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Abstract—There is a sudden surge to model human behavior
due to its vast and diverse applications which includes modeling
public policies, economic behavior and consumer behavior. Most
of the human behavior itself can be modeled into a choice
prediction problem. Prospect theory is a theoretical model that
tries to explain the anomalies in choice prediction. These theories
perform well in terms of explaining the anomalies but they
lack precision. Since the behavior is person dependent, there
is a need to build a model that predicts choices on a per-
person basis. Looking on at the average persons choice may
not necessarily throw light on a particular person’s choice.
Modeling the gambling problem on a per person basis will help in
recommendation systems and related areas. A novel hybrid model
namely psychological factorisation machine ( PsychFM ) has been
proposed that involves concepts from machine learning as well
as psychological theories. It outperforms the popular existing
models namely random forest and factorisation machines for the
benchmark dataset CPC-18. Finally,the efficacy of the proposed
hybrid model has been verified by comparing with the existing
models.

Index Terms—Human behavior modeling, Random forest,
Factorization machines, Decision making under risk, Choice
prediction, Hybrid model

I. INTRODUCTION

Understanding human behaviour is very much essen-
tial in today’s world for the top level management as
the existence of the organisation depends on the employ-
ees/individuals/consumers etc. Developing human behaviour
model is challenging as personality, attitudes,values, percep-
tion, motives, aspirations and abilities varies from person to
person and from time to time. Let us try to understand a typical
choice/gamble problem. Consider a user U-1 and some of his
previous gamble choices for choice problems are G1 . . . G25,
his gamble choices for next G26 ... G30 needs to be predicted.
Note that gamble problems may be different for different
users. This task is reminiscent of online recommender systems
predicting favourability ratings. This is known as decision
making under risk. Let us consider a relatively simple problem
first. Given the average choice rate of choice problems, G1 ...
G25. The choice rate of a choice problem is the number of
times a participant chooses B by the total number of trails.
Using average chioce rate the gamble choice rates for next
G26 ... G30 gamble problems can be predicted. In this case,
the problem is looked from an aggregate behaviour point of
view.

An initial approach was to calculate the expected utility
function of both the gamble options A and B. There are a

Gamble A: 3 with certainty
Gamble B: 32, .1; 0 otherwise
E[A] = 3 E[B] = 3.2

Fig. 1. Example of a choice/gamble problem

lot of anomalies to this theory. As per the example given in
figure 1, 68% of the participants tend to prefer gamble A over
gamble B even though the expected value of gamble B is more
than gamble A. This anomaly is called ‘Under-weighting of
rare events’ [1].

In an attempt to address some of these problems, prospect
theory was proposed by Kahneman and Tversky [2]. Kah-
neman went on to win the Nobel prize in economics for
his contribution. The prospect theory addresses the deviation
with certainty effect, reflection effect, and also introduces the
concept of the value function. With time many more anomalies
evolved. Even though they explain the reason for the cause,
there is a need for a high precision prediction. Best Estimate
and Sampling Tools (BEAST) [3] model was developed for
this reason. The significance of this model is that it can models
14 such anomalies.

BEAST model defines the advantage of a gamble over oth-
ers as the difference between their EV (estimated pessimisti-
cally in ambiguous gambles) and the mean value generated by
the use of sampling tools that correspond to the four behavioral
tendencies. As a result, gamble A will be strictly preferred to
gamble B if and only if:

[BEVA −BEVB ] + [STA − STB ] + e > 0

where BEV is the expected value of gambles, ST is the
mean value generated by sampling tool, and e is the error
term. Psychological features use this model to retrieve different
features.

The second line of research is focused on using machine
learning models for prediction instead of cognitive models.
Cognitive models are theoretical and may work well for small
datasets but machine learning models tend to get a slight edge
when the dataset gets bigger.

The current state of the art for the aggregate behaviour
prediction task is a derived model from BEAST. Most of
the high precision models are either derived from BEAST or
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utilize BEAST at some point of computation. Psychological
forest [4] is one such model that uses psychological features
derived from BEAST and applies machine learning.

While some of the machine learning models have performed
better than theoretical models, the current state of the art uses
neural networks with BEAST [5]. It trains on a synthetic
dataset with expected output as BEAST, basically it models
neural nets to perform BEAST. Then the neural net is fine-
tuned to the competition data and hence performs better than
BEAST.

Factorization machines (FM) [6] is the current state of the
art for the individual behaviour prediction task. FM works well
for a sparse input vector. Since this task is similar to online
recommendation systems, matrix factorization technique [7],
which won the Netflix challenge, seems to be a good fit.

To meet the aforementioned challenges,the proposed work
focused on the hybrid model which evolves from an inter-
section of two domains - psychological theory and machine
learning.

The major contributions of the paper includes the 1) propos-
ing a new hybrid model which will work with minimal data
points and that can outperform all the existing models 2)
Carrying out comparative study of the proposed algorithm
with all other popularly used models already reported in the
literature on a competitive dataset 3)The proposed model and
existing models are evaluated on test and validation data to
understand the stability of the model.

The rest of the paper is organised as follows. Section 2
presents the CPC18 dataset which is used throughout the
paper. It also includes the detailed description of very feature
of the dataset. Section 3 discusses the architecture of the
machine learning model. Section 4 presents the results for
existing and proposed models. Section 5 provides the summary
and scope of the proposed model. Section 6 discuss the need
and benefits of the hybrid models in behavior modelling frame
work.

II. CPC-18: CHOICE PREDICTION COMPETITION DATASET

A. Dataset Description

A benchmark dataset for evaluating behavior-based decision
making is CPC 2018 [8], which covers a better space of choice
problem when compared to its older version CPC 2015 [9]. It
covers a wide range of anomalies compared to the other dataset
and also is one of the enormous datasets in this domain.

CPC15 contains 150 choice problems, whereas CPC18
contains 210 choice problems. 60 choice problem was added
to the CPC18 and the remaining 150 were the same as CPC15.
There was a total of 240 participants, out of which 139 are
female. Half of the participants came to the Technion and
another half at the Hebrew University of Jerusalem. Each
participant faced either 30 or 25 choice problems. Each choice
problem was conducted for twenty-five repeated trials with
feedback for the first five trails. In total, there are 510750 data
points.

Participants were paid according to the choice they made.
It reduces the noise in data (i.e.) participants will try to

choose the gamble choice which he/she thinks will earn him
better rewards and rather not choose a random choice. In
each problem, participants are faced with two options A and
B where gamble A can take up to 2 sets of rewards and
gamble B problem was varied by a few parameters such as
the distribution. Figure 2 is an example of a gamble presented
to a participant. Although in this example the gamble B has
only two possible outcomes in general gamble can have more
than 2 outcomes.

Fig. 2. An example of a gamble problem displayed to the user for the CPC
dataset.

B. Gamble Description

Each choice problem has a unique set of 11 fea-
tures. For gamble A, <Ha,pHa,La,1-pHa> is defined by
three parameters whereas the gamble B is defined as
<Hb,pHb,Lb,1-pHb> if the ’LotNum’ is 1 else it is
<Hb,pHb,LotVal,LotShape,LotNum> where ’Lotnum’ speci-
fies the number of possible outcomes. ’LotShape’ describes the
distribution parameter and it can take three values- symmetric,
right-skewed, or left-skewed. ’LotVal’ is the lottery’s expected
value. The parameter ’Amb’ is set to 1 if the gamble B is
ambiguous in the sense that the value of the probability is
ambiguous.

The tenth parameter ’ Corr’ captures the correlation between
the payoff that the two gambles generate (either positive,
negative or none). The 11th parameter ’ Feedback’ captures
whether Feedback is provided to the decision-maker. As
explained above, it is set to 0 in the 1st block of each problem
and set to 1 in all other blocks. Each of the 11 parameters that
define a problem is provided explicitly to the decision-makers
in some way. Feedback is not taken into account for the rest
of the paper. Emphasis is given to the average rate of choosing
B over all the blocks regardless of feedback.

C. Train-Test Dataset Split

Out of the available dataset, 5 Random gamble problem per
user is chosen to be put into as test set and the others are
labeled as train set. For blending, there is a need to create a
validation set from the train set so that the ensemble method
can learn from the validation set. 10% of the train set is
reserved for the validation purpose.



Fig. 3. An abstract architecture of the ensemble models implemented in this paper.

III. MODEL

The model which surpasses all the existing models are an
ensemble of psychological forest features [4] and factorization
machines [6]. In figure 3, the architecture of the ensemble
model is described. FM performs best when the input vector
is sparse. One hot encoded game ID and subject ID are given
as input to FM which is very sparse. Even though FM performs
well, it does not have the necessary details of the gamble where
psychological forest would be of help. In psychological forest,
only the features of the gamble are given as input.

A. One Hot Encoded Vector

A vector of length 450 is considered in which two of the
features are active ones and others are zero. The two active
features describe the participant ID and the gamble ID. This is
a suitable input for models that perform well on sparse data.

B. Psychological Features

The features considered for this work includes 11 objec-
tive features, 4 naive features and 13 psychological features.
Objective features are the features that are already laid out
to the participant. <Ha, pHa, . . . > are the 11 objective
features. Naive features are the ones that lay out some basic
comparison between the two gambles and there is no need for
psychological theory. dEV,dSD,dMin,dMax are the difference
between the expected value, standard deviation, minimum and
maximum possible outcome of gambles respectively.

Table I illustrates all the 13 Psychological features and their
interpretation.

TABLE I
PSYCHOLOGICAL FEATURES

dEVo, dEVfb

It describes the difference between the EV
of the gambles. It is different from dEV in
the sense that it includes the definition of
dEV even if the gamble B is Ambiguous.
[10]

pBettero, pBetterfb

The probability of gamble B being strictly
higher than gamble A. Participants try to
minimize the regret. [11]

dUniEV, pBetteru
Participants assume the probability of get-
ting any value to be equal. [12]

dSignEV, pBetterSo,
pBetterSfb

Participants give importance to sign. The
Ha, La,Hb,Lb values are dropped, and only
the sign is taken into account. [13]

Signmax
An indicator variable. This indicates
whether the gamblers have a possibility of
positive outcomes. [2]

RatioMin
The ratio between the minimal outcomes.
[14]

Dom
An indicator variable which signals whether
a particular gamble dominates.

C. Factorization Machines

Factorization machines (FM) are supervised learning mod-
els, can do both regression and classification, usually trained
by stochastic gradient descent (SGD), alternative least square
(ALS), or Markov chain Monte Carlo (MCMC). FM’s are
extensions of linear models which model the interactions of
variables by mapping the interactions to a low dimensional
space. They accomplish this by measuring interactions be-
tween variables within large data sets. As a result, the number
of parameters extends linearly through the dimensions.



ŷ(x) = wo +

n∑
i=1

wixi +

n∑
i=1

n∑
j=i+1

< Vi, Vj > xixj

where,
wo is the global bias ,
wi is the weight of ith feature of the input vector.
Vi is a vector of dimension k, which represents the ith

feature.
< Vi, Vj > is a vector dot product of the vector representing

ith and jth feature.
This model performs extremely well if the data is sparse.

To understand why it performs well in a sparse data setup let’s
take an example.

Example 1: A user U-1 chooses gamble B for a given
gamble problem G-1, 21 times out of 25. One hot encoded
vector will have X1 = 1, X350 = 1 others take a 0 value.
If this vector is used as input, since there is no interaction
between them in the training dataset, most of machine learn-
ing models gives w1,350 = 0 whereas the proposed gives
w1,350 =< V1, V350 > even though there is no interaction
between them in train dataset but there exists an interaction
between them and others from which the vectors are updated.
Vi is updated every time ith feature is active one. V1 is updated
every time the user U-1 chooses a gamble for a gambling
problem.

The dimensionality of the hyperplane is defined as k. Linear
support vector machine (SVM) is just FM with dimension-
1. Hence it fails to gain information about the interactions
between features. Fast FM [15] library is used to generate the
results presented in this paper.

D. Ridge and Lasso Regression

ŷ(x) = b+

n∑
i=1

wixi

The above equation models linear regression. To solve for w
and b we need to define a cost function first. Let’s take the
cost function to be Mean Squared Error (MSE).

Cost Function = MSE =

m∑
j=1

(yj − ŷj)2

The optimum solution is obtained by minimizing the cost
function. If the error is high for both training and testing data
set, then the model is under-fitted and happens when the data
set is small. If the error is low for training and high for testing,
then the model is over-fitted. Using regularization helps in
reducing the over-fitting of the model. Ridge regression is a
linear regression with L2 regularization. Lasso regression is a
linear regression with L1 regularization.

Ridge Cost Function =

m∑
j=1

(yj − ŷj)2 + λ

n∑
j=1

w2
j

Lasso Cost Function =

m∑
j=1

(yj − ŷj)2 + λ

n∑
j=1

|wj |

E. Blending

Blending is a technique where weighted averaging of pre-
dicted output from different model is considered.

ŷ(x) = c1ŷ1(x) + c2ŷ2(x)

Where ŷ1(x) is the prediction from Factorization Machines on
one hot encoded input and ŷ2(x) is the prediction from ridge
regression on psychological Feature set.

1) Divide the dataset into train-Validation sets.
2) Run the layer-1 models on the train set. Typically these

models can be SVM, multilayer perceptron (MLP) and
linear regression, etc.

3) The input of layer 2 is the prediction of layer-1 models
on the validation set.

4) Run the layer-2 models on the validation set.
Ridge regression is used to determine the coefficients c1 and

c2. From the coefficients, the significance of the model can be
determined. If one model’s coefficient is significantly greater
than the other, then blending the models does not improve the
accuracy significantly.

TABLE II
MEAN SQUARED ERROR OF DIFFERENT MODELS

MSE*100
Naive Models on One Hot Encoded Input (A)

Factorization Machines 7.63
Ridge Regression 8.36
MLP (200,50,10) 10.4
SVM 12.32
Lasso Regression 13.88

Naive Models on Psychological Feature Input (B)
Ridge Regression 7.80
Lasso Regression 7.99
SVM 14.90
Random Forest 14.97
MLP (10,2) 17.2

Ensemble Models
FM (A) + Ridge (B) 6.8
Ridge (A) + Ridge (B) 7.2
MLP (A) + Ridge (B) 7.8
FM (A) + Lasso (B) 7.9

TABLE III
VALIDATION AND TEST ERRORS

Model Test MSE Validation MSE
Lasso (B) 7.99 19.24
SVM (B) 14.90 27.48
Ridge (B) 7.8 7.63
FM (A) 7.63 7.42

IV. RESULTS

A vast number of machine learning models are applied to
this problem with two types of input - one hot encoded input
and psychological features input. The MSE (Mean Squared



Error) of different models with respective inputs is listed in
Table II. In figure 4, the results of the top performing models
are shown graphically. For input type A - one-hot encoded
vector, FM models outperform other machine learning models
by a fine margin. FM models perform better well due to the
level of sparsity in the data. FM models by considering all the
interaction between the feature whereas SVM does not.

FM achieves an MSE of 0.0736. On an average for one
prediction there is an error of 0.27. That is, let us take the
probability of a given person choosing a gamble B for a
particular gamble problem is p. FM on an average, predicts the
probability as p ± 0.27. There is a 27% error in the predicted
probability. Surprisingly MLP performs better than SVM and
lasso regression. Ridge performs way better than lasso which
signifies the importance of regularization in machine learning
models.

Fig. 4. MSE of Top 4 performing models.

For input type B - psychological features, ridge regression
performs the best. Close comes lasso regression. The main take
away is that linear regression performs well in this setting. The
MLP(10,2) means the neural net has 2 hidden layers with 10
and 2 neurons. MLP(200,50,10) means the neural net has 3
hidden layers with 200, 50 and 10 neurons respectively.

Ensemble method combines one method from the input type
A model and one from the input type B model. The least
MSE was achieved when FM and ridge are blended. Most
combinations of models from input type A and input type
B performed better than combining models from the same
input type. Due to the fact that one feature is independent
of the other,one contains only details of user id and gamble
id whereas other has only the details of a gamble. There is
no intersection between the two input feature set. Hence they
outperform most of the other models.

The stability of these models can be inferred from their
errors in the validation set and test set. If both of the errors
are close to each other then the model is stable. That is, if
the error for one set of inputs varies with another set, that is
means the model is either under-fitted or over-fitted. In table
III, the error in validation and test set are given for various

Fig. 5. Importance of each model in FM + Ridge ensemble model.

models. Lasso and SVM have varying errors which specifies
the models are not stable, and hence there are not the best
model for this setup. In contrast, ridge and FM models have
a similar error which inference that the model is stable in this
setup.

The figure 5 shows the importance of each model in
ensemble of FM + Ridge. The importance is calculated by
the coefficient of blending, that is ,

ŷ(x) = 0.529 ∗ ŷ1(x) + 0.463 ∗ ŷ2(x)

c1 = 0.529

c2 = 0.463

In the case of the best performing model, the FM contributes
53%, and ridge contributes 47%. That shows both the model
are essential to achieve a better performing model than naive
models. Whenever more models are added for blending, the
error does not decrease significantly or sometimes even in-
creased. The contribution made by the newly added model was
also significantly low. Adding more models will also increase
the complexity of the model. Thus in this paper, the number
of models to be blended is limited to two.

V. SUMMARY

• FM models are a good fit for high dimensionally sparse
data. Typically used for one hot encoded inputs.

• Blending FM model and Ridge(B) gives a highly precise
model. Logically because the ensemble factors in the
user’s history and the present gamble’s details.

• There is a high variance in error with different regu-
larization techniques. Choosing a model with suitable
regularization is essential for a high precision system.



VI. DISCUSSION

An amalgamation of cognitive methods and data science
model outperform most of the best practices in the CPC
dataset. Cognitive model’s output remains the same irrespec-
tive of external factors. Let’s say these CPC experiments were
conducted in a well-developed country versus a developing
country that is under economic decline. Since participants are
paid based on their performance, participants in a developed
country may take more risks when compared to ones from
developing countries. Cognitive models may not perform the
best since they can’t factor in these external factors whereas
in data science models, they look at the data and provide the
best fit possible.

Cognitive models do tend to perform well if the dataset is
small since there is not much for the data science model to
learn from whereas when the dataset is large, the data science
model does well. Hybrid models take the best out of the two
worlds.

REFERENCES

[1] G. Barron and I. Erev, “Small feedback-based decisions and their limited
correspondence to description-based decisions,” Journal of Behavioral
Decision Making, vol. 16, no. 3, pp. 215–233, 2003. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/bdm.443

[2] D. Kahneman and A. Tversky, “Prospect theory: An analysis of
decision under risk,” Econometrica, vol. 47, no. 2, pp. 263–291, 1979.
[Online]. Available: http://www.jstor.org/stable/1914185

[3] I. Erev, E. Ert, O. Plonsky, D. Cohen, and O. Cohen, “From anomalies
to forecasts: Toward a descriptive model of decisions under risk, under
ambiguity, and from experience.” Psychological review, vol. 124 4, pp.
369–409, 2017.

[4] O. Plonsky, I. Erev, T. Hazan, and M. Tennenholtz, “Psychological
forest: Predicting human behavior,” in AAAI, 2016.

[5] D. Bourgin, J. C. Peterson, D. Reichman, T. L. Griffiths, and S. J.
Russell, “Cognitive model priors for predicting human decisions,” in
ICML, 2019.

[6] S. Rendle, “Factorization machines,” in Proceedings of the 2010 IEEE
International Conference on Data Mining, ser. ICDM ’10. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 995–1000. [Online].
Available: https://doi.org/10.1109/ICDM.2010.127

[7] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, no. 8, pp. 30–37, 2009.

[8] O. Plonsky, R. Apel, I. Erev, E. Ert, and M. Tennenholtz, “When and
how can social scientists add value to data scientists? a choice prediction
competition for human decision making,” Unpublished Manuscript,
2018.

[9] I. Erev, E. Ert, O. Plonsky, D. Cohen, and O. Cohen, “From anomalies
to forecasts: Toward a descriptive model of decisions under risk, under
ambiguity, and from experience.” Psychological review, vol. 124, no. 4,
p. 369, 2017.

[10] I. Erev and E. Haruvy, “Learning and the economics of small decisions,”
02 2008.

[11] I. Erev and A. E. Roth, “Maximization, learning, and economic behav-
ior,” Proceedings of the National Academy of Sciences, vol. 111, no.
Supplement 3, pp. 10 818–10 825, 2014.

[12] W. Thorngate, “Efficient decision heuristics,” Behavioral Science,
vol. 25, pp. 219 – 225, 01 1980.

[13] J. Payne, “It is whether you win or lose: The importance of the overall
probabilities of winning or losing in risky choice,” Journal of Risk and
Uncertainty, vol. 30, pp. 5–19, 01 2005.

[14] E. Brandstätter, G. Gigerenzer, and R. Hertwig, “The priority heuristic:
making choices without trade-offs.” Psychological review, vol. 113,
no. 2, p. 409, 2006.

[15] I. Bayer, “fastfm: A library for factorization machines,” J. Mach. Learn.
Res., vol. 17, no. 1, pp. 6393–6397, Jan. 2016. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2946645.3053466




