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Abstract—Engineering drawings such as Piping and Instru-
mentation Diagrams contain a vast amount of text data which
is essential to identify shapes, pipeline activities, tags, amongst
others. These diagrams are often stored in undigitised format,
such as paper copy, meaning the information contained within the
diagrams is not readily accessible to inspect and use for further
data analytics. In this paper, we make use of the benefits of recent
deep learning advances by selecting models for both text detection
and text recognition, and apply them to the digitisation of text
from within real world complex engineering diagrams. Results
show that 90% of text strings were detected including vertical
text strings, however certain non text diagram elements were
detected as text. Text strings were obtained by the text recognition
method for 86% of detected text instances. The findings show that
whilst the chosen Deep Learning methods were able to detect and
recognise text which occurred in simple scenarios, more complex
representations of text including those text strings located in
close proximity to other drawing elements were highlighted as a
remaining challenge.

I. INTRODUCTION

It is common across many industry sectors for engineering
diagrams (EDs) to be stored in an undigitised file format or as
a paper copy. Digitisation of these documents is of importance
to allow improved use of this vast amount of data. EDs can
be very complex and contain text annotations in addition to
a number of different components including vessels, symbols
and connecting lines. In digitising these documents, the detec-
tion and recognition of the text elements also known as Optical
Character Recognition (OCR) is a key part of the document
digitisation. The ability to accurately read text in images is
important for many applications. Images with low resolution,
noisy and complex images with overlapping elements all
present challenges for text detection and recognition, therefore
methods are still in need of improvement.

OCR systems are typically comprised of 1) image acquisi-
tion, 2) pre-processing, 3) segmentation, 4) feature extraction,
5) classification and 6) postprocessing. Prior to the use of
deep learning in text detection and recognition, features,
predominantly low level or mid level, were extracted, requiring
many pre and post processing steps. Colour, texture and edge
features were often used for text localisation. Approaches com-
monly used connected component analysis or sliding windows
[1] for that matter. In particular, a family of approaches known

as Text/Graphics Separation (TGS) methods [2] were used for
drawings such as general purpose EDs [3], circuit diagrams,
maps [4] and musical scores, with moderate success.

Deep Learning methods have potential to improve detection
systems in computer vision, remote sensing and cybersecurity
amongst other domains. Examples include Deep Learning
methods for recognition of targets in Synthetic Aperture Radar
images as in [5]. Authors presented a method using a Deep
CNN trained with a cost function to which intra-class com-
pactness and inter-class separability information was added.
A Support Vector Machine (SVM) classifier was used and
results showed an average recognition accuracy of 99% across
ten target types. In the field of cybersecurity, an innovative
intrusion detection system based on a statistically driven deep
autoencoder was proposed in [6]. Evaluation on binary and
multi-classification tasks showed the suggested autoencoder
method, designed with a single hidden layer of 50 units,
achieved higher performance in comparison to other deep and
traditional algorithms.

In recent advancements related to computer vision, Deep
Learning has greatly improved object detection methods.
Whilst text has specific properties in comparison to generic
object detection, the detection of text can be viewed as a subset
of object detection, and generic object detection models can
be trained on text images as in [7], where authors adjusted the
popular YOLO v3 model [8] in order to detect text. Whilst
text detection may be viewed as a specific type of object
detection, the specific properties of text mean that tailored
models can be developed. A robust text detection method
should be designed with features that distinguish text from
the background. In deep learning text detection methods, the
distinguishing features are learned from the training data, and
thus it is also key to take this aspect into consideration. For the
case of EDs, sometimes it is common that background is not a
discerning factor from the text (as these most commonly have
a clear, distinguishable white background); however, there are
other complications when attempting to train a system that
recognises text, mostly related to false positive elements such
as symbols, connectors, amongst others.

Detection and recognition of text has specific challenges
in comparison to general object detection, and thus it is
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relevant to create specific methods tailored for this task. One
property of text unlike generic object detection is, the whole
text object does not need to be visible for the object to be
recognised as a piece of text. Text detection and recognition
are more sensitive to blurring than general object detection.
Deep Learning detection methods specifically developed for
detection of text include Efficient and Accurate Scene Text
(EAST) Detector [9], Connectionist Text Proposal Network
(CTPN) [10], TextBoxes [11], TextBoxes++ [12], Fastext [13].

The contributions provided in this paper are as follows:
• Discuss and evaluate a deep learning-based text detec-

tion method for its applicability to EDs, specifically the
Efficient and Accurate Scene Text (EAST) Detector.

• Discuss and evaluate a text recognition method that uses
deep learning in the form of Long Short Term Memory
(LSTM) networks, evaluating its performance on the
regions selected by the detection method.

• Test both the text detection and recognition methods on
a real world dataset of complex EDs, specifically Piping
and Engineering Diagrams (P&IDs), provided through
industry collaboration with the Oil & Gas industry, to
demonstrate how the deep learning-based methods can
improve the analysis of text in this scenario.

The rest of this paper is organised in the following sections:
Section II describes related work in text detection in complex
documents. Section III describes the dataset used and the
methods used in our experiments. Section IV describes the
experiments and discusses the results. The conclusion and
suggestions for future work are presented in Section V.

II. RELATED WORK

Text detection and recognition methods can operate at two
levels: character level and word level [14], [15]. Character
level methods rely mostly on heuristic-based segmentation
techniques that are able to distinguish text from other shapes
based on innate characteristics of the letters and/or numbers
such as size, stroke and geometry. This works particularly well
in high resolution EDs and similar printed drawings, since it
is common that the text font remains constant throughout the
document. After the identification of letters occurs, these meth-
ods rely on techniques to constitute strings (mostly through
character proximity and alignment) and to classify each char-
acter individually to interpret such strings. In contrast, word
level recognition is primarily suited to situations where there is
a restricted number of possible words in a document, allowing
lexicons to be used in conjunction with character recognition
outputs. Such is the case of P&IDs, which contain a set of
standardised codes that have a fixed structure and thus, are
easier to detect and recognise by using approaches of this
nature. For instance, a lexicon of words to narrow down the
number of possibilities for word recognition was a strategy
used to improve the OCR accuracy in [16].

As stated in Section I, TGS methods were initially a very
popular option for text detection in the document image
analysis community some years ago, given their simplicity
and robustness [17]. One of the cornerstones of this area was

the work presented by Fletcher and Kasturi in 1988, where
authors proposed the use of connected component analysis
(CCA) to select text characters based on a predetermined size
and width-to-height ratio. Afterwards, the resulting text layer
was converted into its Hough transform to analyse the linearity
of the characters and deduce the strings conformed. This
approach resulted very favourable for simple EDs, however it
was incapable of dealing with test overlapping shapes and with
short strings (i.e. less than 3 characters of length). A number
of reviews and upgrades were done to this working pipeline,
mostly at the string conformation stage, such as Lu [18]
who used a brushing morphological operation to join strings,
Tombre et al. [2] who were able to discard dashed connectors
from the text layer and applied proximity analysis for the string
generation, and Tan and Ng [19] who by using a pyramid
approach were able to scaled down the text layer until being
able to find the optimal string conformation. Most recently in
[20] authors, presented a comparison of different TGS methods
to reduce the overall identification of shapes and connectors
in P&IDs. It is worth to note that for the text recognition
stage, most state-of-the-art methods rely on OCR for the text
interpretation, nonetheless there is work in literature where
character classification is preferred as it is more suited for
EDs. A study by Das et al. [21], involved identifying areas of
text in architecture, engineering and construction documents
through traditional methods, however the study did not attempt
to read the text instead focussing on classifying text as either
machine printed or handwritten.

One essential drawback of TGS methods is their general
inability to deal with text overlapping other shapes of the ED.
Although some work has been presented in this matter [22],
this usually relies on a series of heuristics that are not always
applicable and thus have various rates of success depending
on the overall quality of the ED. Moreover, it has been noted
by authors such as Ye and Doermann [15] that general object
detection methods would not perform well for text detection
in a more general setting, based on a comparison of average
images of three object types namely faces, pedestrians and
text. In their experimental setting, the average images were
composed of the mean of 2′000 aligned samples of each
object type and whilst the face and pedestrian image retained
common features, the average text image resembled noise.

In methods more related to the domain of EDs, and specif-
ically P&IDs, Sinha et al. [23] presented work on extracting
text information from scanned raster versions of P&IDs. The
proposed method however focussed only on text within tables,
and used initial steps including contour detection to detect
tables in the diagram. The method was tailored specifically for
P&ID dataset used, with the tables detected having to match
one of three specified formats containing specific keywords.
To extract the table information, version 3.05 of Tesseract
OCR and Python RegEx string matching were used. The
method correctly identified 87.2% of the tables present, how-
ever inconsistencies in the information extraction occurred,
potentially due to some text touching table borders and logos
appearing as text.



In [24], a study on detecting characters in EDs was pre-
sented that used a convolutional object detector based on
Overfeat [25], Faster R-CNN RPN [26] and Feature Pyramid
Networks [27]. The detector took a single image as input
without preprocessing and output class confidence scores
and bounding box predictions. The system was tested on a
dataset of 150 EDs and results only showed passable accuracy
with some misclassifications and false negatives. Moreover,
Eman et al. [28] presented work aimed at improving OCR
accuracy in complex cursive scripts, using conditional GANs
to transform cursive text into straight scripts, where characters
are not joined, before LSTM based OCR was carried out.
Results, evaluated on character level error rate with the Lev-
enshtein distance, showed improvement with the recognition
of handwritten and italicised cursive scripts.

Traditional methods for text detection were compared with
deep learning methods on text in floor plan images in [16]. The
analysis compared four methods: 1) EAST, 2) Connectionist
Text Proposal Network (CTPN), 3) a standard image pro-
cessing approach using Maximally Stable Extremal Regions
(MSER) and Stroke Width Transform (SWT) and Tesseract
to discard areas of non-readable text, and 4) a combined
approach with all of the first three methods. For the CTPN
method, additional sub images along the border were used
as CTPN struggled with identifying text close to the image
borders [16]. The combined method compared results from
all three other methods against each other to produce an
output based on voting. Post processing was carried out on
all methods to merge specific text boxes into one text item.
The text was firstly classified based on rules, then room
descriptions were compared with a dictionary of valid words
and replaced with the closest word based on edit distance
and word frequency.The proposed methods were evaluated
on datasets of varying quality. Performance with the CTPN
method was shown to be significantly reduced by the noise
and low resolution images. On the low quality images, the
EAST method had the highest recall and F1-score, whilst
the combined method had the highest precision. None of the
proposed methods were able to detect vertical or curved text
items and the accuracy of the recognised text wasn’t analysed
in detail, however it was noted that Tesseract did not give
correct predictions on the low resolution images.

All of the aforementioned methods work with a varying
degree of success for complex EDs such as P&IDs, as this
type of printed drawings present multiple challenges, such as
a dense and entangled structure between shapes, a complex
hierarchical relation between elements, overlapping of text
with other shapes and the similarity between symbols and text,
amongst others.

III. METHODS

A. Dataset

Engineering diagrams used in industry are not widely available
in the public domain primarily due to data confidentiality
reasons. To evaluate the methods on real world data we have,
through collaboration with an industry partner, obtained a

dataset of P&IDs. The dataset we have chosen to use will
allow the selected deep learning methods to be evaluated on
real world complex engineering diagrams; the P&IDs in the
dataset are from the Oil and Gas industry however P&IDs are
also used in many other industry sectors to convey and store
information about process equipment and its operation.

The dataset comprises 172 complex P&IDs, which contain
components of symbols, connector lines and text annotations.
A section of a P&ID, rather than the whole diagram for data
confidentiality reasons, is shown in Figure 1. This figure rep-
resents part of a typical P&ID containing symbols for different
valve types, text describing the valves and tag numbers, and
equipment connectivity information in the form of pipelines
and electrical connections.

Fig. 1. Section of P&ID showing Symbols, Connectors and Text Elements

Text in the P&IDs dataset analysed, can be split into two
types according to its purpose and location. Text located in
the main diagram is used to annotate the graphical elements,
including equipment tags whereas the second type of text
is located within in the diagram template and is used to
provide additional details including drawing number, revision
history, and further related details about the equipment shown
in the diagram. Analysis of a subset of P&IDs showed that
in the main diagram section, there are approximately 415 text
instances per P&ID.

Text within the P&IDs is used to annotate the equipment
in the diagram and includes text that ranges from short text
strings including two character annotations, through to line
numbers and equipment tags, to longer full sentences showing
operating information for equipment in the diagram. Text is
located vertically in addition to horizontally, one such situation
where vertical annotations are used occurs where an associated
line number is aligned next to a vertical pipeline. There
are also several text strings printed diagonally to align with



equipment. Text is located throughout the diagram, with some
text in close proximity to other components and there are text
annotations situated within symbols and vessels. In P&IDs
parts of some non text components are similar in appearance
to text characters and certain elements such as dashes occur
in both text and non text components. Dashes are present in
a large amount of text strings such as equipment tags, whilst
dashed lines are used as a form of connection line between
two pieces of equipment and located adjacent to pipelines to
indicate a property of the line.

Therefore the images in the dataset chosen, contain several
challenges related to both text detection and text recognition
and are suitable for evaluation of deep learning methods
applied to digitise text from within complex engineering
diagrams.

A flowchart depicting the proposed steps in text digitization
from the complex P&IDs is presented in Figure 2.
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Fig. 2. Flowchart of P&ID Text Detection and Recognition

B. Text Detection

A deep learning method, the Efficient and Accurate Scene
Text (EAST) detector [9], was chosen to detect text instances
in the P&IDs. The EAST detector is reported to outperform
other state of the art methods when evaluated on F-score
on the text detection tasks COCO-Text [29], ICDAR 2015
Challenge Text Localization Task [30] and the MSRA-TD500
[31] dataset.

At the time of EAST proposal, existing methods were
commonly designed with several stages, [32], [33]. The EAST
detector does not contain any intermediate steps like candidate
proposal, instead it produces text predictions directly from a
single neural network. Output results from the neural network
are then filtered using a very similar process to Non Maximum
Suppression (NMS) where the geometries are averaged as
opposed to being selected.

More specifically, EAST uses a Fully Convolutional Net-
work (FCN) which is trained to predict word or text line
instances from full images. The network was based on the
general design of DenseBox [34]. The FCN architecture used
in EAST can be split into a feature extractor stem, feature
merging branch and an output layer. The purpose of the feature
merging branch is to improve detection of both small and large
word regions by merging features from both lower and higher
layers of the feature extractor. The output channels consist of a
score map in the range [0,1] which represent the confidence of
the geometry shapes, which are predicted in the other output

channels. Output geometries are predicted as a rotated box or
quadrangle.

The loss function used in training the model comprises
the loss for the score map and the loss for the geometry
predictions. Zhou et al. [9] selected a balanced cross-entropy
loss for the score map. A scale invariant loss is selected
for the geometry, to ensure accurate predictions for both
large and small text regions. The two loss functions chosen
for the geometries are IOU loss for rotated rectangle output
predictions, and scale normalised smoothed L1 loss for the
quadrangle geometries. Zhou et al. [9] trained the EAST
network end-to-end using the ADAM optimiser [35].

C. Text Recognition

A deep learning method, specifically Long Short Term
Memory networks, was used for text recognition. LSTM,
Long Short Term Memory, [36], network is a type of a RNN
(Recurrent Neural Network) designed to retain information
from long sequences. This was implemented using the open
source OCR engine Tesseract v4 [37], which uses an LSTM
neural network to recognise text strings from text lines. As
the processing speed was an important factor in this study, the
smallest LSTM network available in Tesseract was utilised.

D. Pre-Processing and Post-Processing Data

1) Selection of Input Image into EAST Detection Model:
In the dataset used, the ED had a template format with a table
that was consistently located on the right hand side. The focus
in this study was to interpret the main part of the diagram
itself, therefore the text detection and text recognition will be
applied only to text located in the main diagram and not the
text information in the diagram template.

The method selected to discard the template was based on
connected components and it was chosen as it is independent
of template layout, as the method does not require heuristics
based on the position of the template within the diagram.
The method used to select the diagram area would also be
applicable to other datasets, including those without a border
line.

The largest white component by area represents the back-
ground of the main diagram itself, and thus the connected
components algorithm method was used to determine the
largest connected component in the P&ID by area in order to
select the diagram area to be processed by the text detection
model.

The P&ID diagrams were large images, approximately 7500
x 5250 pixels in size. To process the whole diagram area
in one step by the EAST model would need a high amount
of computational requirements therefore to reduce processing
requirement, the diagram is processed by the EAST detector in
four patches. The image patches to be processed were obtained
by dividing both the height and width of the selected diagram
area in half.

2) Post-Processing of Text Bounding Boxes: Padding was
applied to the detected text boxes to ensure that all of the
text string was included in the bounding box. To make the



method applicable to text regardless of font size, the amount
of padding added was calculated as a percentage of the original
detected text box size. The height of the text box was padded
by 10% and the width was padded by 12% at the start and
24% at the end of the string.

A post processing step was then taken to merge nearby
detected text boxes based on the proximity of the bounding
boxes. Detected text boxes were split into horizontal text
or vertical text based on the ratio of the width to height
of the bounding box. The area of overlap between each
pair of detected text boxes was calculated and if text boxes
overlapped, they were combined into the smallest bounding
box that would combine both original detected boxes. The
resultant bounding boxes were then used as input for the text
recognition step.

IV. EXPERIMENT

A. Setup

Experiments were run to evaluate the performance of the
selected Deep Learning text detection and text recognition
methods on complex EDs. To evaluate the chosen methods on
real world data, experiments were performed on the dataset of
172 P&IDs from the Oil and Gas industry.

One challenge in using Deep Learning models for text
detection and recognition in P&IDs is that there is no publicly
available dataset of P&IDs annotated with text ground truth
location and text string. This experiment identifies scenarios
where pre-trained State of the Art Deep Learning models
for text detection and recognition perform well and scenarios
where improvement is required. Therefore the models were
not trained specifically using the text from the P&IDs, and
the whole dataset of 172 P&IDs is used as the testing set.

The text detection and text recognition methods were ap-
plied on the P&IDs by creating a framework to process the
diagrams. Results were evaluated by displaying the results
on the processed P&ID. Bounding boxes were shown on the
detected text instances, with the output string from the text
recognition step shown adjacent to the detected bounding box.
Additionally for evaluation purposes, output files listing the
detected bounding box co-ordinates, dimensions and predicted
text output, were also produced.

A pretrained EAST model [9], was used to locate text
instances. One of the challenges in analysing the P&IDs with
Deep Learning methods is the relatively large image size, on
average 7500 x 5250 pixels, which consequently has high
processing requirements. The P&IDs were therefore processed
using patch detection. The patch detection method works
by splitting a larger image into smaller patches which are
processed in turn by the Deep Learning method, with the
output detections from each patch combined to obtain the
detections relative to the whole image. Patches were obtained
by splitting the area to be processed into four equal patches
by dividing it in half across the height and width. Text strings
located across more than one patch were therefore split into
multiple sections when input to the detection model.

To perform text recognition, open source LSTM based
Tesseract engine was utilised. Speed of processing the dia-
grams was an important factor in this study, therefore the
smallest LSTM network from Tesseract was chosen as this
had the fastest processing speed available, however this LSTM
model was also associated with decreased accuracy levels
compared to the larger LSTM network model available in
Tesseract.

B. Results & Discussion

The P&ID images produced from the experiments with results
overlaid show that the EAST detection model and LSTM based
text recognition method gives promising results when applied
to detect and read text in complex engineering diagrams.
Results from experiments on the real world P&ID dataset are
discussed in further detail below.

In experiments, the EAST model was able to detect varying
orientations of text, as stated in [9], with both horizontal
and vertical text instances in the diagram being detected.
The model detected text strings of varying lengths. A sample
of text instances that were correctly detected and recognised
have been extracted from the analysed P&IDs and are shown
in Figure 3. The bounding boxes indicate the areas in the
image detected as text and the text string predicted by the text
recognition model is shown adjacent to the detected text area.

Fig. 3. Instances where text was correctly detected and recognised

To analyse the results in further detail, from the dataset of
172 P&IDs we have selected five representative P&IDs for
which to present the text detection and recognition results.
Table I shows the numbers of text instances present in each
diagram, the number of detected instances, number of False
Negative (FN) and False Positive (FP) detections. The number
of text detections with associated text string from the recog-
nition step is also listed.

TABLE I
ANALYSIS OF TEXT DETECTION AND RECOGNITION ON SELECTED

P&IDS

Diagram No. Text Instances Detected FN FP Recognised
1 426 388 54 16 337
2 492 463 42 13 384
3 545 506 61 22 439
4 407 385 37 15 333
5 201 194 16 9 167

Analysis of this subset of drawings shows that on average,
there are 415 text instances, counted as one text string or



multiple text strings that would be combined into one detection
by the post-processing, present in each diagram. When images
were passed to the EAST detection network, 90% of the text
instances were successfully detected, without the need for any
pre-processing of the image or training on the specific font
from the P&IDs.

One challenge particularly related to text detection in P&IDs
is the presence of other diagram elements, or sections of, that
resemble text characters. False positive detections, where non-
text elements of the diagram were detected as text and the
detected areas contained no text characters, were observed to
occur on average in 4% of output detections based on the
sample set analysed. A sample of false positive detections has
been extracted from the processed P&IDs and is shown in
Figure 4 to highlight examples of P&ID sections where the
model does not accurately distinguish between certain draw-
ing components and text characters. False positive detections
contain P&IDs diagram elements that resemble text characters
including dashed lines, parts of valve equipment symbols and
triangle pipeline flow indicators.

Fig. 4. Instances of P&ID Elements Misdetected as Text

There were also instances of text that were not detected by
the chosen method. Results show that on average, there were
42 text instances undetected in each P&ID, approximately 11%
of text instances.

1) Text Detection: In certain scenarios it was shown to
be a challenge for the Deep Learning detection method to
accurately distinguish between text and non text elements.
Incorrect bounding boxes round the text strings were observed
to occur in three scenarios, 1) partially detected text string,
where one or more characters is determined not to be text by
the deep learning model, 2) non-text elements determined to
be text data and 3) non-text components included in the text
area bounding box as a result of the post processing steps
of merging text boxes and padding. Furthermore it is possible
for combinations of these scenarios to occur in one output text
box.

There are many technical annotations used in the engineer-
ing diagrams, including line numbers that often start with a

single character followed by a dash, in many instances the start
of this text string was missed from the detected bounding box.

It was observed that when text was located in close prox-
imity to other components, the non text components could
be included in the bounding box, likely due to the padding
applied in the post-processing.

One of the images in the dataset consisted of a table
containing line numbers, rather than a diagram. Text was
detected in every cell of the table. The only text strings not
detected were short strings of two letters. Additionally some
of the text was joined into blocks and detected, and in several
instances the string was partially detected.

2) Text Recognition: Results of the detection step feed
directly to the recognition step, therefore obtaining a good
output from the detection step, allows a cleaner image of the
text string to be passed to the text recognition step.

Whilst the EAST model was able to detect text in the
vertical direction, instances where the vertical text appeared
to have been read in the wrong direction were observed, refer
to Figure 5.

Fig. 5. Incorrect Recognition of Vertical Text Instance

V. CONCLUSION

Deep learning methods have brought advancements in the
area of image text detection and recognition. However the
benefits of Deep Learning models have still to be applied to
the problem of digitising text information from complex EDs.

In this study, state of the art Deep Learning methods were
used for text digitization from engineering diagrams, namely
the EAST model [9] for text detection and an LSTM method
for text recognition. Evaluation of these methods was carried
out on a dataset of 172 complex P&IDs from the Oil and
Gas industry. Experiments showed that without pretraining
the Deep Learning models with the P&IDs text data, the
models correctly detected and recognised certain text strings
that occurred in simpler scenarios. Text instances that were
located in more complex scenarios proved to be a challenge
for the methods used.

Future work will be aimed at increasing the accuracy of the
Deep Learning models for text detection and recognition in the
P&IDs including by pretraining the models with the font used
in the P&IDs and adjusting the architecture of the models.
A specific focus of further work will be on training the Deep
Learning models for accurate detection and recognition of text
strings that are located in close proximity to non-text diagram
elements.
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