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Abstract—Modern vehicles contain an ecosystem of several
electronic units able to exchange data using the serial communica-
tion provided by the CAN bus. This protocol can be afflicted by a
plethora of attacks that can expose the driver and the passengers
to risks for their safety. In this paper we propose a method to
detect potential attacks in automotive networks. We start from
the analysis of a log obtained from a simulation and we consider
a formal verification environment to verify whether the formal
model we built from the log is safe. As a proof of concept, we
evaluate the proposed method in a case study related to adaptive
cruise control, to preliminarily demonstrate its effectiveness.

I. INTRODUCTION

Modern vehicles exhibit a large number of networked
components that as a whole are responsible for monitoring
and controlling the state of the car [1]. Each component is
responsible for communicating with neighboring components:
this traffic generates a large amount of data [2]. As a matter of
fact, automobiles contain upwards of fifty electronic control
units (ECUs) networked together [3]. For this reason, the
overall safety of the car relies on near real-time communication
between the ECUs [4]. While ECUs are communicating, they
must detect skids, predict crashes, perform anti-lock braking
and a lot of other safety-critical tasks. [5], [6].

Usually, ECUs are networked using one or more buses
complying with the Controller Area Network (CAN) standard.
CAN1 is a high-integrity serial data communication technol-
ogy developed in the early 1980s by Robert Bosch GmbH
with the aim to provide efficient communication between
several automotive applications [7]. The ECUs communicate
with each other by sending CAN packets. These packets are
broadcast to all components on the bus and each component
checks if a packet is intended for it, although segmented CAN
networks exist [8], [9]. In CAN packets there is no built-in
source identifier or authentication. These are the reasons why
it is easy for malicious components [10] to both sniff the CAN
network as well as masquerade as other ECUs and send CAN
packets. The lack of a source identifier also makes it difficult

1www.can.bosch.com

to monitor traffic because it is impossible, a priori, to know
which ECU is sending or receiving a particular packet.

The safety of drivers and passengers relies critically on
the code running in their automobiles and the threat to their
physical well-being is real [11], [12], [3].

In this paper, a method is exposed to identify conditions
suggesting the possibility of an impending attack, based on the
analysis of logs from simulated attacks. Once these conditions
have been identified and characterized, it would be straightfor-
ward to implement algorithms that recognize them at run-time,
enhancing system security and safety. The method relies on a
tool that, given a simulation log, creates an abstraction of that
log in the form of a labeled transition system, and a model-
checking prover for temporal logic is used to check if a given
condition on the system state (e.g., distance and relative speed
of vehicles) is compatible with an attack.

Any kind of simulation environment can be used with
this method. In automotive applications, systems are usually
modeled and simulated with a block-based graphical tool,
such as Simulink [13]. Such tools model a system with a set
of interconnected functional blocks realizing mathematical or
logical operations on system quantities, such as sampling, am-
plification or attenuation, or integration. Discrete components
are modeled as automata. In this work, systems are assumed
to be modeled in Simulink.

As a proof of concept, the method has been applied to a case
study related to adaptive cruise control (ACC), a widely used
system that automatically adjusts vehicle speed to maintain
a safe distance from vehicles ahead. Such systems may use
a radar or laser sensor or a camera setup to measure the
distance and relative speed of the vehicle ahead, allowing
the controller to decelerate or accelerate accordingly. ACC is
already available in many cars and will be a key component
in the future driverless cars.

II. RELATED WORK

In last years, several researches investigated about the safety
and security in automotive networks, for instance Checkoway
et al. [14] show that remote exploitation is feasible through
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a broad range of attack vectors (i.e., mechanical tools, CD
players, Bluetooth and cellular radio).

Researchers in [15] demonstrate that a long-range wireless
attack is possible using a real-world car and dangerous smart-
phone applications in a connected car environment.

Authors in [16] design an anomaly detector considering a
Long ShortTerm Memory neural network in order to detect
CAN bus attacks. Their proposal works by learning to predict
the next data word originating from each bus sender. Their
detector is able to recognize the synthesized anomalies with
low false-positive rates.

Alheeti et al. [17] propose an intelligent IDS-based system
to secure external communication for self-driving and semi-
self-driving vehicles. They design a VANET environment ex-
ploiting the NS2 simulator, in order to generate two behaviors:
normal and malicious.

Liu et al. [18] propose a system to secure the communi-
cations system for vehicles depending on roadside units. The
proposed infrastructure contains a Certification Authority (CA)
based cluster distributed in different regions. The aim is to
show that IDS using a CA database provide more protection
against malicious vehicles with legal certificates.

Lyamin et al. [19] propose an algorithm to detect denial
of service attacks in real-time, based on performance metrics
such as the percentage of false alarms for any jamming channel
and the average beacon time for vehicular networks.

Golle et al. [20] discuss a sensor-based approach that makes
nodes able to detect incorrect information and identify the
nodes that are the source of the incorrect information

Yan et al. [21] propose a method to gather data from three
resources: radar, traffic and neighboring cars with the aim
to safeguard cars from attacks. Their system computes the
similarity between these data.

In [22], vehicles and attacks are modeled in a logic lan-
guage, and the effects of attacks are studied with co-simulation
and theorem proving [23], [24].

III. MODEL CHECKING BACKGROUND

In the following, preliminary notions on formal methods
are recalled. To apply formal methods we need a formal
model representing the system under study, and a formal
system to express and prove properties of the system. In
this work, we adopt Milner’s Calculus of Communicating
Systems (CCS) [25] to build a formal model, and modal mu-
calculus [26] as the formal system.

The Calculus of Communicating Systems is one of the best
known process algebras. The basic idea of process algebras
is representing the structure of concurrent processes as ex-
pressions that can be transformed algebraically according to
given transformation (or inference) rules. The expressions are
composed of atomic symbols representing system’s actions,
and operators to build and combine sequences of actions in
various ways. The semantics of an expression of a process
algebra are given by a labeled transition system (LTS), i.e,
an automaton whose states correspond to process algebra ex-
pressions and whose transitions correspond to transformations

of expressions. In this way, a process in its initial state is
represented as an expression describing all potential evolu-
tions of that state, depending on the occurrence of different
actions, which in turn determine which transformation rules
are applicable. A transition from a state s to a state s′, due to
an action α, is represented as s α−→ s′.

Temporal logics are logical formalisms designed to express
properties of the possible evolutions of LTSs. A model-
checking prover is used to verify if a temporal formula holds
for a given LTS.

The syntax of the extended mu-calculus is the following,
where K ranges over sets of actions (i.e., K ⊆ A) and Z
ranges over system variables:

φ ::= tt | ff |Z | φ∧φ | φ∨φ | [K]φ | 〈K〉φ | νZ.φ | µZ.φ

A fixpoint formula may be either µZ.φ or νZ.φ, where µZ
and νZ binds free occurrences of Z in φ. An occurrence of Z
is free if it is not within the scope of a binder µZ (resp. νZ).
A formula is closed if it contains no free variables. µZ.φ is
the least fixpoint of the recursive equation Z = φ, while νZ.φ
is the greatest one. From now on we consider only closed
formulae.

Scopes of fixpoint variables, free and bound variables, can
be defined in the mu-calculus in analogy with variables of first
order logic.

The satisfaction of a formula φ by a state s of a transition
system is defined as follows: each state satisfies tt and no
state satisfies ff; a state satisfies φ1∨φ2 (φ1∧φ2) if it satisfies
φ1 or (and) φ2. [K] φ is satisfied by a state which, for every
performance of an action in K, evolves to a state obeying
φ. 〈K〉 φ is satisfied by a state which can evolve to a state
obeying φ by performing an action in K.

For example, 〈a〉 φ denotes that there is an a-successor in
which φ holds, while [a] φ denotes that for all a-successors φ
holds.

The precise definition of a closed formula satisfaction ϕ by
a state p (written p |= ϕ) is given in Table I.

A transition system T satisfies a formula φ, written T |= φ,
if and only if q |= φ, where q is the initial state of T .

In the sequel we will use the following abbreviations:

〈α1, . . . , αn〉 φ = 〈{α1, . . . , αn}〉 φ
〈−〉 φ = 〈A〉 φ
〈−K〉 φ = 〈A −K〉 φ

[α1, . . . , αn] φ = [{α1, . . . , αn}] φ
[−] φ = [A] φ

[−K] φ = [A−K] φ

In this work we resort to the Concurrency Workbench of
New Century (CWB-NC) [27] formal verification environ-
ment, which supports several different specification languages,
among which CCS. In the CWB-NC the verification of tem-
poral logic formulae is based on model checking [28].



TABLE I
SATISFACTION OF A CLOSED FORMULA BY A STATE

p 6|= ff

p |= tt

p |= ϕ ∧ ψ iff p |= ϕ and p |= ψ

p |= ϕ ∨ ψ iff p |= ϕ or p |= ψ

p |= [K]R ϕ iff ∀p′.∀α ∈ K.p α−→K∪R p
′ implies p′ |= ϕ

p |= 〈K〉R ϕ iff ∃p′.∃α ∈ K.p α−→K∪R p
′ and p′ |= ϕ

p |= νZ.ϕ iff p |= νZn.ϕ for all n
p |= µZ.ϕ iff p |= µZn.ϕ for some n

where for each n, νZn.ϕ and µZn.ϕ are defined as:

νZ0.ϕ = tt µZ0.ϕ = ff

νZn+1.ϕ = ϕ[νZn.ϕ/Z] µZn+1.ϕ = ϕ[µZn.ϕ/Z]

with ϕ[ψ/Z] denoting the substitution of ψ for every free occurrence of the variable Z in ϕ.

IV. IDENTIFICATION OF ATTACKS

Our analysis starts from a Simulink model of the system
under analysis. The system is simulated under operating con-
ditions and logs of sensed data and data sent to actuators are
generated. Safety requirements are identified on the system, as
expected to be true. For example, if a safe distance between
car is violated, brakes must be activated.

Then the design of the system is instrumented with the
effect of a possible attack and the logs of the simulation are
generated. The effect of the attack will result in a log with
some different values if compared with the legitimate behavior.

The idea behind our proposal is that it is possible to dis-
criminate behind a driving session with an attack (for instance,
targeting the adaptive cruise control) from the legitimate
expected behavior by simply analyzing the log retrieved from
the vehicle under analysis i.e., without additional hardware
and/or sensors. To this aim, we resort to formal verification
techniques, that demonstrated to be effective in software
verification and testing in the last years.

Then the method we propose is composed of two steps:
Formal model generation (depicted in Figure 1) and Potential
attack detection (depicted in Figure 3).

Fig. 1. Formal model generation.

As hinted in Figure 1, the values of relevant variables
(features) are stored in comma-separated-values (CSV) format.
The logs are then converted to a so-called discretized form,
where each actual value is mapped to a symbolic value in the
set {low ,medium, high}, with respect to given thresholds. For

example, the values of some feature could be mapped to low
if less than or equal to −0.1, medium if between −0.1 and
0.1, and high if greater than or equal to 0.1.

The LTS is then built from the discretized log. Each log
entry is the (abstract) state of the system at each simulation
step, represented by the tuple of feature values. The set of
values for each feature is taken as the set of actions of
the LTS. Each state at step i is then defined by a CCS
expression consisting in the parallel composition of processes,
each composed of a sequence of feature values, all terminated
by the process at step i + 1. More details about the model
construction can be found in [29]. An example of formal model
generation from a log with two features (i.e., F1 and F2) is
shown in Figure 2.

Fig. 2. An example of formal model generation.

Once the formal model has been generated and safety
requirements for the expected behavior have been identified,
a formal verification environment is used to verify whether an
attack is potentially happening.

Let S(P ) be the automaton corresponding to the log for
a driving session and ϕ be the formalization of a safety
requirement. If S(P ) does not satisfy the safety requirement,



we suspect that a potential attack is happening. Figure 3
describes the potential attack detection step.

Fig. 3. Potential attack detection.

In this step, a formal model and a property are considered as
input for the model checker. If the model checker returns true,
the safety requirement is satisfied, and this is symptomatic
that the formal model exhibits a legitimate behavior, otherwise
if the model checker returns false, an attack is potentially
happening.

Let us assume that actions b and c must never happen when
the a action happen, we have to prove that the formal model
satisfies the ϕ property, where:

ϕ = νX.[b][c] ϕ1 ∧ [−] X

ϕ1 = [a] ff

To verify a formal model in the CWB-NC environment, we
use the chk command, with the formal model S(P ) to verify
and the ϕ property as inputs.

V. A CASE STUDY: ADAPTIVE CRUISE CONTROL SYSTEM

As a case study, an adaptive cruise control system is
considered, taken from the Matlab/Simulink documentation,
which includes several examples in the automotive field2. The
Simulink scheme is shown in Figure 4.

The Lead car (the box on the left of the figure) is parametric
with respect to the acceleration function. The Ego car reads
the actual position and the actual velocity of the Lead car.
Then these parameters are provided as input to the Controller,
which together with the actual position and velocity of the
Ego car, computes the new acceleration of the Ego car.

Actually, the schema in Figure 4 is a variant of the original
model. In particular, an attack has been added that changes the
value of the position of the Lead car, after this value has been
read by the Ego car sensors and before this value has been
provided as an input to the Controller. As a proof of concept,
we assume that the attack increases the position of the Lead
car by 60 units. Graphically, the attack is modeled by a block
named Attack in the figure.

Figure 5 shows the system behavior, under some operating
conditions. In particular, Dsafe is the safe distance between
the Lead and the Ego car. The figure shows that the relative
position is always greater than the safe distance and that in
the steady state the Ego car has the same behavior of the Lead
car.

2https://it.mathworks.com/help/mpc/ref/adaptivecruisecontrolsystem.html

Fig. 4. Adaptive cruise control system (adapted from Matlab/Simulink).

Figure 6 shows the system behavior in case of attack. At
time 14.5 sec, the relative position becomes negative, which
means that there is a crash; at time 4.2 the safety requirement
described below is violated.

Assume the log stores the following information:
RelativePos, the difference between the actual positions
of the two cars (read by sensors); RelativeSpeed, the
relative velocity of the two cars; EgoAcc, the acceleration of
the Ego car and RelativePos - Dsafe, the difference
between the actual distance and the safety distance of the two
cars. An excerpt of the Log file is shown in Table II, where
State is the timestamp. The duration of a step is 0, 1. State
145 corresponds to 14, 5 sec in the simulation.

An example of safety requirement is the following:

if the distance between the cars is less than the safety
distance and the difference betwee the speeds of the two
cars is negative, then the Ego car must decelerate.

Below we show the representation of the formula in mu-



TABLE II
LOG FILE (AN EXCERPT).

State RelativePos RelativeSpeed EgoAcc (RelativePos - Dsafe)
... ... ... ... ...

98 45.2629324696 -0.1734871587 -0.0543565760 0.0200504475
99 45.2459171683 -0.1668540851 -0.0544967007 0.0123214492

100 45.2295540452 -0.1604368351 -0.0538242986 0.0049424761
101 45.2138233922 -0.1542013153 -0.0526345966 -0.0020584492
102 45.1987079325 -0.1481315931 -0.0511222645 -0.0086762978
103 45.1841914158 -0.1422221882 -0.0468068141 -0.0149196477
104 45.1702569607 -0.1364976159 -0.0441163354 -0.0208397016

... ... ... ... ...

Fig. 5. Simulink output.

calculus temporal logic:

ϕ = νX.[low RelativeSpeed]

[low RelativePos Dsafe] ϕ1 ∧ [−] X

ϕ1 = [high EgoAcc] ff

The ϕ formula describes the following property: it must
never happen that the relative speed and the (relative position
- Dsafe) assume a low value and the acceleration in the next
state exhibits a high value.

Figure 7 shows the output of the model checker when
the legitimate and the attack models are verified. When the
legitimate model is evaluated, the ϕ property results true (i.e.,
the system is safe) while, when the attack model is evaluated,
the CWB-NC outputs false, symptomatic of an unsafe behavior
(i.e., a possible attack).

We show also a variant of safety requirement than can be
used to anticipate the potential attack:

χ = νX.[low RelativeSpeed]

[low RelativePos Dsafe] χ1 ∧ [−] X

χ1 = [medium EgoAcc] ff

Fig. 6. Simulink output in case of attack.

Fig. 7. The output of the model checker.

The χ formula describes the following property: it must
never happen that the relative speed and the (relative position
- Dsafe) assume a low value and the acceleration in the next
state exhibits a medium value. This second formula can be
helpful to alert that a potential attack can happen in a short



time (if the acceleration continues to increase). When the
legitimate model is evaluated, the χ property results true while,
when the attack model is evaluated, the CWB-NC outputs
false, symptomatic that an unsafe behavior can happen in
the near future. One of the interesting point of the proposed
approach is that it adopts variables currently measured in
vehicles.

VI. CONCLUSIONS AND FUTURE WORK

This paper has introduced a method whereby simulated
cyber-attacks to networks of ECUs in automotive systems can
be identified from patterns in simulation logs. An algorithm
has been designed and implemented that abstracts a system’s
behavior by building an LTS defined in CCS. A temporal logic
formula to check if the attack can drive the system into an
unsafe condition, written in the mu-calculus language, can
then be proved or disproved with a model-checking prover.
This procedure is arguably useful at an early design stage, in
the phase of risk analysis, when simulation can be used to
assess the consequences of various types of attacks. Further,
it makes it possible to characterize the conditions revealing
a possible attack and have them detected at run-time with a
simple monitoring algorithm.
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