Detecting Adversarial Audio via Activation Quantization Error
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Abstract— The robustness and vulnerability of Deep Neural
Networks (DNN) are quickly becoming a critical area of interest
since these models are in widespread use across real-world
applications (i.e., image and audio analysis, recommendation
system, natural language analysis, etc.). A DNN’s vulnerability
is exploited by an adversary to generate data to attack the
model; however, the majority of adversarial data generators
have focused on image domains with far fewer work on
audio domains. More recently, audio analysis models were
shown to be vulnerable to adversarial audio examples (e.g.,
speech command classification, automatic speech recognition,
etc.). Thus, one urgent open problem is to detect adversarial
audio reliably. In this contribution, we incorporate a separate
and yet related DNN technique to detect adversarial audio,
namely model quantization. Then we propose an algorithm to
detect adversarial audio by using a DNN’s quantization error.
Specifically, we demonstrate that adversarial audio typically
exhibits a larger activation quantization error than benign
audio. The quantization error is measured using character error
rates. We use the difference in errors to discriminate adversarial
audio. Experiments with three the-state-of-the-art audio attack
algorithms against the DeepSpeech model show our detection
algorithm achieved high accuracy on the Mozilla dataset.

I. INTRODUCTION

There is an ever-growing need to deploy Deep Neural
Networks (DNN) in complex tasks of prediction and fore-
casting in diverse settings (e.g., image classification [1],
semantic segmentation [2], speech recognition [3], au-
tonomous driving [4], etc.), given their superior benchmark
performances in real-world applications. Despite DNN’s
success in real-world applications, recent work has shown
that human-imperceptible adversarial perturbations can eas-
ily fool DNNs. For example, Figure [I] shows Goodfellow
et al’s classic example of a panda image that has been
perturbed with a signal that is not observed by the human
eye [5]; however, the DNN makes drastically different clas-
sifications of the images. In addition to image classification
tasks, attacks against other DNN-based applications are also
explored extensively, such as semantic segmentation, image
captioning, text classification, and medical prediction [6]—
[9]. The focus of this work is on audio analysis, and DNN-
based architectures have outperformed traditional HMM-
based techniques in benchmarks for speech recognition and
machine translation tasks. Unfortunately, the DNNs designed
for these speech tasks are also susceptible to adversarial
attacks. Unfortunately, despite the importance of audio ap-
plications, the vast majority of adversarial machine learning
research has focused on image analysis attacks [10].
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(a) Adversarial example for image classification

Fig. 1: Goodfellow et al’s demonstration of fast adversarial example
generation applied to GoogLeNet (Szegedy et al., 2014a) on ImageNet. By
adding an imperceptibly small perturbation to the image, the classification
result of GoogLeNet for “panda” has changed to “gibbon”.

Targeted adversarial examples against convolutional neural
networks and recurrent neural networks can be quite suc-
cessful against speech recognition/machine translation tasks.
Generically, the attack algorithm generates an adversarial
audio X through a gradient-based optimization, which will
lead to an incorrect output Y* by minimizing the loss. For
example, let X be an audio signal that is represented as a se-
quence of length m, where X = {X[1],..., X[t]..., X[m]}
and Y be the correct transcription of X, which could be Y =
“Can you pick up the car at 5SPM?”. The adversary seeks
to generate audio X such that || X — X?|3 is arbitrarily
small and Y* = “Can you please cancel my medical
appointment tomorrow?” Thus, the adversary wants to add
a small perturbation to the X; however, the transcription
is drastically different from the original transcription. The
adversary’s goal is to form an optimization problem over
a variable o where X¢ = X + ¢ and o is an adversarial
perturbation vector. Mathematically, the optimization is given
by:

X* =arg mﬂi{n {Loss(fo(X* =X +0),Y")}
oeR™

where fy is a pre-trained neural network with parameters 6
and X is a benign audio with fp(X) # Y®. Note that o is a
sequence of length m where its entries are not all the same
value (i.e., o is a time-varying waveform).

There are typically two types of tasks in audio analysis: (i)
speech-to-label, and (ii) speech-to-text tasks. Speech-to-label
tasks receive an input audio X that corresponds to a class
label C (e.g., “yes” or “no”). An adversarial audio X acts
against a task by subverting the authentic class label C' while
remaining close to X. Alzantot et al. proposed an attack
algorithm against a speech command classification model.
Their attack added an imperceptible noise to the original
audio signal [11] (i.e., simply changing the least significant



bits in the audio signal). Alzantot et al.’s attack led to an
87% success-rate simply by adding small background noise
without having to know the underlying model parameter and
architecture. On the other hand, the speech-to-text task takes
input audio X and generates a sequence of text Y. A speech-
to-text attack against DeepSpeech was proposed by Carlini
et al. [10]. Carlini’s gradient-based attack arbitrarily manip-
ulates an audio’s machine transcription Y (i.e., Y* #Y) by
injecting imperceptible perturbations to the original signal
(i.e., min||X* — X||3). The perturbation o can be easily
found using backpropagation such that the new signal leads
to arbitrary transcriptions with software such as DeepSpeech.
It is important to understand that these adversarial audio
signals are almost identical to X in both time and frequency
domains.

Although there is an urgent need for adequate de-
fenses against adversarial audio examples since recogni-
tion/machine translation tasks rely more and more heavily on
DNN based models, such countermeasures remain severely
under-explored. Early contributions have adopted image de-
fense strategies (e.g., feature selection/transformation) to
filter the adversarial perturbations in audio. Unfortunately,
feature selection is vulnerable in a malicious environment
[12]. Empirical works showed that simple input transforma-
tion delivers very limited security [13]. Although there are
numerous defense strategies proposed in the image domain,
detecting adversarial examples in the audio domain is a
different and challenging task. This is because the audio are
sequentially-structured and are inter-correlated in the time
axis.

DNN quantization is a popular technique for compress-
ing model size and reducing computational complexity. We
noted that DNN quantization can be beneficial for a DNN’s
robustness. In this contribution, we propose an approach to
detect malicious audio signals by using a quantized neural
network. Specifically, we empirically show that benign and
adversarial audio exhibit significantly different activation
quantization error levels in a neural network. These differ-
ences in word/character error rates inspired a straightforward
detection model that can accurately differentiate between be-
nign and adversarial audios. Finally, the proposed adversarial
audio detection method is benchmarked against three the-
state-of-the-art audio attack algorithms.

II. RELATED WORKS

In this section, we briefly review the technical details
of the neural network model quantization, adversarial audio
generation and detection of malicious audio signals.

A. Adversarial Audio Examples

The adversarial audio examples against DeepSpeech that
were generated by Carlini and Wagner were the first tar-
geted speech-to-text audio attacking algorithm (i.e., explicitly
specify the attack target) [10]. These adversarial audios are
particularly effective, given that the slight noise is utterly
inaudible to a human ear. Unfortunately, the adversarial
perturbations fail to attack when played over-the-air. In [14],

Yukura and Sakuma take into account the impact (e.g., white
noise, band filtering, etc.) when audios are played over-the-
air then devised a robust audio attack against DeepSpeech.
Moreover, although adversarial audio in [10] achieved an
almost 100% success rate, Carlini and Wagner assumed a
white-box setting, which requires detailed information of the
victim’s model. In [15], Taori et al. proposed a black-box
audio attack by combining the approaches of both genetic
algorithms and gradient estimation. In this contribution, we
test the proposed detection algorithm against all the above
three attacking methods.

Feature transformations are widely adopted as counter-
measures against an adversary in real-world tasks (e.g., im-
age quantization, filtering, image reprocessing, autoencoder
reformation) [16], [17]. These feature transformations are
widespread due to their low cost and the fact they can be
used with various DNN architectures. Feature transformation
aims to filter the adversarial perturbation of the raw image.
While feature transformations are effective on images, they
provide limited security against adversarial audio [13]. Yang
et al. proposed an empirical test to discriminate adversarial
audio by measuring the intrinsic temporal dependency [13];
however, this detection technique can be easily fooled by
suppressing the temporal dependency in adversarial audio.
Rajaratnam and Kalita proposed to flood particular frequency
bands with random noise to detect adversarial audio [18].
Unfortunately, an adversary can specify the frequency bands
that carry the adversarial perturbations to evade noise flood-
ing [14].

B. Neural Network Model Quantization

DNN models have achieved remarkable accuracy in a
variety of real-world applications, albeit at the expense of
high computational cost. For example, the ILSVRC 2015
competition winner ResNet has 152 layers and GBs of
parameters [19]. These neural network sizes pose a tremen-
dous challenge to real-time implementations on a resource-
constrained platform (e.g., FPGA chips, mobile devices, etc).
In the past decade, a plethora of contributions have presented
techniques to compress DNN models (i.e., reduce memory
and computation requirements without incurring significant
learning loss) [20]. In particular, weight and activation quan-
tization techniques showed significant model size reduction
with limited accuracy degradation [21].

Huang and Sung demonstrated the possibility of quan-
tizing DNN weights to 1 bit (binary) or 2 bits (ternary),
which allows a DNN to fit efficiently on resource-constrained
platforms [22]. Zhu further improved the effectiveness of
weight quantization by ternarizing weights using a statistical
distribution of weight values [23]. On the other hand, activa-
tion quantization can also improve the model quantization by
reducing the activations during the DNN model’s inference.
Hubara et al. proposed an activation-binarized DNN model
[24].

Several different methods can be considered when a neu-
ral network needs to be quantized. Weight and activation
quantization is equivalent to discretizing the DNN hypothesis



Fig. 2: In the DNN activation quantization, the activation values are
quantized after clipping. cap defines the maximal activation value, « is
the calculated grid size for a bit width k.
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Fig. 3: The structure of DeepSpeech. FCN is the fully connected layer and
BiRNN is the bidirectional RNN layer.

space of the loss function. Therefore, such quantization
schemes cause quantization errors when compared to full
precision models. When training quantized DNN models,
such quantization error can be compensated by quantization-
aware retraining [20]. In this contribution, we begin with a
pre-trained full precision DNN model for speech recognition
then we incorporate the DNN activation quantization to
discriminate against the adversarial audio.

III. ADVERSARIAL AUDIO DETECTION VIA ACTIVATION
QUANTIZATION ERROR

In this section, we examine the neural network activation
quantization’s impact on audio by comparing the activation
quantization errors on benign and adversarial audio. After
observing the differences between the two quantization er-
rors, we propose a new method to discriminate against the
adversarial audio via the activation quantization error.

A. Activation Quantization Errors on Audio

The first step to quantize a neural network’s activation is
to clip the activations (i.e., bound the range of the output).
While some activation functions already have a boundedness
property, many activations have the property of unbounded-
ness (e.g., ReLu). Specifically, the activation y = ¢(W7T X +
b) is clipped to avoid extreme activation values then for a
given bit width k the activation range is discretized to 2*
grids. This quantization procedure is the same as quantization
that is performed in classical digital signal processing [25].
Lastly, the activation values are mapped to lower precision
values. Figure [2| shows the quantization of ReLu activation.

The activation is first clipped with the predefined “cap”, then
the activation range is discretized with grid size equals .
The activations are mapped to lower precision values before
feeding to the next layer.

We use the open-source DeepSpeech model as our victim
speech recognition model and the Mozilla Common Voice
dataset as our benchmark. DeepSpeec is a lite bidirectional
recurrent neural network that achieves the state-of-the-art
performances on speech recognition tasks [26]. The Deep-
Speech neural network is a mixture of five Fully Connected
Layers (FCN) and one Bidirectional RNN (BiRNN) layer.
Figure [3] shows the architecture of the DeepSpeech neural
network.

Our motivation to exploit neural network quantization
is a result of the significant difference in the benign and
adversarial audio’s quantization errors. The quantization
error is referred to as the performance degradation on a
quantized model comparing with a full-precision model.
Specifically, in the context of speech recognition, which
usually outputs transcripts, the quantization error can be
quantified by the transcripts inconsistency (transcripts from
quantized model and full-precision model). In our analysis,
we measure the transcripts inconsistency using the Character
Error Rate (CER). The CER is defined by W’ where
S, D, and I are the hypothesis transcript’s substitutions,
deletions, insertion errors, N is the number of characters in
the reference transcript. Hypothesis and reference transcripts
refer to transcripts from quantized and full-precision models,
respectively. Note the CER can be larger than one when there
are more errors than the character number in the reference.

We begin our analysis by using three attack algorithms
[10], [14], [15] to generate the adversarial audio for 100
benign audio clips. Once the adversarial audio is generated,
then the audio is passed through the quantized and full-
precision networks, and we measure the activation quan-
tization errors for both benign and adversarial audio. We
quantize the FCN and BiRNN layers separately with various
bit widths: £ = 1,2,...,9 when the activation is quantized
in DeepSpeech.

The CER results across various quantization bit widths for
benign audio and three types of adversarial audio are shown
in Figure [] Specifically, Figure is the benign audio
averaged CER. Figure [4(b)] i(d)] and [4(T)| are the averaged
CER’s for three attack algorithms, respectively. Figure
and [f(g)| are the CER differences (adversarial audio
average CER minus benign audio average CER). One obser-
vation and conclusion to draw from this experiment is that
the benign audio achieves an overall lower CER than three
types of adversarial audio; however, the differences vary
across different quantization bit widths, which is expected.
This conclusion is more significant for the attack algorithm
in [14]. In other words, the adversarial audio incurs larger
activation quantization errors, which can detect adversarial
audio.

IThe pretrained DeepSpeech model can be found at https://
github.com/mozilla/DeepSpeech
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Fig. 4: Here are the average quantization errors for benign (plot [4(a)) and three adversarial audio (plots 4(b)} v quantitively measured by CER.

The x-axis and y-axis are the quantization bit widths for FCN layers and BiRNN layer, respectively. In plots [4(c)|

differences between the adversarial and benign audio.

B. Adversarial Audio Detection

We here propose our adversarial audio detection algorithm
based on the previous empirical analysis. We deem audio
with activation quantization error higher (lower) than a
threshold as adversarial (benign) audio. However, the optimal
threshold § for a given quantization bit widths (k; and ks)
need to be determined a priori. In our algorithm, we first em-
pirically estimate the threshold and associated quantization
bit widths that have the highest detection accuracy using a
training/validation step. Then we use the validated threshold

* and associated bit widths kj, k5 to detect adversarial
audio. We propose our adversarial audio detection technique
in Algorithm [I]

We here explain the Algorithm |l| in detail. In step 1,
the inputs to the algorithm are datasets D; and D, which
are the benign training and validation audio, respectively.
Furthermore, we choose a range for the number of bit widths,
W, involved in the activation quantization of the DeepSpeech
model. We train the detection algorithm generating adversar-
ial audio using an existing attack algorithm (e.g., see [10],
[14], [15]). In step 2, the notation adver(X) is a call to the
adversarial audio generation algorithm for an audio X. These
adversarial audio are given by the datasets D1 and D2

Our detection algorithm implements different quantization
bit widths on the fully connected (k;) and BiRNN layers
(k2). We use two “for” loops that iterate two different
levels of quantization on the network to determine the best
validated threshold o* and associated k7, k3. Specifically, for
a quantized network with k; bits on the FCN layers and ko
bits on the BiRNN layer, we first calculate the CER’s for the
training benign audio X € D; and adversarial audio X € D1
in steps 5 & 6. Then the detector calculates a threshold dy, &,
that is the average of the minimum and maximum CER from

[4(e)l E(2)] we showed the three CER

Algorithm 1 Adversarial Audio Detection

1: Input: Benign audio for training: X € D;, benign audio
for validation: X € D, audio X for detection, bit widths
w=1{12,3,...,9}. R

2: Initialization: Adversarial audio for training: D; =
{adver(X) : VX € D1}, adversarial audio for valida-
tion: Dy = {adver(X) : VX € Dy}.

3: for k1 € W do

4. for ko € W do

5

6

errpy ki ke — {CER()(7 kl, kg) VX € 21}
, = {CER(XV7 k‘l,kg) VX € Dl}

max(errpy ky ko )+min(e7“7“ﬁl k1 ,ko )

67"7“§1 E1,k

7: 5/€1 ko =
8: erTDy ki ,ky = {CER(X kl,kg) VX € 22}

9: €TT By by ky = {C.ER(X7 k1,ks) : VX € Do}

10: Accug, o, = Valid(errp, ik, Uerrs, p. 1, Ok kz)
11:  end for

12: end for

13: k},k3,60% = arg maxt, k,, Accu, ks,

Ok ko
14: # Testlng it X is adversarial audio
15: if CER(X, kT, k3) > 6* then

16:  Return “Adversarial Audio”

17: else

18:  Return “Benign Audio”

19: end if

D; and 51, respectively (see step 7). In steps 8 & 9, the
CER'’s are calculated for the validating benign audio X € Dy
and adversarial audio X € Dy, which is used to validate
Ok, .k, by obtaining the detection accuracy Accuy, x, in step
10. In step 13, the output of the detector is the threshold
0*, and bit widths kj and k3 associated with the maximal



validation accuracy Accuy, i,. Finally, whether a test audio
X is benign or not is determined if the CER of the test audio
is lower than ¢* or not.

IV. EXPERIMENTAL RESULTS

In this section, we perform a comprehensive evaluation
and demonstrate the efficacy of our detection algorithm.
Specifically, we benchmark the Algorithm [I] against three
state-of-the-art audio attack algorithms ( [10], [14], [15]) on
Mozilla Common Voice dataset.

A. Dataset and Evaluation Methods

We chose a subset from the Mozilla dataset released in
[10P} There are 100 audio clips in the dataset that are
sampled at 16KHz, which are the same data used in the
works of Carlini et al. and Yang et al. [10], [13]. The duration
of the audio clips are between 1.73s to 7.8s, with an average
of 4s per clip. Table[I] shows the attack target sentences (i.e.,
the desired transcripts of the adversarial audio for a normal
audio X). Note that these attack targets are the same ones
that were used in [10], [13].

TABLE I: The targets for audio with different duration.

Duration (seconds)|Adversarial Target

[0, 2.5) hello google
(2.5, 4.5) this is an adversarial example
[4.5, 7.8) hello google please cancel my

medical appointment

In the experiments, because the Algorithm [I] requires a
training/validation stage to determine the best threshold o*
and associated quantization bit widths k7, k5, we test with
various choices of the ratio of training/validation. We also
show the training/validation data’s scarcity’s impact on the
detector’s performance. The training/validation ratio range is
0.1 ~0.8.

The figures of performance for the detection algorithm
are the testing accuracy, precision, recall, and area under the
ROC (AUC) for each training/validation ratio. The accuracy
is the ratio of correctly identified benign and adversarial
audio in the testing data. The precision and recall are given
by > tp and tpffn’ respectively. However, we need to
transform the CER’s to a probabilistic score to calculate
the Receiver Operating Characteristic (ROC). To perform the
calculation of the ROC, we negate the CER’s from benign
and adversarial testing audio such that higher scores indicates
benign audio. Then we transform the negated CER’s on [0, 1].
The transformation is given in (1)) where 7 denotes the
testing audio (benign and adversarial).

Omax = max {CER(X) : X € T}
Omin = min {CER(X) : X € T}
score(X) = %)g%l (D

Zhttps://nicholas.carlini.com/code/audio_
adversarial_examples

We should note that this step can be included into the end
of Algorithm [I] to provide a confidence score.

The temporal dependency-based detection algorithm pro-
posed by Yang et al. achieved a remarkable performance that
outperformed many other detection techniques [13]. Their
detection algorithm achieved AUC scores as high as 93.6%
on the Mozilla dataset. In our experiment, we benchmark
against Yang’s detection algorithm, and we also use the open-
source implementation of CER calculation [’

B. Experimental Results

Table [[] shows the detection performances for our algo-
rithm against three different attack algorithms being used to
generate adversarial audio. The results are averaged over 50
runs where the training/validation data are sampled from a
bootstrap. We experiment with different training/validation
ratios: 0.1 ~ 0.8 with a step size equals 0.05 since our
detection algorithm requires a training/validation stage. One
of the first observations to draw from Table is that
the proposed detection algorithm achieved high detection
accuracy, precision, recall, and AUC against each attack
algorithm. The second observation is that as the ratio of the
training/validation audio increases, so does the detection effi-
cacy. Comparing with Yang’s detection method, our detection
algorithm achieved a higher AUC than [13] regardless of the
training/validation ratio. The last observation is that the de-
tection algorithm is not influenced by the training/validation
data’s scarcity. For example, the detection algorithm achieved
at least 95% AUC when the training and validation set both
have only five audio clips.

Figure [6] shows the CER’s of the testing audio for each
attack algorithm when the training/validation ratio is 10%.
The x-axis is the CER’s of testing audio. The black circles
indicate benign audio CERs, and red crosses indicate adver-
sarial audio CERs. The vertical dashed lines are the threshold
from the training/validation stage. We provide the associated
accuracy, precision, and recall in each plot. The primary
observation to make from Figure [6] is that the validated
threshold well separates the benign and adversarial audio
CERs. Figure [5] shows the Receiver Operating Characteristic
(ROC) curves for the three attack algorithms. Note that the
ROC was generated with the training/validation ratio set to
0.5. The detector is quite efficient at detecting the audio
samples that are adversarial.

V. CONCLUSIONS

Deep neural networks (DNN5s) have excelled at computer
vision and machine translation tasks, and these algorithms
have become a critical component in many data analysis
pipelines. Unfortunately, DNNs are quite vulnerable to ad-
versarial attacks, which questions the robustness of DNNs to
imperceptible adversarial perturbations. There is a significant
amount of work that evaluates the robustness of DNNs for
image domains; however, there are far fewer works that
examine the robustness of audio. While our work does not

3http://pythonhosted.org/asr/index.html
http://pypi.org/project/asrtoolkit/
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TABLE II: Figure of merit for the detection of adversarial audio that are generated by three the-state-of-the-art attack algorithms. For each training/validation
ratio, we report the accuracy, precision, recall, and AUC scores. All experiments are averaged over 50 runs.

Carlini and Wagner Yakura and Sakuma Taori et al.
Tr+Val Ratio || Accu | Precisn | Recall | AUC | Accu | Precisn | Recall | AUC | Accu | Precisn | Recall | AUC
0.1 0.9106 | 0.9072 | 0.9186 | 0.9531 | 0.9382 | 0.9597 | 0.9244 | 0.9765 | 0914 |0.911 |0.9186 |0.9628
0.15 0.9315]0.9185 | 0.9457 | 0.9711 | 0.9381 | 0.947 |0.9344 | 0.9713 | 0.9496 | 0.9463 | 0.9557 | 0.9863
0.2 0.9361 | 0.937 |0.9375]0.9721 | 0.9407 | 0.9502 | 0.9347 | 0.9759 | 0.9485 | 0.9482 | 0.9527 | 0.9853
0.25 0.9388 | 0.9245 | 0.954 ]0.9716 | 0.9521 | 0.9512 | 0.9544 | 0.9883 | 0.9536 | 0.944 | 0.9648 | 0.9861
0.3 0.944 10.9448 | 0.9466 | 0.9798 | 0.9552 | 0.9608 | 0.952 |0.99 0.9502 | 0.9606 | 0.9441 | 0.9874
0.35 0.9372 | 0.9322 | 0.9445 | 0.9763 | 0.9512 | 0.9529 | 0.9514 | 0.9832 | 0.9599 | 0.9513 | 0.97 0.9881
0.4 0.9447 | 0.94 0.9501 | 0.9776 | 0.954 | 0.954 |0.9557|0.9881 | 0.9558 | 0.957 |0.9572 | 0.9932
0.45 0.9426 | 0.9403 | 0.9469 | 0.9769 | 0.9479 | 0.9568 | 0.942 | 0.989 |0.9554 | 0.9568 | 0.9567 | 0.991
0.5 0.9434 1 0.9424 | 0.9455 | 0.9781 | 0.9556 | 0.9624 | 0.9515|0.993 | 0.9604 | 0.9556 | 0.966 |0.9934
0.55 0.9415 1 0.9391 | 0.9459 | 0.9757 | 0.9613 | 0.9695 | 0.9551 | 0.9944 | 0.9599 | 0.9552 | 0.9659 | 0.9907
0.6 0.9453 | 0.9365 | 0.9548 | 0.982 | 0.9585|0.9615 | 0.9576 | 0.9929 | 0.9562 | 0.9595 | 0.9554 | 0.9894
0.65 0.9469 | 0.9353 | 0.9604 | 0.9876 | 0.9668 | 0.9724 | 0.9625 | 0.9979 | 0.9554 | 0.9519 | 0.9608 | 0.9919
0.7 0.949 ]0.9393 | 0.9595]0.9786 | 0.964 | 0.9728 | 0.9577 | 0.9953|0.955 [0.962 |0.9521 |0.9912
0.75 0.956 |0.9432 | 0.9694 | 0.9858 | 0.9612 | 0.9592 | 0.9644 | 0.9967 | 0.9536 | 0.9496 | 0.9597 | 0.9899
0.8 0.9515]0.934 |0.9696 | 0.9753 | 0.966 |0.967 |0.9668 | 0.9977 | 0.9575|0.949 |0.9674 | 0.9944
Receiver operating characteristic Receiver operating characteristic Receiver operating characteristic

wl o ] 10] 10

g g J g il

e & e

Los L o Lo

s g s

o2 = 02 o2

0.2 08

0.4 0.6
False Positive Rate
(a) Carlini and Wagner

02 0.8

0.4 0.6
False Positive Rate
(b) Yakura and Sakuma

0.2 08

0.4 0.6
False Positive Rate

(c) Taori et al.

Fig. 5: The ROC curve of the detection algorithm against three audio attacking algorithms when training/validation ratio is 0.5. The dashed line represents

the random chance line.
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Fig. 6: The CER’s of benign audio against each type of adversarial audio when the train/validation ratio is 10%. X axis is the error rate level. The vertical
broken line is the threshold calculated from training/validation. The evaluations metrics on testing audio are also reported in each figure.



focus on how to increase the robustness of the DNN applied
to audio (i.e., the DeepSpeech model was used in this work),
we presented an approach that can be used to accurately and
reliably detect adversarial samples. In this work, we proposed
an adversarial audio detection algorithm that exploits DNN’s
activation quantization error to detect when an adversary has
generated a perturbation. The experiments on the Mozilla
benchmark dataset demonstrated that our detection algorithm
can achieve high accuracy, precision, and recall against three
state-of-the-art audio attack algorithms. This paper is the first
to examine the DNN model quantization’s utility on detecting
adversarial audio.

There are several paths to pursue in future work: (1)
develop a theoretical basis or bound on the probability of
error for the detector, and (2) incorporate the theoretical
understandings from (1) into a DNN that can be used to
increase the robustness of the model.
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