ (0, 1) over a period of time T
given as GT =

∑T
t=1 λ

t−1rt. For high-dimensional state and
action spaces, the policy π is often represented as a deep neural
network πθ with weights θ. Then, the goal is to determine
optimal weights θ∗ that maximize the expected cumulative
reward θ∗ = argmaxθ Eπθ

[
GT
]

The policy learning is typically achieved via stochastic
gradient ascent where the gradient ∇θEπθ

[
GT
]

is obtained
using sampled sequences (st,at, rt, st+1 . . . ) of interactions
with the environment and can be computed via policy gradient
methods [21], [22], [26], [28], [30]. In our work, we consider
to use a gradient approximation technique described in the
next section to estimate this gradient rather than using online
policy gradient algorithms. This choice is primarily due to its
benefit of easy integration of novelty scores into the objective
function as well as its parallelizable capabilities which is well
studied in [4], [26].

B. Evolution Strategies (ES)

Evolution Strategies (ES) [24], [25] are heuristic search
procedures inspired by evolution. In each iteration, a popu-
lation of perturbed parameters is generated and an objective
function is evaluated. Using a process akin to natural selec-
tion, parameter vectors are then combined to create the next
population and this process continues until a a population
reaches a satisfactory performance. There exist several flavors
of ES w.r.t. the representation of parameters or the selection
process. The version we use here belong to the class of Natural
Evolution Strategies (NES). Let f be the objective function



acting upon parameters θ. In a reinforcement learning setting,
it is the stochastic return obtained from the environment.
NES algorithms maintain the population as a distribution
over parameters θ. Typically, the distribution corresponds to
a multivariate Gaussian centered around the current parameter
with co-variance σ2I (ie.) θ ∼ N (0, σ2I). Given this, NES
seeks to maximize the average objective of the population
Eθ∼N (0,σ2I)[F (θ)] by optimizing the parameters θ. Generally,
NES also updates the co-variance of the population distribu-
tion, but as in other RL approaches, we use a static co-variance
σ by fixing it throughout the training.

To estimate the gradient of the expected cumulative reward
in iteration k, n perturbations are sampled from the distribution
by adding Gaussian noise to the current parameter vector θ
(i.e. θk = θk+σεi where εi ∼ N (0, I)). The gradient is then
approximated by a sum of sampled perturbations weighted by
their corresponding objective function measurements

∇θkEε∼N (0,I)[F (θk + σε)] ≈ 1

nσ

n∑
i=1

F (θik)εi (1)

Typically, the objective function evaluations F (θik) are
subject to rank-normalization before computing the gradients
to ensure that the reward scales between different tasks does
not affect the optimization process.

C. Novelty Search with Nearest Neighbors

One of the reasons why RL can not cope well with
sparse/deceptive problems is that the reward function usually
does not take into account intermediate stepping stones that
would allow for learning target skills. Hence, solving such
tasks purely with goal-only rewards raises considerable chal-
lenges and demands numerous interactions with environment.
Novelty Search (NS), inspired by nature’s tendency towards
evolving increasingly complex behaviors, tackles this by using
novelty as a proxy for stepping stones. In other words, NS
aims to drive the search process towards policies with higher
novelty, rather than to ones with higher cumulative reward.

In order to differentiate behaviors, each policy πθ (param-
eterized by a DNN with weights θ) is assigned a domain-
dependent Behavior Characteristic (BC) denoted as b(πθ).
For instance, in case of grid navigation or bi-pedal walking
domains, it simply could be the final two-dimensional position
of the agent at the end of an episode. However, considering
only the final position may not be sufficient to distinguish
different behaviors terminating at the same position, therefore
it is necessary capture the trajectory of agent positions con-
catenated as a sequence to form BC [4].

In the classical sense, a set of fixed size typically known
as archive set A is maintained to store observed policies and
their behaviors. Given this set, we desire a metric N(θ,A)
that allows us to measure novelty of a given parameterized
policy πθ. Typically, it is defined as the average distance to

its nearest neighbors K. Higher the distance to its neighbors,
higher is the novelty and vice versa.

N(θ, A) =
1

|K|
∑
i∈K

‖b(πθ)− b(i)‖2

(2)

∇θkEε∼N (0,I)[N(θk + σε)] ≈ 1

nσ

n∑
i=1

N(θik,A)εi (3)

We can then resort to the ES framework from Sec III-B to
estimate the novelty gradient with respect to current policy
parameters θk and taking a step towards parameters that
produce novel behaviors. Initially, this scheme of search may
start with idle behaviors or ones that fail immediately. As
the optimization progresses, these behaviors will become less
novel paving way for “stepping stones” to be discovered such
as behaviors that walk for few time steps. Further along the op-
timization, behaviors of increasing complexity are identified,
and, eventually, agents learning to walk far or to navigate the
grid will be discovered.

D. Combining with RL

Novelty Search can be incorporated in both settings; in
sparse/deceptive settings where RL is not just enough and in
general to speed up RL by promoting exploration even with
dense rewards. In either case, NS and RL objectives can be
combined [4] as their weighted combination and the update
rule is given as follows:

θk+1 = θk + α
1

nσ

n∑
i=1

wF (θik)εi + (1− w)N(θik,A)εi

(4)

where w is the importance given to reward objective, referred
as “reward pressure”. By following gradients to this objective
function, policies that are both novel and achieve higher
rewards can be searched. Further, w can be adapted based
on learning progress. Initially, w is set to 1.0 to purely pursue
environment reward signals. However, if the performance is
not improved in a few iterations kmax, then w is decreased
by δw. At this point, gradients slightly start to follow novelty
until the performance has improved, then w is incremented by
δw.

IV. NOVELTY BONUSES VIA ENCODED BEHAVIORS

Our aim is to come up with a general mechanism for
computing novelty of a given policy rather than relying on
using neighborhood methods to store and retrieve closest agent
behaviors. To that end, we propose to learn representations
of agent behaviors such that the prediction error in behavior
space provides a good novelty bonus. This representation can
be learned using a deep neural network namely an auto-
encoder consisting of two components: the first component
maps the behavior into an encoded vector and the second
component takes the encoded vector as inputs and reconstructs
the behavior back. As novel behaviors are unseen inputs to this
model, the arising prediction error can be seen as a measure of



novelty. In the same way, frequently occurring behaviors tend
to have lesser prediction error and will be assigned a lower
novelty score.

Aligning with other novelty-search works, we also consider
an episodic setting of reinforcement learning (i.e.) novelty
bonuses are assigned to a policy at the end of an episode.
Therefore, the behavior characteristic is a fixed-length se-
quence of agent positions sampled at specific intervals as
discussed earlier. In addition to novelty rewards, agents also
receive the cumulative reward from the environment.

a) Training: Next, we describe the model of the auto-
encoder to learn behavior representations. The model consists
of an encoder network with parameters φe and the decoder
network with parameters φd. The input to the model is a
behavior characterization vector b ∈ RD. The encoder network
projects this vector into an encoded vector h ∈ RZ . Given this
representation as input, the decoder network re-constructs the
input behavior as b′ as follows:

h = fe(We · b+ be) (5)

b′ = fd(Wd · h+ bd) (6)

where fe is the activation function of the encoder which is
typically a sigmoid function and fd is the decoder’s activation
function which is an identity function. The parameters of
the encoder and decoder such as φe = {We, be} and
φd = {Wd, bd} respectively are jointly optimized to min-
imize the reconstruction loss L between the actual and the
predicted behaviors as in Eq: (7). In order to perform stable
gradient updates, the observed behaviors are stored in a fixed
sized behavior buffer (similar to archive set in novelty-search
methods). Then, at each learning step, a mini-batch is sampled
to perform the gradient descent.

L(b, b′) =

D∑
i=1

(bi − b
′

i)
2 (7)

b) Sparse Encoding: However, in-order to encode di-
verse behaviors, we consider k-sparse auto-encoders [12], a
simple variant of auto-encoders to enforce sparse representa-
tions. During the feed forward phase, the hidden activations
of the encoder are sorted and only the top k hidden units
are retained while rest of the units are set to zero. By
back-propagating only through these active hidden units, the
decoder learns to reconstruct the given input by using very few
units, thereby also acting as a regularizer. To compare sparsity
in networks with different number of hidden units, we define
the sparsity level sparse as the ratio of hidden units which are
retained for each sample of input. We summarize the training
of sparse auto-encoders in the Algorithm 1.

c) Novelty Scores: Given a policy πθ and its behavior
characterized by b(πθ) obtained by rolling out an episode
with πθ. Then the novelty bonus is obtained by passing the
behavior sequence to encoder-decoder networks to obtain the
reconstruction error N(θ) = L(b(πθ), b

′(πθ)).

In summary, our agent is composed of two sub-systems:
a behavior auto-encoder model that outputs a novelty bonus
for the given policy and a policy network that outputs a
sequence of actions to maximize the joint objective function
of cumulative reward and novelty. We summarize the entire
training approach in the Algorithm 2.

Algorithm 1 Fit Sparse Behavior Auto-encoders

Input: Learning rate β, epochs E, batch size m, behavior
auto-encoder parameters φe, φd, behavior buffer A, Spar-
sity level sparse
for i = 0 to E do

Generate batches of size m from the behavior buffer
for b in batches do

Compute encoded vectors h by forwarding b to the
encoder using Eq. 5
Find indices of largest activations of h according to
specified sparsity level ind = topsparse(h)
Set activation of other units to zero h(indc) = 0
Compute decoded values b

′
using Eq. 6

Compute the reconstruction error L(b, b′) using Eq. 7
Backpropagate the error L through the encoder and
decoder
Update φe and φd by taking a gradient descent at the
rate β

end for
end for

Algorithm 2 Novelty-Guided RL via Encoded Behaviors

Input: Learning rate α, initial reward pressure w, iterations
K, ES parameters n and σ

Initialize: Policy parameters θ, behavior auto-encoder, behav-
ior buffer A = {}
for k = 0 to K do

for i = 1 to n do
Sample εi ∼ N (0, σ2I)
Compute θik = θik + σεi
Perform a roll-out with policy πθik and obtain behaviors
b(θik)
Compute novelty bonus N(θik) using behavior auto-
encoder’s reconstruction error
Compute cumulative reward F (θik)

end for
Update policy network: θk+1 = θk +
α 1
nσ

∑n
i=1 wF (θ

i
k)εi + (1− w)N(θik)εi

Add sampled behaviors b(πθik), i = 1 . . . n to the behav-
ior buffer
Update behavior auto-encoder by performing a gradient
descent step with behavior buffer
Adapt the reward pressure w based on learning progress
as discussed in Sec III-D

end for
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Fig. 1: Average learning curves of agents that are trained using only novelty gradients for the continuous control tasks. We
can observe that the pure novelty exploration via encoded behaviors perform better than the classic novelty search methods in
most tasks. It is also observed that the agents can still learn to perform the tasks without using the environment rewards
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(b) Inverted Pendulum
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(c) Inverted Double Pendulum
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Fig. 2: Average learning curves of agents that are trained using both novelty and reward gradients for the continuous control
tasks. We can observe that the novelty guided methods perform better than ES using only rewards. In particular, novelty guided
methods using autoencoders perform better than classic neighborhood methods.

V. EXPERIMENTAL RESULTS

We test our methods on the Mujoco continuous control
tasks which provide a standard set of benchmark tasks. In
particular, we consider 4 tasks: Inverted Pendulum, Inverted
Double Pendulum, Half-Cheetah and Hopper.

For all our experiments, the policy network is a multi-layer
perceptron with two hidden layers containing 64 tanh neutrons
each. The input to the network is the observation space from
the environment and the output is an action vector of motor
commands. ES is trained with a learning rate α = 0.01
and a noise standard deviation of σ = 0.1. To keep the
experiments tractable, we limit the number of samples drawn
from the population distribution in each generation to n = 50.
For the baseline novelty method using nearest neighbors, we
fix k = 10 and use an archive set of size 1000 which is
implemented as a FIFO so that only the recent behaviors
are kept. The behavior characteristic BC is a sequence of
agent trajectory sub-sampled at specific intervals to have a
fixed length of 50. The behavior auto-encoder is composed
of feedforward multi-layer perceptrons whose configurations
and their sparsity levels are chosen based on a formal grid
search. It is trained with Adam optimizer with learning rate of
β = 0.001 and batch size of m = 100. For fair comparison,
the size of the behavior buffer is also limited to |A| = 1000
containing only the recent behaviors.

a) Novelty Search: First, we evaluate our method on a
pure novelty search scenario by setting the reward pressure w
to 0 and compare against classic method using k-nearest neigh-
bors. As discussed in Sec III-C, NS methods require a domain-
specific behavior characteristic (BC). For the pendulum tasks,
BC is chosen as a trajectory of cart and pole positions. And for
other locomotive tasks, it is chosen to be the 2-D trajectory of
agent positions relative to the start position when the episode
begins. Since agents might learn behaviors that move in the
backward positions, it is necessary to align this BC with
respect to the task of moving forward. For this reason, we
clip the behavior space such that all behaviors with negative
offsets (with respect to initial position) collapse to zero offsets.
Fig 1 shows the learning curves of agents trained using only
novelty gradients averaged over several runs. The important
result is that our method of novelty-guided by behavior auto-
encoders outperforms classic novelty methods in the tasks of
Half-Cheetah, Hopper and Inverted Pendulum. In the task of
Inverted Double Pendulum, classic novelty search performed
slightly better, yet both the methods cannot solve the task
while pursuing the novelty alone.

b) Novelty-Guided RL: Although novelty search methods
are able to learn the necessary tasks skills without having
access to reward functions, they still ignore some other aspects
of reward functions such as energy efficiency, performance etc.
To that end, they must be combined with reward gradients
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(d) Hopper

Fig. 3: Effects of sparsity levels in pure novelty search methods. It is evident that sparse representations perform better than
dense encodings in most settings.
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Fig. 4: Effects of sparsity levels in novelty guided methods. It is evident that sparse representations perform better than dense
encodings in most settings.

by adapting reward pressure accordingly based on learning
progress as discussed in Sec III-D. To benchmark our methods,
we consider the policy gradient method namely Evolution
Strategies (ES) that considers only reward signals. For the
adaptive methods combining with RL, we initially set the
reward pressure to w = 1.0. The maximum stagnation steps
is kmax = 50 and δw = 0.05. Fig 2 shows the learning
curves averaged over several runs. Our important results are
summarized as (i) novelty guided methods which use both
novelty and reward signals perform better than ES and speed
up learining in almost tasks (ii) Novelty guided by behavior
models outperformed classic novelty search in three out of
four tasks and performed equally well in the other tasks. (iii)
The benefit of novelty-guided methods is clearly observed in
difficult tasks such as half-cheetah, hopper etc. Also, it can
be seen that scores of pure novelty search (Fig 1 (a), (d)) are
higher than that of novelty-guided methods (Fig 2 (a), (d)) in
some tasks. This could be because, novelty-guided methods
also use reward signals, which penalize agents for its cost of
motor actions, which might hinder the learning, whereas pure
novelty search ignores these aspects, thereby not impeding the
learning process.

A. Sparsity Levels

To understand the effect of enforced sparsity constraint, we
considered behavior auto-encoders with different hidden layer
configuration and sparsity levels sparse of 0.25, 0.5 and 1.0.
Note that the sparsity level of 1.0 corresponds to the classic

auto-encoder in which all of the hidden units are used for
reconstructing the given input. For this analysis, we consider
the final performance of these variants over several runs. Fig
3 captures the effects of sparsity when using only the novelty
gradients, with the help of a box plot showing the distribution
of final performance. As it is observed, in most settings,
the sparse encodings with levels of 0.25 and 0.5 perform
better than the dense encoding of 1.0. Next, we performed the
same analysis by considering the final performance when both
novelty scores and rewards are used for learning. The plots in
Fig 4 also suggests that the sparse encodings also performed
better in most cases. In a nutshell, these results indicate that
sparse representations are preferred over dense; however, this
is another hyper-parameter which has to be tuned for the given
task at hand.

B. Ablation analysis

a) Effect of Sequence Length: As discussed earlier, the
chosen behavior characteristic is a sequence of 2D agent
positions at specific intervals. For instance, in the task of
Hopper, the sequence length is fixed to be 50. However,
we would like to vary the sequence length and compare its
influence on the final performance for both the novelty guided
methods. We chose Hopper task as a testbed for this analysis as
it is one of the difficult tasks. Fig 5 (a), (b) shows the box plot
showing the performance using different sequence lengths. As
seen in Fig 5 (a), the performance of neighborhood methods
is affected by the sequence length; more importantly, it does
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(d) Archive Size: AE

Fig. 5: Ablation analysis: The plots (a),(b) shows the effect of sequence length on the performance for KNN and AE methods.
Similarly, plots (c),(d) shows the effect of archive size on the performance for KNN and AE methods. It is observed that AE
scales well to longer sequences and it requires only small buffer for learning

not scale well to longer sequence lengths. As seen in Fig 5
(b), for auto-encoders, the increased sequence length yields
better results than shorter ones which show the scalability of
function approximators using autoencoders.

b) Effect of archive size: The neighborhood models rely
on a fixed-sized archive set using which the novelty scores are
computed. Similarly, for autoencoders, a fixed-sized behavior
buffer is used to sample behaviors to fit the model. To
understand the influence of the size of the archive set and
the behavior buffer, we performed an analysis on the Hopper
task again. Fig 5 (c), (d) shows the box plot showing the
performance using different sizes for the neighborhood models
and autoencoders respectively. Clearly, the size influences
the performance of neighborhood models, as seen in 5 (c).
Larger the size, better the performance indicating that accurate
novelty scores can be computed using a larger sized archive
set. On the other hand, as it is observed in 5 (d), the size of the
buffer does not influence the performance. In fact, even with
a smaller buffer, the results are still competent. This shows
that the autoencoders rely on encoding the behaviors in the
weights of the network and rely less on stored behaviors in the
buffer, therefore it can scale better compared to neighborhood
models. Meaning, with further investigation and analysis, the
behavior buffer can also be dropped entirely while the learning
can be performed online using the sampled behaviors at each
iteration. Regarding computation costs, the cost of computing
novelty score is independent of buffer size K when using
auto-encoders. In contrast, for the classic novelty search,
it is O(K), which we have avoided with the auto-encoder
approach. Yet, this scalability and generalizability come at the
cost of additional training time of auto-encoders.

VI. CONCLUSION

In this paper, we addressed the limitations of novelty-
search methods for reinforcement learning, which often suffer
from lack of scalability or generalizability. We proposed a
simple and scalable approach based on sparse behavior auto-
encoders that can assign exploration bonuses to novel policies.
Experimental results obtained for continuous control tasks
suggest that our approach provides a viable alternative to

novelty-search methods that classically rely on the notion of
nearest neighbors among known policies.

Our work opens up several directions for further research.
First of all, the use of behavioral characteristics instead of
reward functions could also be an alternative for reinforcement
learning settings where one has to specify rewards at each
step. Here, it is fairly straight-forward to specify a behavior
characteristic rather than specifying reward functions. Yet,
modeling or learning of appropriate behavioral characteristics
still is a largely unexplored research area. Here it seems
auspicious to pursue the idea of informed reinforcement, that
is, the idea of leveraging domain-knowledge in the design of
the learning procedure.

Second, learning representations for sequences is an active
area of research in several topics of machine learning such as
natural language processing, speech recognition etc. Our work
takes a first step towards applying such methods in the context
of novelty-search methods. We hope that this motivates further
work in the learning of efficient agent behavior representations
using sequence to sequence architectures, which is devoid of
fixed-length assumptions and is robust to temporal variations.
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