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Abstract—In this paper, a Morlet wavelet and super–twisting
control algorithm are designed and implemented to a three–phase
induction motor. The mathematical model of the squirrel–cage
induction motor to be controlled is approximated by the Morlet
wavelet artificial neural network, which is trained on–line with
the error filtered algorithm in order to reproduce the dynamics
of the plant to be controlled. The structure of the artificial
neural network is proposed in series–parallel configuration and
block control form to design the sliding variety, where the
super–twisting control algorithm is applied indirectly. For the
non–measurable state variables of the plant, state observers of
the super–twisting type are proposed to feed the inputs of the
artificial neural network. The simulation of the complete system
in closed loop is performed where the variables to be controlled
are the angular velocity and the square modulus of flux linkages.
The results obtained in Matlab/Simulink validate the efficiency
of the proposed neural network for the identification of states
and the application of the controller.

Index Terms—Morlet wavelet neural network, super–twisting
controller, state observer

I. INTRODUCTION

A machine that only has damping windings is called induc-
tion machine because the rotor voltage (which produces the
current and the magnetic field of the rotor) is induced in the
rotor windings instead of being physically connected through
wires. The distinctive feature of an induction motor is that
no direct current field is required to operate the machine [1].
In recent works, authors use the mathematical model of the
squirrel–cage induction motor for describing the plant and to
identify its parameters when using dynamic and steady–state
tests [2]. In [3], authors work with a squirrel–cage induction
motor (AC) since its design has a simple and resistant structure
in contrast with other machines. In that work they control the
angular velocity and flux linkages through the application of
the block control technique and super–twisting sliding modes.
Also [3], the authors develop state observers for the variables
that are not available for measurement, such as flux linkages,
since the work is developed in real time.

On the one hand, super–twisting control algorithm plays
an important role in the design of second–order sliding mode

controllers due to its robustness under parametric variations.
The super–twisting algorithm in turn not only reduces but
completely eliminates the chattering effect, however, the total
elimination of the chattering significantly increases the ro-
bustness of the controller [4]. A recent work proposes the
implementation of a super–twisting control algorithm based
on an observer of super–twisting states. Such work presents
the stabilization of the feedback output of a disturbed dual
integrator system [5].

On the other hand, the function of an artificial neural
network within a system is to identify the behavior of the
dynamics of the plant. The problem with the neural identifi-
cation is to select an appropriate model for the task as well as
the adjustment of the parameters according to some adaptation
law, so that the response of the neural identifier to an input
signal approximates the response of the system to the same
input [4]. In the work referenced above, authors identify real–
time results through a high–order artificial neural network and
block control transformation using high–order sliding modes.
In fact, the control algorithm includes the combination of a
recurrent neural network with the block control transformation
using the high–order sliding mode technique as a control law.

However, there are different works where artificial neural
networks are applied to the identification of the induction
machine; this is the case in the work [6] but the authors use a
recurrent high order neural network in discrete–time in order
to control the induction machine.

Also, artificial neural networks (ANNs) represent a method-
ology in many disciplines such as neuroscience, mathematics,
statistics, physics, computer science, engineering, and so on.
ANNs find application in diverse fields such as modeling,
time–series analysis, pattern recognition, signal and image
processing and control by virtue of an important property,
namely the ability to learn from input data, with or without
training [7]. However, when it comes to dynamic systems,
classical ANNs do not constitute a good option, for this reason
the interest has been directed towards the use of recurrent
neural networks (RNNs) by including in their structure feed-
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back loops facilitating the modeling, identification and design
of observers for non–linear systems. In [8], [9], [10] the
approximation and learning properties of a class of RNNs
known as recurrent high–order neural networks (RHONNs)
have been studied. The stability and convergence properties of
a RHONN as a model of nonlinear dynamic systems were also
studied, demonstrating that with a sufficiently large number of
high–order connections between neurons it is possible to make
the RHONN model able to approximate a large number of
complex dynamics systems. Identification schemes have been
developed mainly to obtain mainly the values of the unknown
parameters from a system, which are commonly considered as
constants, based on their measurable variables such as inputs,
outputs and possible disturbances [11].

Moreover, wavelet neural networks (WNNs) are a structure
that combines the concept of wavelet functions with the re-
source of ANNs with the objective of improving identification
performance. Unlike the sigmoidal activation functions used in
conventional ANNs, Morlet wavelet activation functions are
used in WNNs [12]. In a recent work [15], authors use a
novel wavelet neural network structure called recurrent wavelet
first–order neural network (RWFONN) designed to control a
robot manipulator of two degrees of freedom, that evolves in
the vertical plane, through the design of a centralized neural
integrator backstepping control.

The Morlet wavelet is a complex wave within a Gaus-
sian envelope. Other types of wavelets that do not have
Gaussian envelopes cannot be expected to improve on the
time–frequency localization of the Morlet wavelet [13]. The
Gaussian and Mexican hat wavelet, together with classical
sigmoid functions, are commonly used in the structure of
WNNs. There is a lack of works about the use of the Morlet
wavelet in the structure of WNNs. There are a few works about
the use of WNNs are focused on estimation and time–series
prediction [14].

In this work, Morlet wavelets are applied in particular
to the artificial neural network as an activation function to
perform neuronal identification of the mathematical model of
an induction motor; based on a recurrent neural network whose
activation function is a sigmoid function. This is done to know
the dynamics obtained with this new Morlet wavelet neural
network.

Furthermore, this work presents the design and implemen-
tation of identification and control in continuous–time of an
induction machine using the Morlet wavelet artificial neural
network and the super–twisting algorithm applied to this neural
network, and where the training algorithm used is the filtered
error. For the unmeasurable variables, two–state observers
are used: the flux linkages observer with first–order sliding
modes and a Luenberger reduced asymptotic observer for the
load torque. In the case of the flux linkages observer, the
variables λ̂αr and λ̂βr feed their corresponding variables of
the neural network; and for the case of the estimated variable
T̂L for estimation of the external disturbance of the plant to
be controlled.

This paper is organized as follows: in Section II, the

mathematical model of the squirrel–cage induction motor is
presented; Section III introduces the state observer to estimate
the rotor flux linkages and the load torque; in Section IV
presents the Recurrent Wavelet First Order Neural Network
(RWFONN) as well as the filtered error learning algorithm;
in Section V presents the feedback linearization technique
by block control applied to RWFONN; the super–twisting
algorithm is described in Section VI; in Section VII are shown
the simulation results; conclusion and some remarks about the
application of control on RWFONN are drawn in Section VIII.

II. SQUIRREL–CAGE INDUCTION MOTOR
MATHEMATICAL MODEL

In this work is used the squirrel–cage induction motor
mathematical model presented in [3] as well as the Clarke
transformation matrix in order to refer this electrical variables
abc to the αβ coordinate frame. This model is represented as

d
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(1)

where the states variables are: ωm as the angular mechanical
velocity, λαr and λβr are the rotor flux linkages at α and β
axis, respectively; iαs and iβs are the stator currents; also with
constant parameters KT , Tr, Lm, δ, σ, γ, Ls, moreover all
electrical parameter are defined in references [2], [3]; P is the
number of poles; Bm is the shaft frictional coefficient, and
Jm is the inertial moment. TL is load torque and it represents
a mechanical input for the system (1), vαs and vβs are the α
and β voltages and represent the control inputs.

III. STATE OBSERVERS

An asymptotic state observer is a dynamic system that
provides an estimate of the internal state of a physics system
using measurements of its inputs and outputs directly. It is
essential to develop the state observers for the non–measurable
variables of the induction motor because in the application of
the ANN for identification of the states it is necessary to know
all the states from the original plant.

For the purposes of this work, we use state observers for the
flux linkages and load torque for the squirrel–cage induction
motor, because in real–time, these variables commonly are
not available for measurement, even when we only show
simulation results.



A. Flux linkages observer with first-order sliding modes

In this work, it is used a flux linkages observer with first
order sliding modes applied to the squirrel–cage induction
motor presented in [3]. This robust observer has the from

d

dt
λ̂r =A11λ̂r + A12 îs −G1v

d

dt
îs =A21λ̂r + A22 îs + B2vs + v

(2)

where v = N sign
(
is − îs

)
, N =

[
N11 0

0 N22

]
and G1 =[

G11 0
0 G22

]
, for A11, A12, A21 and A22 taken from [3],

which represent some parameters from the induction motor

(1), and λ̂r =
[
λ̂αr λ̂βr

]>
represents the observed rotor flux

vector and îs =
[̂
iαs îβs

]>
is the observed stator current

vector. The discontinuous function v is chosen such that the
sliding mode is enforced in the surface s = 0 and N is
a diagonal matrix, where the components have high enough
positive values for steering the surface toward zero in finite
time. Meanwhile, matrix G1 must satisfy vanishing of the
rotor fluxes observation error vector ελ = λs− λ̂s = 0 on the
specified rate [3]. The validation of the observer for the flux
linkages λ̂αr and λ̂βr is done by means of the convergence of
the currents observed îαs and îβs using (2).

B. Load torque Luenberger observer

The mechanical part of the induction motor, including the
load torque equation with smooth movement, has the following
representation [3]

d

dt
ωm = KTλ

>
r Mis −

1

Tm
ωm −

1

Jm
TL

d

dt
TL = 0

(3)

where KT is a constant parameter, λ>r = [λαr λβr], M =[
0 1
−1 0

]
and is = [iαs iβs]. Based on the work made in [3],

the observer of the load torque has the following representation

d

dt
ω̂m =KTλ

>
r Mis −

1

Tm
ω̂m −

1

Jm
T̂L + l1(ωm − ω̂m)

d

dt
T̂L =l2(ωm − ω̂m)

(4)

where ω̂m is the observed angular mechanical velocity, T̂L is
the observed load torque, l1 and l2 are constants, which are
selected to ensure the asymptotic convergence to zero at a
specified rate of the angular velocity observation error εω =
ωm − ω̂m. To validate the load torque observer T̂L, this work
shows the convergence of the angular velocity observer ω̂m
using (4).

IV. RECURRENT WAVELET FIRST ORDER NEURAL
NETWORK

Recurrent neural networks (RNNs) are characterized by
having feedback loops between neurons, which distinguishes
them from pre–fed neuronal commands, where the output of
each neuron is connected only to the neurons of the next layer.
In the simplest case of a RNN [16], the state of each neuron
can be determined by a differential equation of the form [10]

ẋi = −aixi + bi

L∑
k=1

wikyk (5)

where xi is the state of the i–th neuron, ai and bi are positive
real constants, wik is the synaptic weight connecting the k–th
state to the i–th neuron. Each yi is the external input or the
state of a neuron passed through a sigmoid function, i.e., yk =
s(xk), where s(·) represents a sigmoid function. In a second–
order RNN, the input to the neuron is not only the linear
combination of its components yk but also of their products
ykyj to include high order interactions represented by triplets
ykyjyl, quadruplets, etc., forming the Recurrent High Order
Neural Network (RHONN)

ẋi = −aixi + bi

L∑
k=1

wikzk (6)

From the theory for RHONN model [17], replacing now the
vector z by a wavelet vector ψ and considering that higher–
order terms will not be used, the RHONN model (6) can be
rewritten as

ẋi = −aixi + bi

L∑
k=1

wikψik (7)

Defining the adjustable parameter vector as wi =
bi [wi1 wi2 ... wiL]

>, so (7) becomes [18]

ẋi = −aixi + (wik)>ψik (8)

where the vectors wi represent the adjustable weights of the
network while the coefficients ai for i = 1, 2, ..., n are part
of the underlying network architecture and are fixed during
training. The structure in the form (8) here is called as
Recurrent Morlet Wavelet Neural Network (RMWNN) [18].
Using the theory of [10], [16]–[18], [20] for the construction
of a novel neural network structure called Recurrent Wavelet
First Order Neural Network (RWFONN), where a neuron with
a single connection of first order, the sigmoidal activation
function s(·) is replaced by the real version of the modified
Morlet wavelet [20] of the form ψ(x) = e−x

2/βcos(λx),
with parameters β and λ representing expansion and dilation,
respectively. Thus, it is called of first order because in this
novel neural network structure the high order terms of the
RHONN structure are eliminated.



A. RWFONN Structure

The proposed structure RWFONN with the form (8) of the
neural network identification for the squirrel–cage induction
motor states (1) is as follows

·
x1 =− a1x1 + b1w1y1(χ1) + b13w13y13(χ̂3)

+ b14w14y14(χ4) + b2(x2x4 − x3x5)
·
x2 =− a2x2 + b2w2y2(χ̂2) + x4
·
x3 =− a3x3 + b3w3y3(χ̂3) + x5
·
x4 =− a4x4 + b4w4y4(χ4) + vαs
·
x5 =− a5x5 + b5w5y5(χ5) + vβs

(9)

where χ1, χ4, and χ5 represent the states ωm, iαs, and iβs
respectively, from the induction motor (1); χ̂2 and χ̂3 are the
estimated states λ̂αr and λ̂βr, from (2), of the state variables
λαr and λβr, from (1), respectively. The neural network states
x1 to x5 identify their corresponding state variables χ1, χ̂2, χ̂3,
χ4, and χ5, respectively. ai and bi, (i = 1, 2, ..., 5) are constant
parameters, wi are the synaptic weights which are adjusted on–
line using the filtered error algorithm for the neural network
and yi are the Morlet wavelet activation functions. Finally, vαs
and vβs represent the voltage control inputs to the induction
motor in the α and β axis.

B. Error filtered learning algorithm

This section describes an adjustable law for the weights
under the assumption that the unknown system can be modeled
exactly by an architecture of the RHONN type [17]. The
development of this identification scheme starts from the
differential equation that describes the unknown system

χ̇i = −aiχi +w∗>i z (10)

where χi represents each state of the unknown dynamic
system. From (10), the identifier is chosen as:

ẋi = −aixi +w>i z (11)

which identifies the states of the system; xi represents each
state of the neural network and wi is the estimate of the
unknown vector w∗i . In this case, the identification error is
defined as ξi = xi − χi, and its respective derivative is given
as

ξ̇i = ẋi − χ̇i =− aixi +w>i z − (−aiχi +w∗>i z)

=− aixi +w∗>i z + aiχi −w∗>i z

=− ai(xi − χi) + (w>i −w∗>i )

(12)

which can be rewritten as

ξ̇i = −aiξi + w̃>i z (13)

where w̃ = wi −w∗i . The weights wi for i = 1, 2, ..., n are
adjusted according to the learning law [9]

ẇi = −Γizξi (14)

where the learning rate Γi ∈ RL×L is a definite positive
matrix. In the special case that Γi = γiI where I is the
identity matrix and γi > 0 is a scalar, then Γi can be replaced
by γi yielding

ẇi = −γizξi (15)

Equations (14) and (15) the so-called error filtered. Stability
and convergence properties of the adjustable weight law given
by (14) are well known in the adaptive control literature [17]
[19].

V. BLOCK CONTROL LINEARIZATION APPLIED
TO A RWFONN

The block control linearization consists of transforming the
mathematical model of the plant to be controlled (in this case
the structure of the RWFONN (9)) to the block control form,
which is as follows [3]

ż1 =− k1z1 + E11z2 + ϕ1(z1, t)

żi =− kizi + Ei1zi+1 + ϕi(zi, t), i = 2, ...., r − 1

żr =fr(z, t) + Br(z, t)u + ϕr(z, t)

(16)

where z = [z1, ..., zr]
> is the tracking error vector, f̄r (z, t) is

a bounded function, the rank(B (z, t)) = m, ϕ(z, t) charac-
terizes the external disturbances and parameter variations, Ei1
is a matrix with constant values, and u is the input vector; the
matrix Br(z, t) represents a constant matrix to establish an
affine control. In order to apply the block control linearization
to the structure of the RWFONN we rewrite (9) in vector form
as follows

ẋ1 =− a1x1 + b1w1y1(χ1) + b13w13y13(χ̂13)

+ b14w14y14(χ4) + b2x
>
2 i1x3

ẋ2 =C11x2 + C12i2 + i3x3

ẋ3 =C21x3 + C22i2 + i3v

(17)

with r = 3, so the state vectors are x2 = [x2 x3]
> where x2

and x3 represent the states of the neural network that identify
the flux linkages estimated λ̂αr and λ̂βr respectively from (2),
x3 = [x4 x5]

> and v = [vαs vβs]
>. The parametric matrices

are defined as
C11 =

[
−a2 0

0 −a3

]
; C12 =

[
b2w2y2 0

0 b3w3y3

]
;

C21 =

[
−a4 0

0 −a5

]
; C22 =

[
b4w4y4 0

0 b5w5y5

]
;

i1 =

[
1 0
0 −1

]
; i2 =

[
1
1

]
; i3 =

[
1 0
0 1

]
.

Now, applying the block control linearization technique to
the structure of the neural network (17) and using the state
observer of flux linkages (2), the error vector z1 is defined as:

z1 =

[
ωmref − x1
ϕref − ϕr

]
(18)

where x1 represents the identified angular velocity ωm, ϕr is
the square modulus of rotor flux linkages, ωmref is the desired
angular velocity, and ϕref is the desired square modulus for



the rotor flux linkages. In order to control the flux linkages
estimated by the state observer (2), we use the methodology
from [3] in order to find the square modulus of rotor flux
linkages

ϕr = |x2|2 = x>2 x2 = x22 + x23 (19)

In the same way, ϕref is obtained using the methodology
from [3] such that

ϕref =
2x>2 x3

(a2 + a3)
(20)

Then, the dynamics of the tracking error vector (18), that
implies the neural network model (17) and introduces a
specified steady first order dynamics, takes the form:

ż1 =

[
ω̇mref + a1x1

ϕ̇ref + (a2 + a3)ϕr

]
−
[
b2x
>
2 i1

2x>2

]
x3−[

b1w1y1(χ1) + b13w13y13(χ̂3) + b14w14y14(χ4)
0

]
=

−K1z1

(21)

where the adjustment matrix K1 is adjusted to vanish the
vector of the tracking error variables such as

K1 =

[
K11 0

0 K22

]
Using the block control linearization technique in the neural

network system (17), two first–order subsystems are created
which can be solved independently. In this way, it is possible
to develop a control law through the state x3 from (17), where
the reference vector is defined from (21), as follows

x3ref =

[
b2x
>
2 i1

2x>2

]−1 [
ω̇mref + a1x1

ϕ̇ref + (a2 + a3)ϕr

]
−[

b1w1y1(χ1) + b13w13y13(χ̂3) + b14w14y14(χ4)
0

]
+K1z1

(22)

Therefore, the second error vector is defined as

z2 = x3ref − x3 (23)

with dynamics

ż2 = ẋ3ref − ẋ3 (24)

where

ż2 = ẋ3ref − (C21x3 + C22i2 + i3v) (25)

Finally, using (21), (25) and one steady state equation from
the neural network (9) as zero dynamics, the representation of
the model (17) in the block control form (16) is obtained as

ż1 =−K1z1 +

[
b2x
>
2 i1

2x>2

]
z2

ż2 =ẋ3ref − (C21x3 + C22i2 + i3v)
·
x2 =− a2x2 + b2w2y2(χ̂2) + x4

(26)

The state equation x2 in (26) represents an internal dynamics
to complete the order of the neural network and to consider
the zero dynamics of the system. From (26), it is important to
mention that the application of the block control technique is
to decouple the control vector v and then to apply the super–
twisting control strategy.

VI. SUPER–TWISTING CONTROLLER

In order to design a super–twisting control algorithm that
induces the sliding surface s = 0 and its respective derivative
ṡ = 0, the super-twisting control algorithm is applied [3]

vs = λ|s| 12 sign(s) + v1s (27)

where v̇1s = α sign(s), λ =

[
λα 0
0 λβ

]
and α =

[
αα 0
0 αβ

]
.

The diagonal matrices λ and α have components that are
selected such that the sliding surface s = z2 converges to
zero in a finite time. By applying the super–twisting control
algorithm (27) in the block control structure (26), the neuronal
controller is obtained as follows

ż1 =−K1z1 +

[
b2x
>
2 i1

2x>2

]
z2

ż2 =ẋ3ref −C21x3 −C22i2 − i3(λ|s| 12 sign(s) + v1s)

v̇1s =α sign(s)
·
x2 =− a2x2 + b2w2y2(χ̂2) + x4

(28)

VII. SIMULATION RESULTS

In order to analyze the dynamics of the neural identification
and estimation of the non–measurable variables by the control
scheme in closed–loop, the simulation in Matlab/Simulink has
been implemented. The values and parameters of the squirrel–
cage induction motor are shown in Table I [2].

TABLE I
RATED VALUES AND MOTOR MODEL PARAMETERS.

Parameter Value
Frequency 60 Hz

Rated Voltage 127/220 V
Power 0.25 HP
Poles 4

Rated current 1.5 A
Rated angular velocity 1750 r.p.m.
Stator resistance Rs 12 Ω
Rotor resistance Rr 8.1 Ω
Stator inductance Ls 0.7066 H

Magnetizing inductance Lm 0.678 H
Rotor inductance Lr 0.7066 H
Inertial moment Jm 0.00324 N ·m · s2

Frictional coefficient Bm 0.00194 N ·m · s

A. States observer and neural identification results

To perform the neural identification of the squirrel–cage
induction motor dynamics, the model (9) is considered using
the parameters: a1 = 5, a2 = a3 = a4 = a5 = 100, b1 = 5,
b13 = b14 = b4 = b5 = 100 and b2 = b3 = 150.



The parameters for the learning rate γ for the error filtered
algorithm are γ1 = 500, γ13 = γ14 = 49000, γ2 = γ3 = γ4 =
γ5 = 49000, and the parameters of expansion β and dilation
λ used for the Morlet wavelet activation function are given by
β1 = 10000, β13 = β14 = β2 = β3 = 20, β4 = β5 = 30,
λ1 = 10000, λ13 = λ14 = λ2 = λ3 = 0.01, λ4 = λ5 = 0.001.

Fig. 1 shows the estimated torque obtained, where it can be
seen that the load torque is given as a constant = 1, and the
estimated T̂L converges to the value given in approximately
0.06 s.
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Fig. 1. Load torque and torque observer: TL (gray dashed line), T̂L
(continuous thin line).
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Fig. 2. Angular velocity, state observer and neural identification behavior:
ωm (gray dashed line), ω̂m (continuous thin line) and x1 (dotted tick line).

Figs. 2-6 the results of the wavelet neural identification are
presented graphically. In Fig. 2 are shown the angular velocity
ωm, as well as the observed ω̂m and the identification x1
results. In order to show the convergence of these results,
the initial conditions are given as ωm = 0, ω̂m = 5, and
x1 = 3. Note that the identification convergence is given in
1s approximately. As it was mentioned before, the estimated
result ω̂m is for validating the load torque T̂L estimation.

The estimated of the flux observer λ̂αr, the neural identifi-
cation x2, and λαr are shown in Fig. 3, the initial conditions
are λ̂αr = 0.1, x2 = 0.2, λαr = 0 . The same for Fig. 4, that
shows the flux linkages λ̂βr, x3, and λβr, the initial conditions
are λ̂βr = 0.2, x3 = 0.1, and λβr = 0. The convergence of the
estimated states and the identification of the neural network
indicate that the estimation and approximation errors tend to

zero in finite time. The gains for the flux linkages observer are
N11 = 1000, N22 = 900, G11 = 0.0015 and G22 = 0.0028.
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Fig. 3. Flux linkage, state observer and neural identification behavior: λαr
(gray dashed line), λ̂αr (continuous thin line), and x2 (dotted tick line).
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Fig. 4. Flux linkage, state observer and neural identification behavior: λβr
(gray dashed line), λ̂βr (continuous thin line), and x3 (dotted tick line).
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Fig. 5. Current, state observer and neural identification behavior: iαs (gray
dashed line), îαs (continuous thin line), and x4 (dotted tick line).

The estimation and neural identification results for the
currents iαs and iβs are shown in Figs. 5 and 6, respectively,
where for the Fig. 5 are iαs, îαs and x4, the initial condition
are iαs = 0, îαs = 1 and x4 = 1.5 and for Fig. 6 are iβs,
îβs and x5; the initial condition are: iβs = 0, îβs = 1 and
x5 = 1.5. Note that these results are very good due to the
estimation and identification errors tend to zero when the time
tends to infinity. Also, the estimation results îαs and îβs are
shown for validation of the estimation results λ̂αr and λ̂βr.
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Fig. 6. Current, state observer and neural identification behavior: iβs (gray
dashed line), îβs (continuous thin line), and x5 (dotted tick line).

B. Neural controller

As it was mentioned before, the controller designed in this
work is to control the state variables of the angular velocity
and the square modulus of flux linkages of the squirrel–cage
induction motor through the RWFONN in an indirect way. The
simulation of the wavelet neural controller was made using
the following adjustable gains K11 = 300 and K22 = −0.4.
The angular velocity ωm tracks a constant of 180 rad/s as
reference signal, see Fig. 7. It can be noted that the velocity
tracking has an effective performance when the system is in
closed–loop.
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Fig. 7. Angular velocity tracking performance for a constant signal as the
trajectory tracking reference: ωmref (gray dashed line), x1 (continuous thin
line).

Fig. 8 shows the tracking performance of rotor flux square
modulus, where this tracking is made with good results.

VIII. CONCLUSION

This paper shows the application of a neural controller on a
three–phase induction motor. The controller is composed of a
block controller and the application of a high–order controller
of super–twisting sliding modes. In addition, this application
includes the identification of the states of the plant to be
controlled. The state observers are designed to estimate the
variables that are not available for their measurement, where
the results of these estimations feed their corresponding neural
inputs. Also, it is designed the load torque observer, where
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Fig. 8. Rotor flux squared modules linkages performance for trajectory
tracking reference: ϕref (gray dashed line), ϕr (continuous thin line).

this variable feeds the plant as external disturbance. The goal
of the application of the neural controller is, that it is robust
against parametric variations of the induction motor model
or modeling errors, in this way to be able to control the
angular velocity and the square modulus of flux linkages of
the induction motor through the artificial neural network. It
should be highlighted that there are works that apply neural
networks to approximate mathematical models but here we are
trying with the application of a novel wavelet neural network,
namely an RWFONN on a model for an energy storage system.
As future work, we are working with its implementation in
real–time as well as with its comparison with respect to other
neural network architectures, in order to provide a baseline
neural network, to measure its performance.
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[2] O. Morfı́n, C. Castañeda, R. Cruz, F. Valenzuela, M. Murillo,
A. Quezada and N. Padilla, The Squirrel-Cage Induction Motor Model
and Its Parameter Identification Via Steady and Dynamic Tests, Electric
Power Components and Systems 2018.

[3] O. Morfin, F. Valenzuela, R. Betancour, C. Castañeda, R. Cruz and
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