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Abstract—Modern packet-switched networks are increasingly
capable of offering high-quality voice services such as Voice over
LTE (VoLTE) which have the potential to surpass the Public
Switched Telephone Network (PSTN) in terms of quality. To
ensure this development is sustained, it is important that suitable
quality evaluation methods exist in order to help measure and
identify the effect of network impairments on voice quality.
In this paper, a single-ended, objective voice quality evaluation
model is proposed, utilizing a Convolutional Neural Network with
regression-style output (CQCNN) to predict mean opinion scores
(MOS) of speech samples impaired by a VoLTE network emula-
tion. The results of this experiment suggest that a deep-learning
approach using CNNs is highly successful at predicting MOS
values for both narrowband (NB) and super-wideband (SWB)
samples with an accuracy of 91.91% and 82.50% respectively.

Index Terms—Voice quality, VoLTE, CNN, MOS, SWB, NB,
Deep Learning

I. INTRODUCTION

Voice over IP (VoIP) has grown rapidly since its inception,
leading many to believe it will eventually succeed the
Public Switched Telephone Network (PSTN) as the preferred
voice communication technology [1]. VoIP’s potential as a
cost-effective, high quality alternative to the circuit-switched
PSTN has been capitalised on by mobile telecommunications
networks.

Voice over LTE (VoLTE) is an implementation of VoIP
which utilizes the high performance of 4G mobile network
architectures to offer packet-switched calling at qualities equal
to or exceeding those of the PSTN [2]. This is achieved using
real-time optimized technologies such as the IP Multimedia
Subsystem (IMS) [3] and modern adaptive codecs which
can maximize call quality and reliability even in challenging
network conditions [4].

VoLTE has used adaptive multi-rate codecs since the
service launched. While the AMR-WB (G722.2) codec was
used initially, the recently standardized Enhanced Voice
Services (EVS) codec has been rolled out due to its improved
performance and features such as channel-awareness [5] and
forward error correction (FEC) [6] which can help audio
streams to recover from networks with a high packet-loss

rate (PLR). Though the IETF and WebRTC standardized
adaptive multi-rate codec Opus [7], is not utilized directly
in VoLTE services, it is used in modern over-the-top mobile
VoIP applications such as “WhatsApp” and has similar FEC
capabilities. These codecs both offer Narrowband (NB),
Wideband (WB), Super-wideband (SWB) and Full-band
(FB) mode-sets at both constant and variable bitrates. They
are both capable of utilizing the full potential of modern
mobile networks to deliver HD voice and clearly outperform
competitors in industry tests [2].

Despite the potential evident in these technologies, there
are considerable issues faced by VoLTE. Traditional PSTN
networks rely on an end-to-end circuit over a predominantly
wired physical infrastructure. This leads to a robust, reliable
network with high availability of 99.999% or just 5 minutes
downtime per year [8]. Packet-switched topologies, such as
the 4G LTE networks on which VoLTE operates, are often
connected via different physical media and are subsequently
less reliable. These networks are also subject to impairment
factors such as delay, jitter or packet loss which can have
a significant impact on call and voice quality. A variety of
evaluation methods exist to measure call quality in these
environments and can be categorized as subjective or objective.

Subjective call quality evaluation involves experiments
where human subjects assign the quality of the call or
listening experience an absolute category rating (ACR)
from 1 (poor quality with very annoying impairment) to 5
(excellent quality with imperceptible impairment). The mean
of these ratings is then taken to give a mean opinion score
(MOS), giving an extremely accurate measurement of quality
[9]. Such experiments are hard to conduct in an unbiased
nature and require a large and varied pool of test subjects.

Objective methods evaluate the quality of voice samples
through the measurement of signal data across the network
[10]. Such methods may be described as intrusive or non-
intrusive depending on the extent of network access and signal
data they required in their analysis. Intrusive methods such as
ITU-T’s Perceptual Objective Listening Quality Analysis tool
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(POLQA) specified in recommendation P.863 [11] and its
predecessor, recommendation P.862 Perceptual Evaluation of
Speech Quality (PESQ) [12] are algorithms which compare
a clean reference signal to degraded version after it has
transited the network. While these methods produce accurate
results, their algorithms are often implemented in expensive
equipment and are unusable without live network traffic
and pervasive network access. Beyond this, PESQ is only
recommended for use with NB/WB signals – making it
unsuitable for modern VoLTE networks. POLQA supports
SWB signal analysis but is a proprietary technology, available
almost exclusively in its costly hardware form.

Non-intrusive standards for call quality assessment can
evaluate signals by detecting distortions, interruptions
and unnatural sounding speech [13] without the need for
a reference signal. Single-ended methods are generally
less accurate than intrusive methods but can be effective
in giving a general indication of voice quality when a
reference is unavailable. ITU-T’s recommendation P.563
is the only standardised, single-ended algorithm for call
quality measurement and is rendered ineffective in a VoLTE
environment as it is only designed to process 16-bit NB
signals. Previous research [14, 15] has suggested that
Artificial Intelligence (AI), particularly Artificial Neural
Networks (ANNs) could produce reliable, single-ended
tools for evaluating voice quality in a variety of network
contexts. Artificial Neural Networks are a mathematical
attempt to closely model the functions of biological neural
networks. The two principal attributes that these models
describe are the architecture and the functional properties,
or neurodynamics, of such networks. Each neuron, or node,
in an ANN is “excited” by an input to generate an output
value. This activation potential(u) is given by subtracting
the bias/activation threshold (θ) from the sum total of the
input values (xi) multiplied by their corresponding synaptic
weights (wi) as described below:

u =

n∑
i=1

wi · xi − θ (1)

The output value (y)is then calculated by applying the
activation function (g(x)) to this activation potential (u).

y = g(u) (2)

When arranged into architectures with enough neurons and
layers, these models can be used to approximate a large
variety of functions and learn features from its input data in
order to produce some desired output. ANNs use supervised
machine learning methods that require a labelled dataset to
achieve this task.

Deep Learning, driven by advances in computational
technology such as more powerful GPUs and new techniques
which solved long-standing issues of overfitting in deep neural
architectures, has allowed for increased performance across all

major areas in machine learning [16]. Convolutional Neural
Networks (CNNs) have seen a resurgence in popularity since
the advent of Deep Learning. CNNs work using sparsely
connected layers of neurons which mimics the architecture of
the human visual cortex. Matrix convolutions are performed
by passing a 2D kernel over a 2D input to extract features.
This is process is described by the equation:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j−n) (3)

CNNs natively preserve the 2D form of its input, making
it ideal for use with images. Convolutional models have
also been successfully used for numerous audio applications
such as text-to-speech [17], voice recognition [18] and audio
enhancement [19] but they have not been utilised in the
domain of call quality analysis. This research aims to assess
the viability of a convolutional neural network (CNN) and
deep learning to predict MOS values for samples typical of a
VoLTE environment.

The primary contributions of this paper are:
• The development of a novel, single-ended, objective

call quality evaluation tool (CQCNN) that outperforms
current standards using a CNN architecture and deep
learning.

• The extension of objective, single-ended call quality
evaluation to SWB VoLTE signals.

• The modification of the VoxForge[20] dataset via real-
istic VoLTE network emulation to produce a large and
representative dataset of paired samples for use in further
objective call quality evaluation research.

• The performance of the proposed model (CQCNN) is
critically investigated and compared to existing ITU-T
objective standards including the state-of-the-art POLQA
algorithm as well as similar, previously proposed methods
of quality evaluation.

• Empirical analysis of the effects of network impairment
factors and sample quality related to the proposed model’s
predictions.

The remainder of the paper is organized as follows:
Preliminary work to examine any related research is detailed
in Section-II. The methodology employed in this paper to de-
velop the proposed model is discussed in detail in Section-III.
The results of this research are presented with accompanying
analysis in Section-IV and conclusions derived from these are
delineated in Section-V with further research directions also
suggested.

II. RELATED WORK

A. VoIP Call Quality Evaluation

A wide-range of techniques for evaluating call quality in
packet-switched networks have been proposed in previous
work. Parametric methods building on ITU-T’s estimative
standard (E-model) have been used to evaluate VoLTE call
quality in [27]. [28] demonstrates a hybrid model which
uses these non-intrusive measurements as an initial quality



estimate and refines them via intrusive measurements for
a more accurate real-time quality monitoring system. [29]
demonstrates the effectiveness of various Machine Learning
techniques for the purpose of call quality evaluation with Or-
dinal Logistic Regression (OLR) achieving the best accuracy
(61%) in predicting PESQ-generated MOS scores. Artificial
Neural Networks were excluded from their analysis due to the
lack of suitable datasets identified by the authors.

B. VoIP and Deep Learning

Artificial Neural Networks are an extremely appropriate
technology for assessing voice quality due to their ability to
accurately match patterns and replicate the output of complex
systems since an audio signal’s degradation and consequential
MOS score follows a pattern in relation to the impairment
factors (choice of codec, delay, packet loss, jitter) of a system
or network. Many different approaches utilising ANNs have
been proposed to measure VoIP and, more recently, VoLTE
voice quality. [14] demonstrated an ANN’s ability to predict
call quality based on packet loss, codec and talker identity.
This was improved upon by [15] who developed a Random
Neural Network to assess VoIP quality using the factors of
delay, packet-loss, jitter and codec which, when compared to
PESQ, proved to be almost as accurate. [21] built on this study
by assessing VoLTE call quality using these metrics, however,
their study was limited to the AMR-WB codec which was the
only widely-used VoLTE codec at the time, again achieving
scores closely correlated to PESQ. More recently [22], using
Deep Belief Networks, achieved an accuracy of 96.1% relative
to PESQ – outperforming estimative standards such as the E-
Model. Deep Feed-Forward Neural Networks have also been
used to predict VoIP call quality using similar parameters
and produced predictions showing a high correlation (0.8693)
with the top intrusive measurement standard, POLQA, in
[23]. However these methods still failed to outperform PESQ.
No studies which examined CNNs for this use-case were
discovered.

C. Convolutional Neural Networks and Transfer Learning

Transfer learning allows developers to take advantage of
the work invested in successful models such as VGG-16,
ResNet50, Inception v3 and MobileNet, by incorporating them
into the earlier layers of their model to initialize the weights
and thresholds of the network. The part of the model that
defines functionality is then added in the later layers to “fine-
tune” the existing model for the required purpose. Many of the
principals of supervised learning apply to transfer learning as it
is essentially the same process but with a domain-shift added.
This approach has been successfully utilised by models such
as NimaNet [24], a perceptual model to score degraded images
on quality without the need for a reference. While networks
developed for computer-vision functions are usually the basis
for transfer learning due to their huge sample datasets and
years of training, this does not preclude their utility in other
domains. Transfer learning extends to classification of audio

Fig. 1. Experimental architecture used.

data and increases the overall accuracy. Most audio applica-
tions use CNNs to evaluate spectrograms which graph a sound
in 3 dimensions: time in the X axis; frequency in the Y axis
and intensity of frequency represented by saturation/brightness
– essentially the Z axis. This is done by taking a Short-
Time-Fourier-Transform (STFT), which performs Fast Fourier
Transform (FFT) operations at an interval or ‘window’ across
the waveform. These windows and their overlap can be altered
to highlight different features of the soundwave. FFTs are also
used by the POLQA algorithm in computation of MOS scores
[11] which suggests the potential utility of spectrograms in
evaluating voice quality.

III. METHODOLOGY

In this paper, we propose the use of a convolutional neural
network as a novel, single-ended, objective method to evaluate
call quality in VoLTE environments. The Call Quality Convo-
lutional Neural Network (CQCNN) in this paper was trained
using samples from the VoxForge [20] dataset using NVIDIA’s
CUDA GPU technologies for deep learning and implemented
with python code in Jupyter notebooks. An overview of this
project’s process is illustrated in figure 1. This is detailed in
the five stages that follow:

A. Dataset Identification, Exploration and Processing

While high quality datasets recorded to ITU-T P.800 stan-
dards do exist [29], these are typically commercial products
which are prohibitively expensive. In order to build a dataset
for the purposes of VoLTE call quality assessment, a large
corpus of recordings from a variety of different speakers
would be required. This process would have to adhere to
ITU-T standards and would need to amass ∼160 hours of



audio (68.000 10-second samples) to produce a dataset of
the magnitude needed to train a deep neural network. The
challenge of compiling this volume of data is compounded
by a lack of support for AMR/EVS encoded audio in VoLTE
simulation environments which could be used to efficiently
generate the impaired signals needed to label our dataset using
ITU-T’s objective evaluation methods. Without an accurate
VoLTE simulation to degrade each signal in a controlled and
realistic environment, degraded signals would either need to
be degraded using a real VoLTE network or a simplified
network emulation. In light of these challenges, we elected
to re-purpose the existing Voxforge dataset using network
emulation. The VoxForge dataset is a crowdsourced speech
corpus of 73,412 samples from 6,000 speakers recorded at
48kHz. This is consistent with the bandwidth supported by
most VoLTE-enabled smartphone’s microphones. The content
of each sample also meets with the majority of the ESTI
criteria for subjective and objective voice quality tests [25].
Due to POLQA’s dual mode-set operation it was necessary
to use the entire dataset twice to train the model for NB
and SWB samples independently. Each sample must also be
passed through a network emulation where it is subjected
to a combination of impairment factors (codec, delay, jitter
and packet loss) to produce a degraded counterpart. This is
accomplished by using Asterisk, an open-source framework
for VoIP applications, to generate and record calls across a
network impaired with pre-set conditions using Linux’s native
Network Emulation software (NetEm). This results in 54 test
conditions for samples to be recorded as 16-bit NB audio
files. These consist of 27 combinations of 3 values of each
network parameter (delay, jitter and packet loss) within normal
operational limits for voice networks [4] duplicated for the
two codecs, EVS and Opus. Due to bandwidth limitations in
Asterisk’s recording function and a lack of support for Opus
and EVS in RTP capture software such as Wireshark, SWB
samples could not be recovered from the emulation and were
instead impaired with the packet loss values only for each
codec using a function in its native application. All samples
are then processed and scored by POLQA, PESQ and P.563
in turn, with labelled results generated and saved to separate
files in .csv format.

B. Extraction, Transformation and Loading of data (ETL)

During this stage, the audio samples are transformed into
log-scaled spectrograms and stored in a dataframe for pro-
cessing by the proposed model. Wideband and Narrowband
spectrograms were generated for each sample by adjusting the
window length and re-processing the datasets. During training,
it was discovered that the spectrograms with a longer window
length (NB) produced more accurate predictions for both the
NB and SWB speech samples and these were subsequently
used to evaluate the model. Each sample was normalized to
10 seconds in length by trimming or padding the spectrogram
to produce a standardised input for the CQCNN model. While
some samples exceeded this and lost data due to the trimming,
99.6% of the dataset was unaffected. The dataframe containing

Fig. 2. Proposed Model (CQCNN) Architecture

the spectrograms was then merged with the POLQA values
which were to serve as the “ground-truth” labels when training
and validating the model. This dataframe was then cleansed
of any empty values which were the result of errors during
POLQA’s evaluation.

C. Model Definition
The proposed model’s architecture is presented as a network

diagram in figure 2. The CQCNN model uses a convolutional
neural network based on the VGG-16 architecture. This was
identified during initial tests as the best performing model
over ResNet, Inception and VGG-19 architectures (table I).
These layers of the network are pre-trained with weights from
the famous ImageNet dataset to boost performance (table II).
Global average pooling is then used to mimic the functionality
of several fully connected layers, summarizing the features
learned by the convolutional layers above. The final layer of
this functional, fully-connected part of the architecture is a
single node with a linear activation function which outputs
a continuous value – the model’s predicted MOS score for
the sample. While CNNs typically operate as classification
models, a regression-style model was better suited to the
output values required for this use-case.

D. Model Training, Validation and Optimization
The CQCNN model is then trained using 80% of the data

and validated on the remaining 20%. A batch size of 20
was used to reduce training time while minimizing test error
values. The adaptive learning rate optimizer ADAM was used
to minimize mean squared error (MSE) during the training
process. Mean absolute error (MAE) was also calculated to
allow for simpler evaluation of the model. No more than 8-
12 epochs were required to reach minimal test error values
although training times of up to 30 epochs were tested. All
training and modelling tasks were conducted using the Keras
and Tensorflow libraries.

E. Model Evaluation
The final stage of the project involved analyzing the model’s

predictions for the unseen 20% of samples. This involved the



use of python’s pandas dataframes to compare and calculate
various measures of each method’s performance relative to the
POLQA algorithm. In order to present an intuitive measure
of the model’s accuracy, mean relative error as accuracy is
used rather than presenting the results in terms of error values
such as MAE/MSE. This is defined by the following equation
where YT is the true (POLQA) score, Y is the estimated value
produced by the model and n is the total number of samples:

MREACC =
100%

n

n∑
i=1

(
|Y − YT |

(YTmax − YTmin) + YT

)
(4)

The inclusion of maximum and minimum YT values ensures
that all values are calculated relative to the range of possible
POLQA MOS values, (1-4.75 for SWB samples and 1-4.5 for
NB samples). All error values are therefore normalized and
absolute ensuring that a percentage value between 1 and 100
is produced, regardless of the error’s magnitude or bias.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

The following results were collated by comparing the pre-
dictions generated from the proposed model (CQCNN) during
the evaluation stage with MOS values obtained from ITU-T
standardized objective methods for voice quality measurement
(POLQA, PESQ and P.563).

TABLE I
PRETRAINED CNN RESULTS FOR VARIOUS ARCHITECTURES

Architecture MSE MAE

VGG16 0.1274 0.2619

VGG19 0.1623 0.3050

ResNet50 0.1803 0.3640

Inception v3 0.2063 0.3406

Table I shows that the VGG16 architecture produced the lowest
loss/error during the training and validation process for the
NB dataset. These results correlated when the SWB data
was processed by the model. The VGG19 architecture was
therefore selected as the candidate model for the rest of the
evaluation stage.

TABLE II
EFFECTS OF PRE-TRAINING ON MODEL PERFORMANCE

Weight Initialisation MSE MAE

Random 0.1506 0.2968

ImageNet 0.1274 0.2619

Table II demonstrates the impact of pre-training on the best-
performing model. These results confirmed that the pre-trained
model did perform better than one initialised with random
weight values, even if only by a small amount. The relatively
low impact of pre-training in this case may be due to sig-
nificant difference in dataset and use case compared to the

VGG16 network that was trained on the imagenet weights.
It was shown in [30] that transfer learning was more viable
when the model is being utilised for similar purposes to the
one its weights were trained for. In this case, the function
differs significantly as does the dataset so transfer learning is
of minimal use, but still boosts model performance.

TABLE III
MEAN RELATIVE ACCURACY VS. POLQA

Relative Accuracy (%)

Method NB SWB

CQCNN 91.93 82.50

PESQ 90.70 94.22

P.563 86.09 62.36

TABLE IV
REPORTED ACCURACY OF RECENT DEEP CALL QUALITY EVALUATION

MODELS

Model Reported NB Accuracy (%)

Yang et al. (2016)[23] 86.80

Affonso et al. (2018)[22] 87.10∗

Proposed Model (CQCNN) 91.93
aRelative POLQA accuracy estimated from comparable PESQ results.

Table III demonstrates the proposed model’s ability to predict
the MOS values of both NB and SWB samples to a high degree
of accuracy to those produced by the POLQA algorithm. The
CQCNN model achieved an accuracy of 91.93% for the NB
dataset, surpassing even the objective, intrusive PESQ algo-
rithm. CQCNN’s performance is shown to exceed the accuracy
of the various models examined in section II (Table IV). The
model also comfortably outperformed the only other single-
ended, non-intrusive method (P.563) by 6%-20% in both the
NB/SWB datasets respectively. Surprisingly, PESQ achieved
a higher accuracy on the SWB dataset than CQCNN and
even surpassed its own score from the NB dataset, despite not
offering explicit support for SWB signal evaluation. The effect
of quality, in terms of sample bandwidth, can be seen to have
a significant impact on the proposed model’s relative accuracy,
with CQCNN performing 9.44% poorer while evaluating SWB
samples. This may be due to sub-optimal window lengths
set used during the production of spectrograms for the SWB
dataset rather than a problem with the model itself, however,
further work would be needed to determine the cause.
While CQCNN performed better on lower bandwidth samples,
Table V shows that within each dataset it achieved 10%-20%
greater accuracy in predicting the MOS values for high quality
samples, where than value was greater than the midrange
value for each dataset’s range (2.75/2.875), than samples
with a score below this threshold. Upon further analysis, a
potential reason for this sizable discrepancy was identified.



TABLE V
PROPOSED MODEL (CQCNN) VS. SAMPLE QUALITY

Relative Accuracy (%)

Condition CQCNN (NB) CQCNN (SWB)

Low Quality (MOS < 2.75/2.875) 80.72 59.29

High Quality (MOS > 2.75/2.875) 92.76 88.75

Fig. 3. Distribution of MOS scores for POLQA and CQCNN illustrating the
number of samples (Y axis) with a given MOS score (X axis) for both SWB
and NB datasets.

The distribution of MOS values produced by POLQA and
CQCNN for each dataset used during validation and testing,
shown in figure 3, illustrates a strong positive skew. With a
very small number of samples in each dataset present below
the midrange threshold, there is insufficient data for the model
to learn the features that define samples at these scores.
Boosting the number of low-quality samples in each dataset
and retraining the model would potentially result in higher
accuracy for the model’s predictions. Figure 4 illustrates the
mean MOS values produced for each of the 27 test conditions
by the objective methods assessed in this paper. There is a
clear correlation between the PESQ and POLQA algorithms
and a greater variance in the mean MOS produced for each test
condition by these objective-intrusive algorithms. The single-
ended methods (P.563 and CQCNN) demonstrate mean MOS
scores with little to no correlation with the test conditions.
The poor reflection of different impairment conditions in
these methods is understandable due to the exclusion of
reference signals from their analysis. It is also possible that the
spectrograms evaluated by the CQCNN do not represent these
degradations effectively enough to be learned and associated
with the various labelled test conditions. It is possible that
the use of raw audio data as an input and perhaps the use of
a Recurrent Neural Network to evaluate temporal features of
the signals may yield a higher correlation between scores and
network impairment factors and better performance overall.

Fig. 4. Mean MOS score for each of the 27 NB test conditions, grouped by
evaluation method.

V. CONCLUSION

In this paper, we have utilized deep learning and Convolu-
tional Neural Networks to produce a novel, single-ended, ob-
jective call quality evaluation method (CQCNN). This model
was then trained on spectrograms of degraded speech pro-
duced through a high-quality, realistic simulation process by
encoding samples of the VoxForge dataset with the latest AMR
codecs EVS and Opus and passing them through a VoLTE
network emulation impaired with adverse network conditions
such as delay, jitter, packet-loss. In the results presented, the
model achieved accuracies of 91.9% (NB) and 82.5% (SWB)
in its predictions. This demonstrates that this model is capable
of outperforming current objective standards for call quality
evaluation, significantly outperforming the only standardized,
non-intrusive method (P.563) when evaluating both NB and
SWB and surpassing the accuracy of intrusive algorithms
(PESQ) in predicting NB MOS values. CQCNN improves
upon previous proposals for call quality evaluation systems
that utilize deep learning both in terms of accuracy and scope.
Our model demonstrates the ability to handle more complex,
higher quality signals such as the SWB audio transmitted
within VoLTE networks and presents the possibility for a
single-ended quality evaluation tool that can perform well even
in comparison to the high-accuracy referenced-based systems
such as POLQA. With further refinements to the dataset and
the methodology, it is possible to illict even higher levels of
performance from the proposed model in the future. This could
lead to the development of a significantly more available and
practical implementation of call quality assessment that could
be used within business, consumer and industry telecommu-
nications networks to measure performance in real-time. The
advent of 5G networks could allow for the implementation
of such a model on consumer devices that could be extended
using other well-researched deep learning methods such as
generative adversarial models (GANs) or variational auto-
encoders (VAEs) to perform audio super-resolution or signal
interpolation so as to actually improve call quality, online and
in real-time.
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