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Abstract—Nowadays, predicting failures in Hard Disk Drives
(HDD) is of key importance for storage service providers and
end users. Being able to detect in advance that a disk is going
to fail may enable maintenance actions that can avoid severe
data losses. For that reason, many researchers had devoted
attention to this research topic. Recently, several authors have
reported promising results by using attributes collected by the
SMART (Self-Monitoring, Analysis and Reporting Technology)
system along with machine learning methods. Although the best
results were obtained by supervised machine learning methods, it
is important to notice that data from degraded HDDs is scarce.
Hence, anomaly detection methods arise a promising solution.
Among such methods, recent works reported that reconstruction
based anomaly detection algorithms had the best performance
on HDDs fault detection. In line with such results, in this paper
we aim to further investigate the performance of such methods.
We conducted tests with classical PCA based methods and
neural autoencoder based methods. In addition to testing with
the popular reconstruction based autoencoder method we also
evaluated a method that analyzes the distribution of the latent
space. Additionally we propose a simple formulation to combine
both methods. On the basis of our experiments, we verified
that autoencoder based methods had the best performances
according to the two evaluation metrics. Among such methods,
the combination approach had the best overall performance.

Index Terms—autoencoder, anomaly detection, hard disk
drives, fault detection

I. INTRODUCTION

Nowadays, Hard Disk Drives (HDD) are the prevalent stor-
age technology in big data environments [1]. Although solid
state devices are lighter, faster and less prone to degradation,
its high cost and difficult recovery process makes HDDs still
a valid alternative specially for storage service providers.

It is well known that, given that HDDs comprise a set of
moving parts, a degradation of such components is expected
and that can lead to severe data losses. Therefore, being
capable of identifying degraded HDDs turns to be highly
desirable. Aiming to pursue such objective, HDDs manu-
facturers developed Self-Monitoring, Analysis and Reporting
Technology (SMART). SMART is a system that monitors
several disk parameters and check if any of them exceed
pre-defined thresholds. Although SMART is widely used, its
failure detection rate is low, typically ranging from of 3% to
10% [2].

In recent years, many researchers have devoted efforts
towards providing a more reliable failure prediction method
for HDDs. In most of such works, the SMART attributes
are combined with machine learning methods. One of the
first works was presented by Murray et al. in [2]. In this
paper, the authors tested several machine learning methods and
verified that Support Vector Machine (SVM) had the best fault
detection rate. Chang Xu et al. [3] formulated the problem as a
classification between several health states and not only faulty
and healthy states as presented in [2]. Chang Xu and its co-
authors used the SMART attributes as inputs for a Recurrent
Neural Network (RNN). The same problem was addressed by
Chaves et al. [4] by using a Bayesian Network. Also, Lima et
al. [5] had promising results with deep neural models.

It is worth noting that in previous works, the authors used
data from degraded and healthy HDDs. However, in many real
situations, only data from healthy disk is available [6]. For that
problem, several authors proposed methods based on anomaly
detection algorithms. Hughes et al. [7] reported a detection
rate of 32% (with a 0.2% false alarm rate) by using a non-
parametric hypothesis test to detect anomalies. Queiroz et al.
[8], [9] and Wang et al. [10], [11] used anomaly detection
methods based on density estimation algorithms and were able
to outperform the results of Hughes et al. [7]. For the same
task, a deeper investigation on the performance of various
types of anomaly detection methods is presented in [6]. The
authors evaluated the performances of 9 methods that were
divided in 3 different approaches: density methods, boundary
methods and reconstruction methods. The conclusion of this
study was that reconstruction methods had the best compro-
mise between fault detection and false alarm rates. The authors
found that both PCA and neural autoencoders had very similar
performances.

Motivated by such results, in this work we aim to expand the
investigation of reconstruction based anomaly detection meth-
ods for fault detection in HDDs in the following directions:
• We evaluated not only the reconstruction error as a fault

indicator but also the distribution of the data in the latent
space. Such approach is widely used in PCA for industrial
applications [12] but indeed less popular when designing
fault detection methods based on autoencoders.

• We proposed a simple way to combine fault indicators
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provided by the reconstruction error and the probability
distribution of the latent space in autoencoders. The
proposed approach is similar to the combination method
for PCA proposed in [13].

The remainder of this paper is divided as follows. Section
2 presents a brief description of the most relevant related
papers. Section 3 shows the basic concepts that are necessary
to understand our proposal. Such proposal is presented in
Section 4 along with the other methods used for a comparative
analysis. The experiments and the associated analysis are
shown in Section 5 and the final remarks are presented in
Section 6.

II. RELATED WORK

Fault detection is an active research topic that has stimulated
the development of various methods and its application in
many industrial environments [14]. One of the most common
approaches is based on finding a low dimensional projection
of the original data that captures the major relations among the
process variables [15]. Most well-known methods are principal
component analysis (PCA), independent component analysis
(ICA), partial least squares (PLS) and autoenconders.

After estimating the reduced subspace (latent space), two
anomaly detection procedures are widely used. The first pro-
cedure consists of estimating a transformation that can project
the data from the latent space to the original space. Then,
the so called reconstruction error can be computed. Thus, an
anomaly (fault) is detected if the reconstruction error is higher
than a given threshold. One can find several recent works
that follow this approach and use both linear [15]–[17] and
nonlinear [14], [18], [19] dimensionality reduction methods.

In the second procedure, a similarity/dissimilarity measure
is computed between a test sample and the training data.
Such measure is computed in the latent space. The Euclidean
distance is often used as a metric. A fault is detected if
the similarity/dissimilarity measure violates a threshold. It is
important to mention that the two procedures can be combined
as presented in [13]. In this work, the authors propose a
method to combine the two approaches for PCA. Although
the results obtained in this paper are promising, methods
for combining the two procedures are indeed rare and often
limited to linear dimensionality reduction methods.

III. THEORETICAL BACKGROUND

A. Principal Component Analysis (PCA)

Principal component analysis is a dimensionality reduction
technique that combines a set of correlated variables to create
a new set of uncorrelated variables while maintaining most of
the variance of the original variables.

Let x ∈ Rm denote a sample vector of m variables.
Assuming that there are n samples, a matrix X ∈ Rn×m

comprises the set of samples where each samples is in a row.
Consider that the data have zero mean and unit variance. PCA
determines the transformation of X that captures most of the
variance in X and concentrates it in several dimensions of the

transformed data. For that, the matrix X can be decomposed
as follows:

X = TPT (1)

where T = [t1, t2, ..., tm] ∈ Rn×m are the principal com-
ponents and P = [p1, p2, ..., pm] ∈ Rm×m are the loading
vectors. The loading vectors are the eigenvectors associated
with the eigenvalues of the covariance matrix of X . The
eigenvectors represent the vectors that transform the original
data to each of the principal components and the associated
eigenvalues represent the amount of variance represented in
each principal component.

1) Fault Detection Using PCA: Fault detection methods
using PCA are based on Hotelling’s T 2 and Q statistics.
In Q statistics, the objective is to measure of the difference
(residual) between a sample xi and its projection onto the l
principal eigenvectors retained in the model. The residual for
sample is given by:

ri = xi(I − PlPl
T ) (2)

and the magnitude of the residual is given by:

Q = riri
T (3)

The confidence limits for Q can be obtained from its approx-
imated distribution [20].

Hotelling’s T 2 statistic provides an indication of unusual
variability within the reduced space (latent space). It represents
the length of the projection of a given sample into the space
spanned by the l principal components. More formally, T 2

statistics is given by:

T 2 = xi
TPlλ

−1Pl
Txi (4)

where Pl is a matrix of the loading vectors comprising the first
l principal eigenvectors and λ is a diagonal matrix containing
the first l eigenvalues. The confidence limits for T 2 can be
obtained analytically since it follows a F-distribution [20].

B. Autoencoders

The autoencoders are unsupervised learn techniques for
compact the input into lower dimension latent space. Autoen-
coders can be divided into two parts: encoder and decoder.

The encoder tries to learn a function hW,b(x) = g(f(x)) ≈
x that compress the input into a latent space. In other words,
the function tries to map the input to a similar representation
with lower dimension. The decoder aims to reconstruct the
input from the latent space representation. Between the en-
coder and decoder we have a bottleneck that represents the
data in a different dimension. The bottleneck dimension is a
constraint that defines the dimension of the lower dimension
representation.

In the encoder process a function f is applied to the input
x ∈ Rm obtaining the compressed latent vector. After that the
decoder applies the g function to decode f(x) to x′ ∈ Rn.

The entire network can be constructed by minimizing the
reconstruction error L(x, x′) + regularizer. In the literature
commonly the L1 regularization, L2, or KL-Divergence are
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Fig. 1: Illustration of an Autoencoder.

used as regularizers, so they act to avoid the memorization or
overfitting.

IV. METHODOLOGY

In this section we describe the our fault detection methodol-
ogy based on autoencoders. We used both the reconstruction
error and the distribution in the latent space. After that we
briefly describe the dataset and the experimental procedure.

A. Fault detection based on autoencoders

To detect faults in HDDs we decided use autoencoder neural
networks in two different ways. In the first approach we
compute the reconstruction error of a given test sample. A
fault is indicated if the reconstruction error exceeds a given
threshold. This approach is common and has been used in
other applications in works like [21], [22] and [23]. Through-
out this paper we will refer this approach as Reconstruction
Error method (REA). A brief description of REA is shown in
Algorithm 1.

In the second method we aim to detect faults by checking
if a new sample is different from the training samples in
the latent space. The idea is similar to the T 2 statistics in
PCA. For that, after training the autoencoder, we compute
the mean and covariance matrix of the training samples in
the latent space. With this information, we can calculate the
Mahalanobis distance of a test sample after a transformation to
the latest space. A fault is detected when the distance exceeds a
threshold. This approach will be named Distance in the Latent
Space method (DLS) and is shown in Algorithm 2.

In this work, we also propose a method that combine both
metrics in a balanced way. According to Yue and Qin [13], T 2

and Q exhibit complementary behaviors and its combination
is beneficial. They proposed the following combined index.

ϕ =
Q

δ2
+
T 2

χ2
(5)

where δ2 and χ2 are the fault detection thresholds for Q
and T 2 respectively. Roughly speaking, the main idea is to
balance both metrics with such normalizing coefficients. These

normalizing coefficients (thresholds) are calculated so that the
same ratio of points are below each threshold. Using a similar
idea, we can obtain the normalizing coefficients for our metrics
by constructing an empirical CDF with the training samples.
The resulting formulation is shown in Eq 6 and the algorithm
is shown in Algorithm 3.

ϑ =
REA

REAT
+

DLS

DLST
(6)

where REATT and DLST are anomaly thresholds obtained
using the empirical CDF for a given probability. ϑ is the
resulting anomaly detection index.

Algorithm 1 Dissimilarity Measure using the Reconstruction
Error approach.
Dhealthy, Dfaulty ← get class data(D)
Dtrain, Dhealthy test ← split(Dhealth)
Dtest ← Dfaulty +Dhealthy test

AE ← train autoencoder(Dtrain)

distances list← empty list()
for x ∈ Dtest do

x′ ← AE(x)
REA← x− x′
append to list(distances list, REA)

end for
return distances list

Algorithm 2 Dissimilarity Measure using the Mahalanobis
Distance in the Latent Space approach.
Dhealthy, Dfaulty ← get class data(D)
Dtrain, Dhealthy test ← split(Dhealth)
Dtest ← Dfaulty +Dhealthy test

AE ← train autoencoder(Dtrain)

`train ← Dtrain in the latent space of AE
means, cov ← get means(`train), get cov(`train)

distances list← empty list()
for x ∈ Dtest do

lx′ ← x in the latent space of AE
DLS ←Mahalanobis(lx′,mean, cov)
append to list(distances list,DLS)

end for
return distances list

B. Dataset

In order to evaluate the performance of the methods, a set of
experiments were conducted using a dataset publicly provided
by the Backblaze Company [24]. The dataset contains daily
SMART observations of thousands of Hard Disk Drives from
a large number of manufacturers ranging from April 2013
to December 2016. These SMART observations are retrieved
until the disk stops working or until it has showed some



Algorithm 3 Dissimilarity Measures using the combination of
REA and DLS approach.
Dhealthy, Dfaulty ← get class data(D)
Dtrain, Dhealthy test ← split(Dhealth)
Dtest ← Dfaulty +Dhealthy test

AE ← train autoencoder(Dtrain)

`train ← Dtrain in the latent space of AE
means, cov ← get means(`train), get cov(`train)
latent threshold ← calculate the empirical threshold for
the Mahalanobis distances of `train.

errtrain ← calculate the reconstruction error for all training
data
rec threshold← calculate the empirical threshold for the
reconstruction errors of errtrain.

distances list← empty list()
for x ∈ Dtest do

x′ ← AE(x)
REA← x− x′

lx′ ← x in the latent space of AE
DLS ←Mahalanobis(lx′,mean, cov)

combin measure← REA
rec threshold + DLS

latent threshold

append to list(distances list, combin measure)
end for
return metrics

indication that it will stop to work soon, and the disk is marked
as failed in the dataset.

It is assumed that Hard Disk Drives from the same man-
ufacturer model have similar degradation over time. There-
fore, for the experiments, the two HDD models with more
data were selected: the Seagate ST4000DM000 and Seagate
ST3000DM001.

From ST4000DM000, there are 36,555 disks, of which
1,729 have failed. From this dataset, 32 were excluded because
their observations were interrupted without a label indicating a
failure or because they had more observations submitted after
being labeled with failure. Also, it was selected disks that lived
at least 360 days, resulting in 907 instances used.

From model ST3000DM001, we had a set of 4,707 disks
and 1,357 failed. Because of the same inconsistencies de-
scribed to the other model, 345 disks were excluded. Also,
due to the data being less plentiful than the other manufacturer
model, we selected a subset of the remaining failed disks that
had at least 90 days of continuous monitoring. After such
procedure, we ended up with 786 disks.

For these datasets, a day is considered faulty if it is in the
last 30 days of the HDD life, and healthy if is is in any time
before the last 30 days, as illustrated in Figure 2. For each
of these disks, a day from the healthy span was selected at

Fig. 2: Hard Disk Drives life stages until the day of its failure.
The last 30 days are considered faulty.

random to be a healthy sample and a day from the last 30
days was selected at random to be a faulty sample. Therefore,
the goal is to classify if a HDD is in its last month of life.
The healthy dataset was split in 70% for training and 30% for
testing. Also, since we are not training with the faulty data,
all faulty data is used for testing.

The selected SMART attributes were the raw values of the
SMARTs available to the selected models ST4000DM000 and
ST3000DM001, presented in Table I. An explanation of the
SMART attributes can be found in [25].

S.M.A.R.T ID Attribute Name
1 Read Error Rate
3 Spin-Up Time
4 Start/Stop Count
5 Reallocated Sectors Count
7 Seek Error Rate
9 Power-On Hours
10 Spin Retry Count
12 Power Cycle Count

183 SATA Downshift Error Count
184 End-to-End error / IOEDC
187 Reported Uncorrectable Errors
188 Command Timeout
189 High Fly Writes
190 Temperature Difference
191 G-sense Error Rate
192 Unsafe Shutdown Count
193 Load Cycle Count
194 Temperature
197 Current Pending Sector Count
198 Uncorrectable Sector Count
199 UltraDMA CRC Error Count
240 Head Flying Hours
241 Total LBAs Written
242 Total LBAs Read

TABLE I: SMART attributes used in the experiments.

C. Experimental setup

In all experiments the fault detection methods were trained
with healthy HDD data (training set) and tested with both
healthy and degraded data (test set). To evaluate the perfor-
mances we computed two metrics: the Area Under the ROC
Curve (AUC) and the True Positive Rate (TPR) for a False
Positive Rate (FPR) of 10%.

The AUC metric is a usual choice for comparing anomaly
detection methods since it provides a way to compare such
methods without depending on the choice of a threshold for
each method. The second metric is crucial for the application
since our objective is to design a monitoring system that can
detect faults with a reduced number of false alarms (FPR).



Fig. 3: PCA ROC Curves for the HDD model ST4000DM000.

False alarms may result in unplanned maintenance actions
thus increasing the costs of storage service providers. We
repeated all tests 20 times and computed the average values of
both metrics. All experiments were executed using scikit-learn
package [26] version 0.17 and Tensorflow 1.7.0 [27] .

For the PCA method, we performed the transformation
and selected the eigenvectors that resulted in features that
preserve 90% of the variance, resulting in 8 features out of
the 24 described in Table I. For the Autoencoders, it was
trained a neural network architecture with hidden layers of
size (15-8-15) and a output layer of size 24 (the number of
dimensions of the input), with the ReLU activation function
and the backpropagation algorithm with L2 regularization.

V. EXPERIMENTS AND RESULTS

To further investigate the feasibility of reconstruction based
anomaly detection methods in the task of HDDs fault detection
we decided to evaluate the performance of classical PCA based
methods, Q and T 2, and the combination of both metrics
proposed in [13]. The use of such baselines is fundamental
since the authors in [6] reported good results for Q and
the literature shows that the combination of Q and T 2 often
outperforms each metric individually. The REA method was
evaluated in [6] and was evaluated once again in this work.
Along with that, we tested DLS and the proposed combination
of both metrics.

The ROC curves for all methods computed for
ST4000DM000 and ST3000DM001 are shown in Figs
3, 4, 5 and 6. The average values of all numerical metrics
computed on 20 repetitions are shown in Table II and III.

By observing all ROC curves and the average metrics
values, one can see that the combination methods (PCA based
and Autoencoder based) had the best performances when

Fig. 4: Autoencoder ROC Curves for the HDD model
ST4000DM000.

Fig. 5: PCA ROC Curves for the HDD model ST3000DM001.



Results

Method Dissimilarity Measure Average AUC Average TPR at 10% FPR

PCA
Q statistics 0.7053 0.2619
Hotelling’s T2 0.6873 0.3815
Q and T2 Combined Index 0.7143 0.3646

Autoencoder
Reconstruction Error 0.7217 0.4013
Distance in the Latent Space 0.6962 0.3645
Combination of DLS and REA 0.7303 0.4206

TABLE II: Results for disk ST4000DM000.

Results

Method Dissimilarity Measure Average AUC Average TPR at 10% FPR

PCA
Q statistics 0.6805 0.2402
Hotelling’s T2 0.6218 0.2145
Q and T2 Combined Index 0.6861 0.2676

Autoencoder
Reconstruction Error 0.6678 0.2552
Distance in the Latent Space 0.6527 0.2494
Combination of DLS and REA 0.6994 0.2809

TABLE III: Results for disk ST3000DM001.

Fig. 6: Autoencoder ROC Curves for the HDD model
ST3000DM001.

analyzing both AUC and TPR at 10% FPR metrics. The good
performance of the combination methods can be noticed in all
ROC curves since the curves of combination methods exhibit
the highest (or near) TPR values for all FPR. Among the
combination methods, the autoencoder had the best overall
results.

It is interesting to notice that all autoencoder based methods
outperformed its PCA based counterparts. That fact may
indicate that the problem of modeling the normal behavior
of HDDs is nonlinear.

VI. CONCLUSION

In this paper we present an evaluation of autoencoder
based anomaly detection methods for fault detection in hard
disk drives. We conducted experiments with the well-known
reconstruction based approach and also adapted the idea of an-
alyzing the latent space of dimensionality reduction methods.
Such approach is inspired by the Q statistics used with PCA.
We also proposed a simple way to combine both approaches
to generate a single anomaly detection index.

All experiments were performed on data from more than
1500 HDDs of two models. The autoenconder methods were
compared to classical PCA based algorithms and showed
better results. Such fact may indicate that the problem of
modeling the behavior of healthy HDDs is nonlinear. Among
all autoencoder based approaches, the combination method
showed the best performance.

In future work, we intend to evaluate the performance
of variational autoencoders (VAE) for the same task. We
hipothetize that VAE might show good results since that tend
to force the distribution of the latent space to be normal, thus
avoiding the occurrence probability mass in unknown regions
of the space.
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