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Abstract—Streaming data analysis is currently a rapidly grow-
ing research direction. One of the serious problems hindering the
data stream classification is the fact that during the exploitation
of the model, its probabilistic characteristics may change. This
phenomenon is called concept drift. Until today, multiple methods
have been proposed to overcome their negative influence on
model performance during learning in dynamic environments.
This work introduces a new streaming data classifier based on
a dropout technique that can significantly reduce model restora-
tion time and performance loss and can improve its overall score
in the presence of recurring concept drifts. The usefulness of the
proposed algorithm is evaluated based on extensive experimental
study and backed-up with thorough statistical analysis.

Index Terms—Dropout, recurring concept drift, data streams,
restoration time, performance loss, multilayer perceptron

I. INTRODUCTION

Machine learning models that work in dynamic environ-
ments, like weather predictors, stock analyzers, or email filters,
have to handle multiple changes in upcoming data distribution
without losing their predictive performance, i.e., each model
should adapt to the changes as quick as possible without
significant deterioration of its quality [1].

The mentioned phenomenon of data distribution change is
unpredictable and is called concept drift [2]. The development
of methods that can deal with the analysis of non-stationary
data streams is currently the subject of intensive research. The
main challenge is to propose mechanisms for adapting the
model to changing data distributions. The most commonly
used approaches are based on concept drift detection and
subsequent model rebuilding when it occurs, or the built-
in adaptability of classification algorithms that are based
on forgetting mechanisms using sliding windows or instance
weighting. A group of algorithms often used is classifier
ensembles [3], which can adapt to concept drift due to a
change in the composition of the ensemble, or a change in
the so-called combination rule.

The paper will propose a method of non-stationary data
stream classification using the dropout [4] regularization tech-
nique. Models that use this technique drop some of their
neurons during the training process for each sample, which
helps them to generalize data accurately. We will use this
approach to construct a repository of models to classify a data
stream with the so-called reoccurring concept drift. Harries
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et al. [5] observed that context recurrence frequently appears
in financial prediction, dynamic control, or cyclic phenomena
caused, e.g., by season changes. We propose to generate
a new model for each new concept using the same neural
network architecture but dropping out a few neurons for each
training. We observed that when using this method, models
can significantly reduce the crucial metrics (as the restoration
time and the performance loss) during the classification of the
data stream affected by recurring concept drift and also keep
its accuracy on a satisfactory level.
In a nutshell, the main contributions of this work are as
follows:
o Explanation of the dropout usefulness in the recurring
concept drift environment.
e Proposition of a neural network model with dropout
regularization for the data stream learning.
o Evaluation of the proposed method based on the diverse
synthetic data streams.

II. RELATED WORKS

Some of the articles on data stream classification concen-
trate on incremental learning [6]. In this task, the classifier
is either updated or needs to retrain [7]. We consider the
data stream in the form of data chunks (batch learning). We
will skip the problem of how to properly adjust the size of
a chunk, but obviously, some advanced algorithms change
it dynamically [2], or they can process data using several
windows [8].

Let’s define a data stream as an ordered sequence

of values S = {51,59,...,5,}, which are usually
processed in a form of chunks. Each chunk
Si = @My, @y, @MY consists

of sequence of n observations, i.e., x, ’ stands for the values
of attributes describing the kth instance in the S; chunk,
while yl(k) denotes its label.

The probabilistic characteristics of data distribution can
change over time, and as we mentioned above, this phe-
nomenon is known as concept drift. Proper classification of
a data stream is dependent on an occurring drift type. Gama
et al. [9] discussed the different types of concept drift, and they
distinguished two main concept drift types: virtual and real.
The first one happens when data distribution change does not



affect model performance; i.e., it does not affect the shapes of
the decision boundaries. The second one forces our model to
re-adapt to the incoming data. Another taxonomy distinguishes
concept drift types because of its suddenness and enumerates
sudden and incremental drifts. The sudden concept drift results
in a significant model performance deterioration in a short time
because data distribution changes very fast. The variation of
the sudden drift is the gradual concept drift, i.e., it happens
if we may observe that the instances from two distributions
appear at the same before concept switches to new distribution.
The incremental concept drifts are smoother and can be han-
dled with adaptive learning methods. The recurring concept
drifts are usually highly predictable - we can prepare proper
defensive mechanisms before they come. They may occur both
suddenly or incrementally. Fig. 1 illustrates different types of
the concept drift for a simple one-dimensional data.
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Fig. 1. Illustration of the different types of concept drift.

One of the methods of dealing with the occurrence of
changes in data distribution is the use of so-called drift
detectors [10] or employ the adaptive skills of the classification
models. Bifet and Gavald introduced the drift detection method
based on adaptive windowing [11]. The main goal of this
approach was to keep statistics from a window of variable
size while detecting concept drift. Gama et al. [10] proposed
DDM (Drift Detection Method), which is the most well-known
representative of the detectors based on statistical method
control. It estimates a predictive performance of a classifier
(and its standard deviation), which (assuming the convergence
of the classifier training method) has to decrease as more
training examples are received. Modification of this approach,
called EDDM (Early Drift Detection Method), was proposed
by Garcia et al. [12]. It keeps a good performance against sud-
den concept drift and improves the detection rate of gradual
concept drift as well. The work by Gama et al. [9] presents
an interesting overview of the most popular adaptive learning
methods that help handle different types of concept drift and
among others, it also describes several windowing algorithms
that use the forgetting mechanism.

Another approach to dealing with concept drift is to use the
classifiers’ ability to adapt to changes in the data distribution.

The most commonly used models are the classifier ensembles.
Kuncheva [3] reviewed different ensemble methods for the
concept drift detection. Krawczyk et al. also presented a survey
about classifier ensembles for data stream classification and
regression [13]. One of the earliest well-known classifier
ensembles dedicated to data stream classification are AWE
( Accuracy Weighted Ensemble ) developed by Wang et al.
[14] and SEA ( Streaming Ensemble Algorithm ) proposed by
Street and Kim [15]. It was also worth mentioning Learn++
dedicated to stationary stream classification [16]. Learn++
constructs new neural network models on each incoming data
chunk and then combines their outputs using majority voting.
Its modification Learn++.NSE [17] was also proposed for the
classification of the non-stationary data streams. Katakis et al.
[18] proposed another example of an ensemble algorithm for
data streams containing recurring concept drifts. It assumed
building a conceptual feature space for batches of examples
and using the clustering algorithm for the identification of
different concepts. Brzeziniski and Stefanowski [19] presented
an accuracy updated ensemble algorithm adjusted for different
types of concept drift. In another work, they also proposed an
ensemble of combined block-based and online methods for
concept-drifting data streams [20].

Most of the classification models, even if they form a com-
plex model, experience a phenomenon of catastrophic forget-
ting [21]. It is highly undesirable in the case of recurring
concept drifts occurrence because the model has to learn the
same task several times. There were multiple approaches to
reduce the impact of catastrophic forgetting. Kirkpatrick et
al. proposed the Elastic Weight Consolidation algorithm that
helps to keep already gathered knowledge in neural network
[22]. Ksieniewicz et al. proposed to benefit from the forgetting
in overcoming concept drift related problems in an online
active learning approach [23]. The dropout-based technique
introduced in this work should not be affected much by
catastrophic forgetting because it is using submodels generated
for each task.

III. METHODS

Dropout, due to its similarity to ensemble methods, can be
beneficial in the learning from the data stream if we have some
prior knowledge about the data. Assuming that the streaming
samples are drawn from the fixed number of distributions,
we can expect the recurring drift appearance in the learning
process. To detect them we use DDM, mentioned above drift
detector introduced by Gama et al. [10], with an increased
sensitivity basing on assumption that the learner’s error rate
will decrease if the number of analyzed samples increase, as
long as the data distribution is stationary, and that there is no
disruptive noise in generated data streams. We assume that the
drift is detected if:

pi+8i mezn+155mzn (1)

where p; is the error rate of the learning algorithm for ¢ sample,
and s; is the standard deviation. To properly handle concept



drifts, the model can generate submodels by dropping out the
specified percent of its neurons on each detected distribution
change during the training process. Generated submodels
configurations can be stored in the models’ memory and used
to handle further concept drifts. Submodels are picked in a way
of internal accuracy evaluation using the lastly achieved data
chunk. Stream was processed using test-then-train method
[24], which was presented in Fig. 2.

We propose to drop the chosen neurons only in the training
phase. During the testing phase, all neurons are active, but
the weights of previously dropped neurons are multiplied by
the dropout retain probability. With this approach, we have
to make sure that our model has enough capacity to generate
a desired number of submodels. In the best-case scenario with
all data changes appropriately detected, the resulting number
of submodels should be equal to the number of distributions
available in the stream. The pseudocode of the proposed
method is presented in Alg. 1.

Algorithm 1 Dropout algorithm for the data stream
Input: m - model
s - data stream
ddm - drift detector (DDM)
n - number of chunks
test() - procedure that tests model with a chunk and returns
a score
train() - procedure that trains model with a chunk
change_detected() - procedure that informs about drift
occurrence using drift detector and last score
set_submodel() - procedure that evaluates all internal
submodels with the last chunk and returns the best one
for : =0 to n do

chunk <+ s(i)

score + test(m, chunk)

if change_detected(ddm, score) then

set_submodel(m, chunk)

end if

train(m, chunk)
end for

S A S > ey

There are two different ways to apply dropout on each
distribution change. The first way assumes making no addi-
tional modifications to weights during model switching. When
the new submodel is trained, its weights evolve separately
from the previous one. Further changes in other submodel
weights do not influence it. The second approach assumes
that some weights are being updated. It means that after
each switch, a newly picked submodel, just after dropout
application, updates its inactive weights that were active in the
previous submodel. We have to remember that all neurons are
used in the testing phase, so this method allows sharing some
knowledge among different submodels. These two approaches
are presented in Fig. 3.

Shaker and Hiillermeier [25] proposed the performance
metrics: restoration time and maximum performance loss,
which are very useful when we analyze the classifier reaction
to concept drift. The restoration time is defined as:

ta — 11
T

Tr = € [0,1] 2
where in our case, t; is a chunk number for which model
learning curve drops below 95% of the achieved accuracy, 3 is
a chunk number for which model learning curve restores to
95% of achieved accuracy, and 7' is the total number of chunks
in a single stream. For each drift appearance, the maximum
performance loss is defined as:

_ Acc(t) — Accia(t)

L= Acc(t) ®)

where Ace(t) = min{Accy (t), Acco(t)} is the lower accuracy
value of two learning curves surrounding the drift area, and
Accyo is the lowest accuracy achieved in a drift area. Apart
from the above metrics, we also calculate a mean accuracy
for all models. Gathered values are compared using Wilcoxon
sign-ranked test [26].

IV. EXPERIMENT

A. Research hypothesis

We expect that models using dropout should behave much
better in a recurring drift environment than the unmodified per-
ceptron. Because they are using submodels for different data
distributions, they should achieve lower restoration times and
consequently higher mean accuracy rates. In the case of the
normal dropout approach and its weights sharing modification,
we expect to notice some differences in achieved accuracy and
performance loss, but not in restoration times. We assume that
statistically significant differences will be visible for scores
obtained by the different classifiers.

B. Experimental setup

Three multilayer perceptrons were chosen to be compared
among themselves: with no dropout, 25% dropout, and 25%
dropout with weights sharing. Neural network layers con-
tained: 2, 200, and 1 neuron respectively. They were trained
using fest-then-train approach [24] on 150 replicable data
streams generated with stream-learn library [27]. Each data
stream contained 1000 chunks and was built of two recurring
data distributions with six sudden concept drifts. Single data
chunk contained 100 balanced data samples belonging to 2
different classes. Variability of data streams was guaranteed by
using unique random seeds in generator. Example of concept
drift generated in datasets is presented in Fig. 4. Learning from
a small number of generated data streams, because of their
complexity, resulted in model underfitting and drift detection
problems. These misleading results produced no added value
and were not contained in the final comparison. Achieved
scores: performance loss, restoration time and accuracy were
compared using Wilcoxon sign-ranked statistical test with
a 99% confidence level.
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Fig. 2. Illustration of the Test-then-train evaluation scheme.
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Fig. 3. Two ways of dropout application. In Approach 1 we only switch submodels, in Approach 2 we additionally perform weights update.

C. Results
We mark models with shortcuts:

e MLP - multilayer perceptron with no dropout

o« MLP D25 - multilayer perceptron with 25% dropout

« MLP DW25 - multilayer perceptron with 25% dropout
and weights sharing

Tab. T shows the mean performance loss, restoration time,
and accuracy values for all streams. Fig. 5 shows generated
learning curves for selected streams. Tab. II presents the model
comparison according to results achieved with the Wilcoxon
test. Plus sign in the cell means that the model in the column
is statistically significantly better than the model in the row.

All results can be found in the related public code repository
[28]. We can see that MLP D25 performs better than MLP and
MLP DW25. MLP DW25 achieves better scores than MLP, but
worse than MLP D25.

D. Results discussion

Achieved scores prove the hypothesis that the dropout-
based models behave better than the normal ones. Submodels
separation makes it possible to keep their weights unchanged
when they are not in use, which reduces the chance that they
will have to learn data again from scratch. Using the proposed
approach, we should keep in mind to construct models that
will have enough capacity to generate the proper number of
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Fig. 4. Example of sudden recurring drifts in the generated data stream.

TABLE 1
PERFORMANCE METRICS FOR THE THREE TESTED MODELS.
Model Mean scores
type Performance loss | Restoration time | Accuracy
MLP 0.5000 0.0323 0.8224
MLP D25 0.4705 0.0068 0.8687
MLP DW25 0.4618 0.0068 0.8648
TABLE II

RESULT OF WILCOXON’S SIGNED-RANK TEST. + MEANS THAT THE MODEL IN THE COLUMN IS STATISTICALLY SIGNIFICANTLY BETTER THAN THE
MODEL IN THE ROW.
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Fig. 5. Learning curves for the selected data streams.



submodels. If concept drifts are detected early enough, it also
helps to avoid the catastrophic forgetting phenomenon. On the
other hand, the gathered results show that the dropout approach
with weights sharing is not so good as we thought it would
be. The scores are even worse than in a classic variant. The
performance loss is lower for the weights sharing model, but it
is directly related to the achieved accuracy value. It looks like
weights update introduces an undesired noise to the learning
process.

V. CONCLUSIONS

The main aim of this research was to propose a novel,
effective dropout-based algorithm for data stream classification
affected by the recurring concept drift. The proposed method,
which builds a pool of neural networks for each appearing
concept, could react very fast for a concept drift appearance.
The computer experiments confirmed the usefulness of the
proposed approach and based on a thorough statistical anal-
ysis. We may assert that this method allows us to shorten
the restoration time as well as maximum performance loss
in comparison to the canonical model of neural networks.
Additionally, we also observed that the prediction performance
is significantly better than the baseline model.

In summary, lessons learned are as follows:

« Using a dropout-based model significantly improves the

overall performance for recurring drifted data streams.

« Models using dropout has to provide enough capacity to
handle multiple submodels.

o Frequently occurring drifts may lead to the generation of
multiple poorly performing models.

o In the best-case scenario, the number of generated sub-
models should be less or equal to the number of distri-
butions in upcoming data.

o Weight sharing introduces a noise to the learning process,
and it is not an effective approach.

This work is a step forward towards the use of the neural
networks for non-stationary data streams. Results obtained
in this study encourage us to continue works on alternative
approaches with the special focus on the following issues:

o Evaluate how the dropout-based method is robust to data

noise.

« Evaluate how it reacts to other types of concept drift.

o Develop the methods of classifier ensemble forming
based on the proposed dropout-based approach.

o Propose novel metrics of restoration time as well as
maximum performance, which can take into consideration
a higher number of drifts, as well as their frequency.

« Extend the experimental study on real data streams.
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