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Abstract—Recent research discovered that Reinforcement
Learning (RL) algorithms with simple linear policies can achieve
competitive performance as many state-of-the-art RL algorithms
designed to train policies in the form of multi-layer neural
networks. However, high learning performance is only achieved so
far when policies are trained by jointly using multiple episodes of
samples. An important research question remains as to whether
linear policies can achieve cutting-edge performance when they
are trained in a step-wise fashion (i.e., policies are iteratively
updated based on every newly obtained sample). This paper
presents a confirmatory answer to this question by developing a
new RL algorithm called Primal-Dual Regular-gradient Actor-
Critic (PD-RAC) as a generalization of RAC, which is a popular
step-wise RL technique. Experiments on six benchmark control
problems show that PD-RAC can achieve leading performance,
in comparison to several recently developed baseline algorithms.

Index Terms—Reinforcement Learning, Actor Critic, Episodic
Learning, Step-wise Learning, Primal-Dual Approximation

I. INTRODUCTION

Reinforcement learning (RL) has been successfully applied
to a wide range of tasks from intelligent game play [1] to
locomotion control [2]. A main family of RL algorithms
called Policy Gradient Search (PGS) is designed to directly
train a policy model based on gradients of its trainable
parameter. PGS is particularly effective at solving various
control problems with continuous state spaces and continu-
ous action spaces. Depending on whether the policy model
is linear or non-linear, it can be implemented as either a
linear combination of a group of parameters or a multi-layer
neural network (NN). Linear policies enjoy three significant
advantages over non-linear policies: (1) they are easier to be
interpreted and understood [3]; (2) they are more efficient
in terms of computational cost [4]; (3) they have strong
theoretical guarantees of convergence [3]–[5]. However, linear
policies are often considered not as competent as non-linear
policies at solving complex problems [2], [6]–[8].

Against this common belief, Rajeswaran et al. [9] for the
first time showed that linear policies trained via natural gra-
dient learning can effectively solve continuous control tasks.
Shortly after that, Mania et al. [10] proposed the Augmented
Random Search (ARS) algorithm, which is capable of training
linear policies to achieve state-of-the-art performance on many
difficult benchmark control tasks. All these algorithms train

linear policies by jointly using multiple episodes of environ-
ment samples. This is because policy gradient estimation based
on a single sample alone can easily suffer from high-level
of noise in step-wise learning systems [9]. Such noise can
be noticeably reduced when estimating policy gradient over a
collection of samples.

Nevertheless, step-wise learning is much more efficient to
operate than episodic learning. It also improves the adaptabil-
ity of an RL algorithm and enhances its sample efficiency [3].
Therefore, it is important to develop new step-wise RL algo-
rithms with proven capability of training linear policies highly
reliably and effectively. Driven by this understanding, we aim
to address a critical challenge in this paper: upon updating a
linear policy in a step-wise fashion along its policy gradient,
no mechanism exists to re-use vital historical information that
can improve the accuracy of the estimated policy gradient [6],
[11]–[13]. Without explicitly maintaining multiple episodes of
samples obtained in the past, we decide to tackle this issue by
efficiently accumulating and re-using historical gradients while
estimating policy gradients in future steps.

To systematically re-use historical gradients, we adopt a
general Primal-Dual (PD) approximation technique [14] that
converts challenging primal learning problems to simpler
linear dual problems through averaged historical gradients
accompanied with a strongly convex regularization term. In
fact, the dual problems can be treated as locally linear es-
timations of the original primal problems and can often be
solved analytically, resulting in low-variance learning perfor-
mance [15]. Although PD has been utilized by the mirror
descent technique to facilitate safe RL, to the best of our
knowledge, this important method has seldom been applied
to step-wise PGS algorithms.

Motivated by the great potential of PD at enhancing step-
wise RL, our main goal is to develop a linear PGS algorithm
that can tackle various control problems effectively and reli-
ably. In particular, we aim to achieve four research objectives
as follows:

1) To develop a new AC algorithm termed PD-RAC based
on a newly derived dual formulation of the policy
gradient search problem.

2) To prove that PD-SAC generalizes the basic RAC algo-
rithm for step-wise RL by analyzing the dual formula-
tion of PD-RAC.
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3) To show that PD-RAC converges to local equilibrium
by providing a theoretical analysis.

4) To empirically evaluate the learning performance of PD-
RAC, in comparison to RAC and two cutting-edge PS
algorithms (i.e., ARS and PPO-Linear) on six bench-
mark continuous control problems.

The paper is structured as follows. Section II presents the
background and relate work to form a foundation of this paper.
Next, Section III derives the new policy updating rule with the
help of PD approximation, and develops the new algorithm
PD-RAC. Meanwhile, an analysis is performed to testify the
fact that RAC is in fact a special case of PD-RAC. The design
of experiments and the discussion on results are given in
Section V and Section VI respectively. The paper concludes
in Section VII.

II. BACKGROUND AND RELATED WORK

In this section, we briefly describe the background including
the concepts of reinforcement learning, Actor-Critic Architec-
ture and the general Primal-Dual method. Following that, we
present a discussion of related works in the literature.

A. Reinforcement Learning

Reinforcement Learning is defined as a process where an
agent interacts with an unknown environment through a series
of actions [3]. The environment provides responsive feedback
in the form of rewards to the actions it receives from the agent.
Through RL, the agent has the goal to maximize its long-term
pay-off, which is defined as

J (π) = IE[

∞∑
t=0

γtrt+1|π]. (1)

This goal is realized by learning a policy π that maximizes
J in (1), i.e.,

π∗ = argmaxπ J (π)
= argmaxπ IE[

∑∞
t=0 γ

trt+1|π].
(2)

B. Actor-Critic Architecture

The Actor-Critic (AC) architecture is popularly used to de-
sign PGS algorithms [3], [6], [16]. An AC algorithm explicitly
maintains and learns both a policy (i.e., actor) and a value
function (i.e., critic). The value function is used for policy
evaluation. For this purpose, the state value function V π is
trained via the temporal-difference (TD) error below,

δπt = R(~st, at, ~st+1) + γV π(~st+1)− V π(~st), (3)

where V π(~st) approximates the expected long-term pay-off
for current state ~st, and ~st+1 refers to the next state reachable
by taking action at at state ~st.

Based on δπt in (3), V π can be iteratively updated according
to,

~υt+1 = ~υt + αtδ
π
t
~φ(~st), (4)

Simultaneously, actor training in AC algorithms, such as
RAC [16], is realized by using the estimated policy gradient,

i.e., the gradient of cumulative rewards J with respect to all
policy parameters ~θ,

~θt+1 = ~θt + βt∇~θJ (~θt), (5)

where

∇~θJ (~θt) =

∫
~s∈S

pπ(~s)

∫
a∈A(~s)

∂π~θ(a|~s)
∂~θ

Q̃π~w?(~s, a)dad~s

(6)

C. A General Primal-Dual Approximation Method

This section introduces the core notion of PD that paves the
way for developing PD-RAC in Section III. [14] showed that
it is possible to approximate a complicated primal learning
problem through a simpler linear dual problem that can be
solved immediately. Given a general optimization/learning
problem (i.e., the primal problem)

f(~x?) = max
~x∈D

f(~x), (7)

where D ⊆ Rm is a convex subset of the real vector space,
and the convex scalar objective function f : D → R is
Lipschitz continuous. To solve (7), [14] reformulates (7) to a
simpler dual problem based on k (k > 0) candidate solutions
{~xi}ki=0 ⊂ D, as shown below:

lk(~x?) = max
~x∈D

[
1

k + 1

k∑
i=0

[f(~xi) +∇~xf(~xi)
T · (~x− ~xi)]

− µkd(~x, ~x0)],

(8)

where µk = 1
2β(k+1) is a scaling parameter, and d(~x, ~x0) is an

arbitrary distance measure between any two solutions. In order
to provide k candidate solutions, we can adopt an iterative
process. Particularly, during each learning iteration, (8) can
be solved directly to produce the next candidate solution as

~xk+1 = ~x0 + β 1
k+1

∑k
i=0∇~xf(~xi)

= ~xk + β 1
k+1∇~xf(~xk),

(9)

where β is the learning rate.
Unfortunately the dual formulation of (9) cannot effectively

re-use historical gradients. Therefore, we must investigate
other variations of the dual formulation, which have not been
explored in-depth in the literature.

D. Related Work

Since Deep-Q gained a great success on autonomously
playing Atari games, surpassing human expert players [1], RL
has received unprecedented research interests [17]. A variety
of interesting algorithms have been developed recently to
address many difficult RL problems. Among all these algo-
rithms, PGS methods have attracted increasing attention [17].
Different from value function based methods, such as Deep-
Q, PGS avoids the necessity of using the ε-greedy action
selection mechanism that may dramatically change an RL
agent’s behavior subject to a very small change in the value
function [3]. This issue has been shown to substantially
degrade the effectiveness of Deep-Q on problems with large
number of possible actions [5].



Many PGS algorithms have achieved cutting-edge perfor-
mance onto many difficult problems. For example, Schulman
et al. introduced PPO and TRPO to directly train policies
modeled as deep neural networks [7], [8]. The two algorithms
can noticeably outperform many value function based algo-
rithms in terms of both sample efficiency and effectiveness.
Overwhelmed by the huge success of PGS algorithms on
training non-linear policies, few people has ever attempted to
re-consider linear policies which stand for a popular choice of
policy model before the age of deep reinforcement learning.

Very recently, two brilliant PGS algorithms successfully
reignite the interests in linear policies. The first algorithm
is proposed by [9] where a natural-gradient based episodic
learning approach is adopted to learn a linear policy effec-
tively. A more recent algorithm is proposed by [10] to search
policies in the linear space through a guided random search
mechanism. Regardless of the policy model adopted, all the
aforementioned methods are designed to train policies based
on either the current episode of samples or a mixed collection
of both current and historical samples. In other words, they
all fall under the episodic learning paradigm.

The research question remains regarding whether it is pos-
sible to develop a step-wise learning algorithm that can train
linear policies reliably and effectively. In this paper, we aim to
address this question by proposing a new PGS algorithm that
is capable of conducting step-wise learning of linear policies
with highly competent performance. To achieve this goal, we
will introduce a new PD-inspired mechanism to effectively
reuse historical gradients rather than historical samples to
improve the accuracy of estimated policy gradients.

III. PRIMAL-DUAL REGULAR ACTOR-CRITIC ALGORITHM

In this section, we start with deriving a new and more
useful dual formulation for the PD-RAC algorithm. Following
that, an relationship analysis PD-RAC and RAC is presented.
Lastly, an algorithmic description of PD-RAC is given.

A. Dual Formulation for PD-RAC

According to (7), the primal problem for policy training can
be defined as

J (~θ?) = max~θ∈~ΘJ (~θ)
= max~θ∈~Θ[

∫
~s∈S p

π~θπ~θ(a|~s)R(~s, a,~s′)dad~s]
(10)

Instead of using the dual formulation given in (8), which is
equivalent to RAC, we change the arithmetic averaging in (8)
to the exponentially-weighted averaging in (11). Besides this,
several possible variations can be considered. For example,
we can set the norm of the gradients as the weights [14].
This implies that only the directions of the gradients will be
considered during the learning process. However, we cannot
find any empirical evidences that support its effective use in
our RL algorithm.

Based on this understanding, the dual problem of (8) can
be re-formulated as

l(~θ?) = max
~θ∈Θ

[

t∑
i=0

ρt−i[J (~θi) +∇~θJ (~θi)
T · (~θ − ~θi)]

− µt||~θ − ~θ0||22].

(11)

Clearly, exponentially-weighted averaging is applied to (11).
Particularly, the weight paramter ρ ∈ (0, 1] measures the
importance of historical gradients (i.e., gradients obtained from
the prior t time steps) at an exponential scale. In the meantime,
we decide to use Euclidean distance as the regularization term
for simplicity. To analytically solve (11), note that

∂l′t(
~θ)

∂~θ
=

∂[ 1
t+1

∑t
i=0[f(~θi)+(

∂J (~θi)

∂~θi
)T ·(~θ−~θi)]+µtd(~θ)]

∂~θ

= ( 1
t+1 )

∑t
i=0(∂J (~θi)

∂~θi
) + µt

∂d(~θ)

∂~θ
.

(12)

By letting (12) equal to ~0, we have

(
1

t+ 1
)

t∑
i=0

(
∂J (~θi)

∂~θi
) + µt

∂d(~θ)

∂~θ
= ~0, (13)

Based on (13), we can generalize policy training by intro-
ducing a tunable parameter 0 < ρ ≤ 1,

1

(t+ 1)
∑t
i=0 ρ

t−i

t∑
i=0

[ρt−i(
∂J (~θi)

∂~θi
)] = µt

∂d(~θ)

∂~θ
, (14)

According to the definition of µt in [14] and (13), the
scaling parameter µt can be determined as:

µt =

∑t
i=0 ρ

t−i

2t(t+ 1)
∑t
i=0 ρ

t−i
, (15)

Thereby, (14) can be reformulated as,
t∑
i=0

[ρt−i(
∂J (~θi)

∂~θi
)] = (

∑t
i=0 ρ

t−i

2t
)
∂d(~θ)

∂~θ
. (16)

(16) hence enables PD-RAC to generalize RAC. Specifically,
when ρ = 1, policy learning in PD-RAC degenerates to the
average model in (13). Additionally, the scaling parameter is
obtained as µt =

∑t
i=0 ρ

t−i

2(t+1) . Following the above derivations,
we can obtain the policy parameter updating rule for PD-RAC
as:

~θt+1 ← ~θ0 + βt(
t+ 1∑t
i=0 ρ

t−i
)

t∑
i=0

[ρt−i∇~θJ (~θi)], (17)

where βt is the learning rate at time step t.

B. Analysis on Dual Formulation of PD-RAC

By using the exponentially-weighted averaging method,
we emphasize more on recently obtained policy gradients.
Furthermore, the updating of policy parameters can be made
at a smaller scale, in comparison to value function learning.
During RL, the value function is expected to become more
and more precise, progressively improving the accuracy of
estimated policy gradients. Hence, over t consecutive learning



steps, the gradients obtained in early steps (e.g., when t = 0)
may not be as important and accurate as those obtained in
later steps. However, in (8), historical gradients are treated
equally, ignoring their varied importance. To cope with this
issue, we introduce the dual problem formulation in (11),
where gradients obtained more recently are considered more
important. Moreover, in the literature, several research works
showed that adaptive changes of weights can potentially
result in better convergence rate [18]. We also performed
some preliminary experiments. Our study confirms that the
exponentially-weighted averaging method can noticeably im-
prove the convergence rate, in comparison to the arithmetic
averaging method.

However, there is a key issue of directly using (17). Specif-
ically, when t becomes very large, the influence of the policy
gradients estimated at times closer to t = 0 will diminish
completely, resulting in biased learning.

A simple example in Figure 1 helps to demonstrate this
issue. Here, we use a 2D contour graph to represent the
policy parameter space. Each parameter value is represented
as a black point. The red dashed vectors represent the normal
updating trajectories from ~θ0 to ~θt+1, obtained by follow-
ing RAC. On the other hand, considering the updating rule
(17), its second part is depicted as a solid blue vector, i.e.,

t+1∑t
i=0 ρ

t−i

∑t
i=0 ρ

t−i∇~θJ (~θt). This is because, when t is very
large, the policy gradient (the dashed blue vector) is largely
determined by the recent gradients, namely the two parts A
and B shown in the figure. Upon following the direction of the
solid blue vector (i.e., the dashed blue vector) to update ~θ0, the
updated parameter ~θ′t+1 will end up at an undesirable position
in the figure. In fact, ~θ′t+1 and ~θ0 are located roughly at the
same contour line, resulting in no performance improvement.

Fig. 1: An example of the biased learning following (17) when
t is very large.

To address the issue demonstrated in Figure 1, we develop a
periodical updating process for learning the policy parameters.
To be more specific, policy parameters are updated every K
(i.e.,the periodic interval) steps where K > 0 is a small
constant. After every K steps, we will apply the updating

rule (17), as a result, ~θ0 becomes ~θK . Accordingly, (17) can
be re-written as a more general periodic updating rule below:

~θ(n+1)K ←~θnK

+ βnK(
nK∑nK

i=0 ρ
n(K−i)

)

nK∑
i=0

[ρn(K−i)∇~θJ (~θi)],

(18)

where n ∈ N. Meanwhile, within one learning period, the
step-wise updating rule below will be followed:

~θt+1 ← ~θt + βt∇~θJ (~θi). (19)

where 0 ≤ t < K. Note that, with periodical learning, RAC
can still be viewed as a special case of PD-RAC. When ρ = 1,
the proposed updating rules in (18) and (19) are equivalent to
(5), which is adopted by RAC.

C. PD-RAC Algorithm

Following (18) and (19) for policy learning, we present
the complete PD-RAC algorithm in Algorithm 1. In the
algorithm, the regular gradient estimator at each learning step
is realized based on∇~θJ (~θi) = IE~θ[δ

πi
i Φ(~si, ai)], where δπii is

obtained from (3) and Φ(~s, a) =
∂ lnπ~θ(a|~s)

∂~θ
is the compatible

feature [5].

Algorithm 1 PD-RAC Algorithm

Require: an MDP 〈S,A,P,R, γ〉, the periodic step interval
K.

Ensure: ~θ, ~υπ

1: Initialization:
2: ~θ ← ~θ0, ~υπ ← υπ0 , ~st ← ~s0, ~̂g ← ~0, ~g ← ~0, k ← 0
3: Learning Process for one episode:
4: for t = 0, 1, 2, ... do
5: at ∼ π~θ(a|~st)
6: Take action at, observe reward rt+1 and new state
~st+1

7: δπt ← rt+1 + γ~υπTt · ~φ(~st+1)− ~υπTt · ~φ(~st)
8: ~υπt+1 ← ~υπt + ~αδπt

~φ(~st)

9: ~̂g ← ~̂g + ρδπt ~Φ(~st, at)
10: k ← k + 1
11: ~g ← k∑k

i=0 ρ
k−i

~̂g

12: ~θt+1 ← ~θt + β~Φ(~st, at)
13: if k ≥ K then
14: ~θt+1 ← ~θ0 + β~g
15: ~θ0 ← ~θt+1

16: k ← 0
17: end if
18: end for
19: ~θ0 ← ~θt+1, ~υπ ← υπ0 , ~st ← ~s0, ~̂g ← ~0, ~g ← ~0, k ← 0
20: return ~θ, ~υπ

IV. THEORETICAL ANALYSIS

In this section, we briefly touch on the theoretical analysis,
where Proposition 1 is presented to guarantee the convergence



of PD-RAC. Due to the space limitation, we here provide a
general idea of proof rather than the actual rigorous mathe-
matical proof.

The convergence analysis of PD-RAC follows and extends
the analysis of RAC presented in [16]. Similar to other con-
vergence analysis in literature, the PR-RAC converges under
six important assumptions. To avoid unnecessary repetitions,
we refer readers to related papers [16], [19], [20] to detailed
mathematical descriptions for all six essential assumptions.
Following this, we propose the proposition below:

Proposition 1. Under Assumptions 1 - 6 in [16], [19], [20],
given some small η > 0 1 and ε > 0, ∃δ > 0 such that for ~θt,
t ≥ 0 obtained from PD-RAC, if

∑t
i=0 sup~θi ||e

~θi || < tδ, also
∇~θJ (~θ) and ∇2

~θ
J (~θ) are bounded, then ~θt → =ε as t→∞

with probability one.

In what follows, we will discuss the key ideas of proof in
a high-level, which is to find a way to categorize PD-RAC
into the two time-scale learning process [3], [5], [16]. Distinct
from the single-step parameter updating process of RAC, PD-
RAC features a k-step parameter updating process where k is
a pre-defined step-length. Thus, we can start with a single-step
updating to prove the convergence, then it can be extended to
the case k = 2 and further to the case where k →∞.

Firstly, let us recall that the single-step policy parameter
learning can be regarded as,

~θt+1 = ~θt − βt∇~θtJ (~θt). (20)

Following (20), we can obtain a sequence of policy parameters
over time, i.e.,

~θ0, . . . , ~θt.

Secondly, let us expand the above pattern to think k-step as
a single step shown as below,

~θ0, . . . , ~θk︸ ︷︷ ︸
~̂θ1

, ~θk+1, . . . , ~θk+k︸ ︷︷ ︸
~̂θ2

, . . . , ~θt−k, . . . , ~θt︸ ︷︷ ︸
~̂θt

.

Accordingly, we can have another variant single-step updating
sequence of parameters, i.e.,

~̂θ0, . . . , ~̂θt.

Thus, following the findings in previous research [16], we can
easily understand the convergence of sequence ~̂θt if each ~̂θt is
bounded.

Thirdly, with some derivation by following Taylor Expan-
sion, we can show that if η is reasonably small, the update to
~θk when k ≥ 2 can be bounded as,

~θk ≤~θ0 − (k − 1)A(B + C +D)∇~θ0J (~θ0)

− (k − 1)A[ρe
~θ0(~s0) + e

~θ1(~s1)

+ · · ·+ e
~θk−1(~sk−1)].

(21)

1η is a new learning rate introduced to mitigate the affect of higher order
terms, when expanding the first order gradient of J , i.e., ∇~θJ (~θ), with
Taylor Series. Thus, the value must be assumed to be small enough.

Lastly, following similar steps in the proof for Theorem 2
in [16] and Lemma 6 in [16], we can draw the conclusion that
the learning process of ~θ converges to a local equilibrium.

V. DESIGN OF EXPERIMENTS

In this section, we evaluate the proposed PD-RAC on
six benchmarked continuous control tasks including Bipedal
Walker, LunarLander, Mountain Car Continuous, Inverted Pen-
dulum, Inverted Double Pendulum, and Inverted Pendulum
Swingup. We briefly describe each problem used in experi-
ments in the first subsection below. More detailed descriptions
about these problems can be found in [21]–[23]. Subsequently,
the second subsection presents the detailed setups for ex-
periments, including competing algorithms, representation of
value function and policy, and hyper-parameter configurations.
Lastly, the experiment design is presented.

A. Benchmark Problems

Among the six benchmark problems, Mountain Car Contin-
uous, Lunar Lander, and Bipedal Walker are implemented pro-
vided by GYM environment [24]. The other three problems are
Inverted Pendulum, Inverted Double Pendulum and Inverted
Pendulum Swingup provided by Bullet Physics Engine [25].
We briefly describe each problem used in experiments in the
rest of the subsection, and more detailed descriptions about
these problems can be found in [21]–[23].
• Mountain Car Continuous is a continuous version of the

classic Mountain Car Problem [3] where a car is posi-
tioned between two “mountains” in a one-dimensional
axis. The goal is to drive the car up to the mountain on
the right side. To make the problem difficult, the car’s
engine is not strong enough to reach the goal in a single
pass. The instant reward is the distance from the current
car position to the goal region, and a +10 is directly given
once the car reaches the goal region. It is designed to have
one continuous action in [-1.0, 1.0].

• Lunar Lander is to control an agent accepting 8-
dimensional continuous sensor input to produce a two-
dimensional continuous action ranging from −1.0 to 1.0.
It aims to smoothly and accurately guide the lander robot
to land on a target pad which is always set at the origin
(0.0, 0.0). While moving from the top of the screen to
the target pad with zero speed, the agent will be awarded
a reward ranging from 100 to 140. However, it loses
rewards due to its moving away from the pad. As long
as the lander crashes or comes to rest, it receives an
additional −100 or 100, and the episode completes.

• Bipedal Walker is to drive a robot move along flat terrain.
It is constituted of 24-dimensional continuous state space
and 4-dimensional continuous action space. The agent is
rewarded +1 point by moving forward, and total +300
points is given at the far end. The fallen of the robot will
cause a −100 penalty; also motor torque costs a small
number of points.

• Inverted Pendulum is the classical pole balancing prob-
lem, where a pole is attached by a joint to a cart moving



horizontally. It aims to find a plot that balances the pole
to the upright angle as long as possible. It is designed
to have four state inputs and one continuous action in
[−1.0, 1.0]. As long as the pole maintains upright, it
receives a +1 reward.

• Inverted Pendulum Swingup is an analogy to Inverted
Pendulum, but it requires additional swing to balance the
pole to the upright position.

• Inverted Double Pendulum is a hardcore version of In-
verted Pendulum, as it contains two joints connecting two
poles to a fixed point. The controller actuates the joint to
swing the end of the lower pole to a given height from the
initial situation where both poles are hanging downwards.

B. Experiment Setup

We describe the overall experimental setups in this subsec-
tion. Our discussion covers (1) all competing algorithms; (2)
the stochastic policy model; (3) the representation of value
function and policy in the experiments; and (4) configurations
of important hyper-parameters for all algorithms, including the
learning rate and the discount factor.

1) Competing Algorithms: In our experiments, we consider
three competing algorithms, including RAC, ARS, and PPO-
Linear, because of two main reasons. First, to evaluate the
effectiveness of PD-RAC, we need to compare its performance
to its counterpart, i.e., RAC. Second, to position PD-RAC in
the context of state-of-the-art algorithms, we compare with
two cutting-edge algorithms closely related to this paper, i.e.,
ARS [10] and PPO-Linear [7]. PPO has been reported as the
best-performing algorithms on challenging control problems in
comparison to many state-of-the-art PGS algorithms [7]. Thus,
we have decided to modify the PPO algorithm [9] to support
linear policy representation for our experiments. Empirically,
we found that the adapted PPO (i.e., PPO-Linear) remains
highly effective on most control problems, which satisfies our
experimental requirements. To ensure good performance of
all competing algorithms, we rely on high-quality algorithm
implementations provided by OpenAI Baselines 2 [26].

2) Value Function and Policy Representations: Most of
PGS algorithms rely heavily on precise learning of value
functions. Due to this reason, we decide to model the value
function through an NN with proven effectiveness in the
literature [3], [9]. The NN architecture for value function
will be presented first in this subsection. Following that, we
describe the stochastic policy implementation where the policy
is represented as a linear parametric function. For fair compar-
isons, we consistently use the same network architecture for
the value function across all competing algorithms except for
ARS which does not require a value function. The architecture
adopted is depicted in Figure 2.

Following many existing studies [6], [27], we implement the
Gaussian policy for all experiments which is parameterized by

2Our implementations of all algorithms can be found at
https://github.com/yimingpeng/primal dual baseline
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Fig. 2: The Architecture of NN for representing Value Func-
tion for PD-RAC, RAC and PPO-Linear.

~θ as
π~θ(a|~s) =

1

σ
√

2π
e−

(a−µ)2

2σ2 , (22)

where µ = ~θT · ~φ(~s) is the mean action output from policy
π~θ in state ~s, which can be adjusted by changing policy pa-
rameters ~θ. Based on the common setup in the literature [27],
the exploration meta-parameter (i.e., the standard deviation) is
fixed for all experiments, i.e., σ = 1.0. Note that, π at the
RHS of (22) stands for the regular circumference ratio.

TABLE I: The Hyper-parameter settings of all algorithms
including RAC, PD-RAC, ARS and PPO-Linear used for all
benchmark problems.

Algorithms Hyper-parameters
α β γ κ ρ K σ

RAC 3e-4 3e-5 0.99 N/A N/A N/A N/A
PD-RAC 3e-4 3e-5 0.99 N/A 0.95 5 N/A

ARS N/A 0.025 0.99 N/A N/A N/A 0.1
PPO-Linear 3e-4 3e-4 0.99 N/A N/A N/A N/A

3) Hyper-parameter Configurations: We adopt the hyper-
parameter configurations differently for different algorithms,
according to the best reported settings for each competing
algorithms in the literature [7], [10], [16]. For PD-RAC,
we followed the same settings as RAC. All the important
configurations can be found in Table I. We refer readers to
our algorithm implementation in Github for more detailed
configurations.

In Table I, α and β are learning rates for training value
functions and policies respectively; γ is the future reward
discount factor; κ represents the coefficient for Fisher Infor-
mation matrix; ρ controls the importance level of historical
gradients in (17); K is the periodic interval for PD-RAC; σ
is the standard deviations for noise in ARS.

C. Experiment Design

In the experiments, all algorithms are compared in terms
of their learning effectiveness. Following the standard setting
in the literature [7], [8], [26], effectiveness is defined as the
average total rewards of the last 100 episodes.
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(e) Inverted Pendulum Swingup
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(f) Inverted Double Pendulum

Fig. 3: A performance comparison of PD-RAC against the competing algorithms including RAC, ARS [10] and PPO-Linear [7]
on six benchmark problems.

To determine any significant differences in performance,
we perform 30 independent runs for all algorithms on each
continuous control task. At every 10,000 samples, we conduct
one independent test with a deterministic policy. Testing is
performed in a separated testing environment with the same
random seed as the one used for training. In doing so, we
can also identify the true effectiveness as well as sample
efficiency of each algorithm. All these independent tests are
carried out by using the best policy learned so far till the
testing point (i.e., every 10,000 samples). For all experiments
and all algorithms, we have performed policy training for
only 5,000,000 samples (i.e., 5 million steps), due to the
computational resource limitation.

VI. RESULTS AND DISCUSSION

Experimental results for four algorithms on the six bench-
mark problems will be presented in this section. We firstly
present the learning curves of all algorithms with respect to
each problem individually in Figure 3. Next, we show the final
performance of trained policies after all algorithms completed
their training processes.

A. Discussion on Learning Effectiveness

To evaluate the general effectiveness, we illustrate the
learning curves of the proposed PD-RAC in comparison to
the competing algorithms in Figure 3. As can be seen from
Figure 3, the proposed algorithm PD-RAC performed clearly
better than RAC across all six problems. In addition, when

compared to the cutting-edge algorithms, PD-RAC outperform
ARS on all six problems. In comparison to PPO-Linear, in
addition to Inverted Pendulum and Inverted Double Pendulum,
PD-RAC also achieved competitive performance on Bipedal
Walker and Inverted Pendulum Swingup.

An interesting finding is that ARS did not manage to achieve
good performance on all six problems 3. This is because fitness
evaluation in ARS requires a large number of samples. In our
case, 5,000,000 learning steps may not be sufficient for the
algorithm to converge. In the original paper of ARS [10],
the amount of samples required for solving any control task
is consistently above 1,000,000. To reduce training time,
100 CPU cores have been utilized in parallel. The hardware
requirement is far more than what we can support in our
experiments.

To sum up, we can confirm that PD-RAC performed mostly
better than the competing algorithms in terms of learning
effectiveness.

B. Discussion on Final Performance

To further analyze the effectiveness of PD-RAC, we present
the final performance for all algorithm in Table II. We specif-
ically measured the performance achievable after learning
5M steps in this table, in order to identify any statistically
significant difference in performances.

3Note that, ARS’s learning curve overlaps with X-axis and is hardly
distinguished, because it completely fails on the Mountain Car problem as
reported in Table II where it obtains 0 total rewards at the final episode.



TABLE II: The final episode performance comparison of four algorithms (i.e., PD-RAC, RAC, ARS and PPO-Linear) on six
benchmark problems (i.e., Bipedal Walker, Inverted Double Pendulum, Inverted Pendulum, Inverted Pendulum Swingup, Lunar
Lander Continuous, and Mountain Car Continuous).

Algorithms/Problems Bipedal Walker Inverted Double Pendulum Inverted Pendulum Inverted Pendulum Swingup Lunar Lander Continuous Mountain Car Continuous
ARS -27.78±51.43 4000.07±4017.15 135.63±231.02 19.30±25.84 -77.04±83.59 0.00±0.00

PD-RAC 145.13±30.54 9271.13±131.03 1000.00±0.00 156.14±7.54 155.77±4.37 92.79±0.07
PPO-Linear 146.32±28.03 426.51±6.43 931.19±3.56 140.48±29.33 188.04±20.80 90.19±0.08

RAC 39.76±63.33 1184.29±116.89 215.41±356.46 149.52±14.31 -16.73±37.79 91.10±0.06

As can be seen from Table II, PD-RAC has leading final
performance across four problems including Mountain Car,
Inverted Pendulum, Inverted Pendulum Swingup and Inverted
Double Pendulum. Moreover, it shows no significant differ-
ence comparing to PPO-Linear on Bipedal Walker problem.

Interestingly, a small performance gap can be spotted be-
tween PD-RAC and PPO-Linear on the Lunar Lander problem
that is highly sensitive to precise control signals. This implies
that the changes to the policy cannot be too large to avoid un-
expected behaviors. PPO naturally can keep the policy changes
properly bounded by a gradually reducing threshold. However,
this ability may prevent PPO-Linear from exploring effectively
on other problems such as Mountain Car Continuous and
Inverted Double Pendulum.

In summary, based on the analysis on the final learning per-
formance, we can conclude that PD-RAC is sample efficient in
comparison to both RAC and other state-of-the-art algorithms,
i.e., PPO-Linear and ARS.

VII. CONCLUSIONS

In this paper, we have successfully achieved the main
goal of developing an effective linear policy PGS algorithm
with step-wise learning. More specifically, we have utilized
weighted historical gradients to obtain more accurate policy
gradient estimations for effective policy learning. Instead of
treating all historical gradients equally, PD-RAC systemat-
ically reduces the influence of historical gradients obtained
long time in the past in future policy parameter updates. In
addition, the experimental results demonstrate the effective-
ness of applying PD methods for policy training on several
difficult benchmark problems, in comparison to RAC and other
competing algorithms. As many RL algorithms with linear
policy representations had been proposed in the past decades,
a possible future work is to conduct more revisits to those
ancient algorithms, which may bring new discoveries.
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