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Abstract—Semi-supervised learning (SSL) is a paradigm that
has been continuously used in data classification tasks in datasets
that do not have enough labeled instances to train a supervised
model with a minimum acceptable accuracy. In this context,
data stream classification in dynamic environments appears as
a natural application for this approach, because changes in
data distribution contribute to decrease the performance of
the classification algorithms. In this paper, we have proposed
a framework, refered to as Dynamic Data Stream Learning
(DyDaSL), that implements an auto-adaptive classifier ensemble
– which is able to evaluate and replace classifiers with decreasing
performance. This platform uses the FlexCon-C method, which
is a variant of the self-training SSL algorithm that adjusts a
confidence threshold dynamically, in each iteration, to define
which instances will be labeled. Experimental tests on synthetic
and real datasets show that the proposed approach obtains better
results than traditional approaches using four evaluation metrics:
accuracy, F-score, precision, and recall.

Index Terms—Semi-supervised learning, data stream classifi-
cation, concept drift.

I. INTRODUCTION

Recently, with advances in hardware and software tech-
nologies, data analysis has became a daily task. With this,
it is possible, for instance, when performing the processing of
a massive number of data, that machines can develop these
analysis in a shorter time, when compared to humans. Hence,
the Machine Learning area provides techniques that use a
history of data to perform data analysis and, based on this
analysis, using the obtained model to make decisions [1].
In this area, the learning task can be broadly divided into
supervised, unsupervised (or clustering) and semi-supervised
learning.

Supervised learning is used when all instances in a dataset
have labels which are previously known, obtaining a clas-
sification model. On the other hand, unsupervised learning
is used when there is no label, but it is still possible to
cluster the dataset into groups. There is, therefore, high
homogeneity among instances of the same group and high
heterogeneity among instances of different groups. Finally,
the semi-supervised learning (SSL) approach combines the
previous two into one, using labeled and unlabeled instances

to generate a model. This approach has been increasingly
used in real scenarios, since the real world datasets usually
have a small amount of labeled instances, which may not be
enough to train a supervised model with a minimum acceptable
accuracy [2], [3]. Therefore, the SSL approach uses all of the
labeled instances to train a classifier with this subset. Then,
the built model is applied to label the unlabeled subset and
some newly labeled instances are selected to be included in the
labeled set. This whole process is repeated until all unlabeled
instances are labeled or a stopping criterion is reached. In this
paper, we will be working with the semi-supervised learning
approach.

When a classification algorithm is applied to a training set
and a model is generated, it is able to perform the classification
of the remaining data. However, it is true only in a stationary
data stream context, since the analyzed environment does not
change. In addition, it is well known that the training step
can be very sensitive to some aspects, including: training set,
selected classification algorithm and data distribution.

In a non-stationary (or dynamic) data stream context, we
can apply two machine learning strategies: online learning and
batch learning [4]. In the first case, instances are continuously
received; and in the second one, n instances are grouped to
generate data conglomerates. Furthermore, in dynamic envi-
ronments, data distribution can be affected by some factors
such as number of instances, concept drift, among others, and
it is called data stream. One of these factors is the concept drift,
which occurs when data distribution changes over time and
this corresponds to changes in the underlying stream patterns.
In this case, the performance of the classification algorithms
decreases substantially [5].

Concept drift occurs in non-stationary data streams and a
model needs to adapt to perform the classification task [6].
There are four types of concept drift: abrupt, gradual, incre-
mental and recurring. In the abrupt case, the analyzed data
changes the distribution very quickly, this type is the easiest
one to identify. In the gradual type, the data distribution
gradually changes in a transition window. In the incremental
type, the learned concept slowly evolves over time, similarly to
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the gradual type. Finally, in the recurring type, changes occur
periodically in the data distribution. In addition, noise and
outliers should not be confused with drifts because they can
occur in all contexts [7]. One attempt to detect concept drifts is
through the use of classifier ensembles, since they can surpass
the over-fitting delivered by a single classifier. Nevertheless,
building those models is a complex computational task [8].

Once semi-supervised methods have shown very positive
results in applications of different domains in stationary
environments [9], it is expected that they can also obtain
promising results in the data stream context. In this paper,
we will investigate the performance of a semi-supervised
method, named Flexible Confidence with Classifier (FlexCon-
C) [10], which is an extension of a self-training method, in
a non-stationary data streams context. The main aim of this
investigation is to identify the concept drift by training a
classifier in each iteration of the analyzed method which will
be used to classify the new instances trying to detect when the
drift occurs.

This paper is divided into seven sections as follows. Sec-
tion II describes the theoretical aspects related to the subject
of this paper, while Section III presents some related work.
In Section IV, the proposed architecture is described. The
experiment methodology is described in Section V, then our
results are presented in Section VI. Finally, in Section VII we
present the conclusions and suggestions for future works.

II. THEORETICAL ASPECTS

In this section, we present the theoretical aspects related to
the subject of this paper, focusing mainly on semi-supervised
learning (Section II-A) and classifier ensembles (Section II-B).

A. Semi-supervised Learning

Sometimes, it is impossible to obtain a dataset which is
fully labeled or has a large proportion of the labeled data
to train supervised models. This activity usually requires a
huge amount of time and/or specialists to classify all the
dataset instances. Real world databases usually have a small
percentage of labeled data and, in such cases, it is not useful to
apply the supervised learning because this approach requires a
fully labeled dataset to train the model with high accuracy. A
solution to this problem is the use of semi-supervised learning
(SSL).

A popular semi-supervised algorithm is self-training, which
uses the classifier predictions to improve its performance
in classification tasks, considering that the labeled subset is
increased in each iteration of the labeling process [9]. In
order to improve the performance and/or functioning of the
self-training algorithm, extensions have been proposed in the
literature [11]–[13].

Recently, a self-training method with the flexible confidence
threshold, called (FlexCon-C), was proposed [10]. It applies a
confidence threshold as a selection criterion in the labeling
process [10]. Basically, it defines the minimum acceptable
confidence to be used in the labeling process. In other words,
the unlabeled instances whose confidence is higher than the

confidence threshold are selected for labeling and possibly for
inclusion in the labeled set.

The SSL algorithms consider some basic assumptions. Let
D be a dataset composed by l + u instances, as being
divided into two subsets: i) a subset of l labeled instances
L = {(xi, yi)}li=1, where xi corresponds to an instance in
L and yi corresponds respectively to the label of each xi,
and ii) a subset of u unlabeled instances U = {xj}l+u

j=l+1,
where xj corresponds to an instance in U . In addition, in
most cases, |U | � |L|. Algorithm 1 shows the general idea of
the FlexCon-C, whose approach follows the following steps:
i) split a dataset into labeled (L) and unlabeled (U ); ii) train
the classifier (f ), with supervised learning; iii) classify the
unlabeled instances in U using the classifier f ; iv) select the
unlabeled instances from U that satisfy a selection criteria,
label and move them to selected set (S); v) adjust confidence
value according to Algorithm 2; vi) move the labeled instances
from S to L.

Algorithm 1: Pseudo-code of the FlexCon-C

Require: L ← {(xi, yi)}li=1 and U ← {xj}l+u
j=l+1

1: e ← 0;
2: L0 ← L;
3: while U 6= ∅ do
4: e ← e + 1;
5: Train classifier f using labeled instances L with

supervised learning;
6: Classify unlabeled data U using f ;
7: Remove the subset of the instances S from U , so that

confidence rate in conf(x) ≥ conf(te);
8: conf(te)← Adjust Confidence Value (L0, S,

conf(te))
9: Move all instances from S to L;

10: end while
11: return f ;

As it can be observed in Algorithm 1, FlexCon-C has
two important aspects; i) it changes the confidence threshold
dynamically in each iteration; and ii) it is a wrapper-based
method in which the output of a classifier is used to change
the confidence threshold.

To satisfy the first aspect of FlexCon-C, a confidence
threshold updating equation was defined, which is presented
in Eq. (1). In this equation, the new confidence threshold
(conf(te+1) is defined using the current confidence threshold
(conf(te)) and a change rate (cr). Nevertheless, the correct
updating depends on the classifier accuracy (acc), a minimum
acceptable precision (mp) and an acceptable variation (ε).

conf(te+1) =

 conf(te), if mp− ε < acc < mp+ ε
conf(te)− cr, if acc ≥ mp+ ε
conf(te) + cr, if acc ≤ mp− ε

(1)
Algorithm 2 describes the confidence threshold updating

strategy, which can be briefly described in four steps: i) train



a classifier f using the initial labeled data (L0); ii) measure
the accuracy of f when applying f on the L0 set; iii) train
another classifier f ′ using the selected instances S; iv) apply
the f ′ on L0; v) change the iteration threshold based on the
accuracy of the f ′, according to Eq. (1).

Algorithm 2: Adjust Confidence Value (L0, S,
conf(te))

1: cr ← 0.05
2: ε← 0.01
3: Train f using L0 with supervised learning;
4: mp← accuracy of f in the L0 set;
5: Train f ′ using select instances in S with supervised

learning;
6: Apply f ′ in each instance of L0 set;
7: if accuracy of f ′ ≤ mp− ε then
8: return conf(te) + cr
9: else if accuracy of f ′ ≥ mp+ ε then

10: return conf(te)− cr
11: else
12: return conf(te)
13: end if

In order to satisfy the first aspect of FlexCon-C, it is
important to emphasize that it uses two types of predictions,
namely the predictions generated in the first iteration, and the
others generated in each iteration, with the newly included
instances. These predictions will be compared using the fol-
lowing criteria:

1) An instance is classified with the same label by both
predictions and both confidence values are higher than
the confidence threshold;

2) An instance is classified with the same label by both
predictions, but just one of confidence value is higher
than the confidence threshold;

3) An instance is classified with different labels, but both
confidence values are higher than the confidence thresh-
old;

4) An instance is classified with different labels and just
one of confidence values are higher than the confidence
threshold;

5) The threshold is changed to the maximum confidence
value of the present iteration.

The following criteria will be evaluated if, and only if, the
previous criteria select no instances to be labeled [10], [14].

B. Classifier Ensembles

Recent advances in the applicability of classification al-
gorithms in a wide range of tasks have encouraged their
use. Nevertheless, there is a perception that no classifier
is considered completely satisfactory for a particular task.
Therefore, the idea of combining different methods to improve
performance has emerged as a very promising possibility [10].
Combining classifiers explores the idea that different classifiers
can provide additional information concerning patterns to

be classified, improving the effectiveness of the recognition
process as a whole [15].

In these cases, the reliability of the classification process is
increased by classifier ensembles. In other words, an ensemble
is used when it is required to maximize the accuracy of
the process, and it combines several predictions regarding
the same instance into one single output. An ensemble of
classifiers can be configured in different ways: it can be a
homogeneous or a heterogeneous ensemble; it has a varied
number of classifiers; and it uses different strategies for
selecting input instances (bagging, boosting, stacking) and
combining their outputs (through simple, majority voting or
use of a meta-classifier) [16].

An ensemble is called homogeneous when all the base
classifiers are of the same type. On the other hand, when
the ensemble has more than one classifier type, it is called
heterogeneous. Also, in an ensemble approach it is possible
to combine a lot of outputs from base-classifiers into a single
output, and a meta classifier uses the outputs of the base
classifiers to select the label of the instance. This strategy is
preferred instead of voting, because it uses more than one
information from each classifier to predict an instance.

Finally, in an ensemble algorithm we can define an abstract
fusion model called oracle. This model is the most precise than
others, because it always selects the classifiers which predict
the correct label of the instance [17].

III. RELATED WORK

In this section we will focus on the studies related to the
main subjects of this paper, an ensemble approach in the
context of data streams [18]–[20], concept drift detection [21],
[22] and semi-supervised learning [10], [14]. All of these
works are sorted by publication year.

In the studies related to concept drift, an adaptive Random
Forest was proposed in [20]. In the cited work, the authors
modified one of the most used ensemble generation methods,
random forest, to perform the classification of data stream in
non-stationary environments using the batch strategy. The drift
adaptation strategy trains a background tree to replace the
primary tree when this model identifies a drift. Finally, the
proposed model was compared to other state-of-the-art algo-
rithms and the proposed approach obtained good classification
performance.

Still in the context of concept drift, a drift detection based
on active learning was presented in [21]. The authors proposed
a new method, called DDAL (drift detection based on active
learning), which selects the most significant instances to
measure density variation in order to identify drift occurrences.
Another drift detection method was developed in [22], which
is based on a re-sampling scheme and a paired student t-test
to identify a drift. This approach generated a sub-window and
compared to the last sub-window generated using a paired
t-test, this is a drift detection module, because when the t-
test presents a significance, it is possible to assume that the
distributions are different, and therefore, there was drift.



In the context of semi-supervised classification tasks in data
stream, SPASC – an ensemble of cluster-based classifiers – is
intended to recognize recurring concept drifts of data streams,
proposed in [18]. The main idea of this paper is to use a pool
of active classifiers, with each classifier being representative
of one single concept. At first, a batch of instances is classified
by this algorithm. Thereafter, some of these instances are
labeled and this partially labeled batch is used to update the
classifiers of the pool. In [19], a framework for imbalanced
stream classification was proposed. They focused on correctly
classifying the minority class of the selected data streams. The
strategy of the classification task was to update a classifier
using newly instances of the stream.

The FlexCon-C algorithm was originally proposed in [10].
Along with this algorithm, two other self-training extensions
were proposed that use different strategies to update the
confidence threshold. All proposed methods were compared to
the original self-training method in an empirical analysis. In
the reported empirical analysis, 20 datasets were investigated
with different percentages of initially labeled instances, ap-
plied to three classification algorithms (Naı̈ve Bayes, DT and
RIPPER). The FlexCon-C algorithm has a confidence threshold
parameter that is updated in each iteration, and an analysis
of this parameter was the study object in [14]. The authors
analyzed the effect of the confidence threshold parameter in
FlexCon-C.

Similar to [18] and [20], in this paper we use a batch
learning strategy to train a semi-supervised framework in non-
stationary data streams. We propose to use an ensemble with
a small number of base classifiers which, when their perfor-
mance decreases, are replaced by more accurate classifiers.
This approach differs from the others because we use the
FlexCon-C algorithm and, in each iteration, a new classifier
trained with the current batch is assumed to be the most
reliable one (the oracle). Finally, we use this oracle to evaluate
the ensemble performance and its respective base classifiers in
order to evaluate the need to make any changes on the classifier
ensemble.

IV. THE PROPOSED APPROACH

As previously mentioned in this work, we develop a frame-
work, named DyDaSL (Dynamic Data Stream Learning),
which uses the FlexCon-C method to train a classifier ensem-
ble, in a semi-supervised batch learning process, applied to a
dynamic data stream context.

Figure 1 presents the DYDaSL workflow. Initially, each
dataset is divided into batches – to simulate the stream data
environment – that will be used as input data. Each batch is
divided so that 75% of the dataset is included in the training
set and 25% is reserved for testing. Moreover, we split the
training dataset into labeled and unlabeled. In the first batch,
three classifiers are trained to compose the classifier ensemble
and, in the next batches, one classifier (the oracle) – used to
detect a drift – is trained in order to evaluate the ensemble
performance in the current stream. Then, we use the oracle
prediction in the current batch to evaluate the need to replace

any base classifier of the ensemble. If this classifier ensemble
achieves a minimum acceptable accuracy in the current batch,
it is not updated. Otherwise, the base classifier with worst
performance (in relation to accuracy) will be replace by the
oracle. The whole process is repeated and a new oracle is
trained with the current batch. After processing the last batch,
the trained model will be returned and the training step is
completed.

As it can be observed, an oracle classifier is used and we
assume that this oracle is more confident when compared to the
ensemble or the base classifiers outputs, since it is trained with
the ith batch. Then, we can state that this is a passive detection
drift approach, once the current batch is not actively analyzed
by an algorithm/method. However, a classifier is trained to
assess whether or not there has been a drift.

V. EXPERIMENTAL METHODOLOGY

This section describes the main aspects of the empirical
study conducted in this paper, aiming to evaluate the perfor-
mance of the proposed framework.

In order to perform a comparative analysis, five methods
from data stream classification widely used in the literature
were selected, which are:

1) Hoeffding Trees (HT) [23];
2) Active Classifier (AC) [24];
3) Oza Boost Adwin (OBA) [25];
4) Accuracy Weight Ensemble (AWE) [26]; and
5) Anticipative Dynamic Adaptation to Concept Change

(ADACC) [27].
The first method is a single Decision Tree that performs the

classification task in data streams. The second one is based
on an active learning model and the last three methods are
ensemble-based methods.

All these compared methods are available in the “RMOA”
package, an API for Massive Online Analysis (MOA) frame-
work [28]. Four classification algorithms were used as base
classifiers of the FlexCon-C method, which are: Naı̈ve Bayes
(NB) [29], Decision Tree (DT) [30], RIPPER [31] and k-
NN [32]. These algorithms were available in the “RWeka”
package, an API for WEKA [33].

In order to evaluate the performance of the analyzed meth-
ods, the following metrics are used: Accuracy, Precision,
Recall and F-Score. Table I shows the datasets characteristics,
number of instances, features and classes for each dataset.
These datasets, which combine both real and synthetic data,
were obtained in [28], [34], [35].

In order to simulate a data stream environment, a conversion
of the static datasets into dynamic data is required. Therefore,
subsets with n instance are grouped to generate data con-
glomerates (batches), and the same batch was used to train
all analyzed methods. In this paper, two batch sizes are used:
500 and 5000 instances.

When a new batch is received, it will be divided into
training and testing subsets, using a 75% and 25% proportion
of instances. The next step is to split the training subset into
ten stratified folds for cross-validation (each model is trained



Fig. 1. Workflow of the DyDaSL method

TABLE I
DESCRIPTION OF THE DATASETS USED IN THE EXPERIMENTS

Datasets Number of instances Features Classes
Real datasets

Adult 32,561 14 2
Airlines 539,383 7 2

Electricity 45,312 8 2
Synthetic datasets

GearS2C2D 200,000 2 2
UG2C3D 200,000 3 2

with nine folds and validated with the remaining fold) and
the testing subset is applied to all models. As FlexCon-C is a
semi-supervised approach, it is necessary to use only a small
portion of labeled data in this context. For such, only 5% of the
training instances remain with the original label, maintaining
the stratification of the original data.

For the supervised approaches, we usually selected the
default options. However, the following parameters for AWE
were changed: the maximum number of classifiers is set up
to 10, the chunk size is the same as the training set, and this
method generates 100 classifiers to select 10. On the other
hand, for the semi-supervised approach, all parameters were
set to the same values in [10].

As explained earlier, we need to define the minimum
acceptable precision to decide if the classifier ensemble will
be updated. In this work, the minimum acceptable accuracy
was set up to 70% of the oracle prediction.

VI. EXPERIMENTAL RESULTS

In this section, we describe the results obtained for each
method, separated by dataset, using four metrics for evalua-
tion: Accuracy, F-Score, Precision, and Recall, and their re-
spective standard derivations. In addition, we also analyze the
behavior of the methods in different batch sizes. Tables II to VI
show these results organized by batch size. The highest result
for each metric is highlighted in bold in each column, and the
light gray shaded cells indicate when our approach achieves a
better result compared to other considered methods.

Furthermore, we present a critical difference diagram for
each dataset and batch size. Critical difference diagrams

TABLE II
RESULTS FOR ADULT DATASET

batch size = 500
Method Accuracy F-Score Precision Recall
DyDaSL 0.73 ± 0.08 0.58 ± 0.12 0.57 ± 0.15 0.59 ± 0.09

HT 0.82 ± 0.04 0.73 ± 0.06 0.77 ± 0.06 0.70 ± 0.06
AC 0.57 ± 0.25 0.55 ± 0.17 0.56 ± 0.20 0.56 ± 0.12

OBA 0.38 ± 0.21 0.33 ± 0.18 0.29 ± 0.21 0.52 ± 0.06
AWE 0.76 ± 0.02 0.43 ± 0.01 0.38 ± 0.01 0.50 ± 0.00

ADACC 0.76 ± 0.02 0.43 ± 0.02 0.38 ± 0.08 0.03 ± 0.01

batch size = 5000
DyDaSL 0.80 ± 0.02 0.70 ± 0.06 0.73 ± 0.08 0.67 ± 0.06

HT 0.56 ± 0.30 0.50 ± 0.28 0.48 ± 0.33 0.62 ± 0.11
AC 0.24 ± 0.01 0.19 ± 0.00 0.12 ± 0.00 0.50 ± 0.00

OBA 0.52 ± 0.26 0.39 ± 0.13 0.35 ± 0.17 0.50 ± 0.00
AWE 0.79 ± 0.04 0.74 ± 0.05 0.73 ± 0.03 0.74 ± 0.07

ADACC 0.54 ± 0.26 0.33 ± 0.12 0.27 ± 0.13 0.50 ± 0.02

are easier to analyze and show clearly which algorithm is
better than the others. It uses a post-hoc Friedman test, the
Nemenyi test. The leftmost method obtained the lowest ranks
and the rightmost method obtained the highest ranks, when
the results are ranked. Moreover, methods not covered by a
line of critical difference, are statistically different, otherwise
the null hypothesis of the Friedman test cannot be refuted.
Figures VI-A to VI-E show the critical difference diagram for
each dataset, separated by batch size.

A. Adult dataset

Table II presents the results obtained in Adults dataset,
for each metric analyzed, using both batch sizes of 500 and
5000 instances. As can be seen from this table, the DyDaSL
approach was better than the other approaches in 70% (14 of
20) and in 85% (17 of 20) of cases, respectively.

Therefore, when the methods were trained and tested with
batches of 500 instances, the HT method was better than all
methods, in addition to being statistically significant compared
with all others approaches (Figures 2a and 2b). However, when
the batch size grew to 5000, the DyDaSL method obtained
the superior results in accuracy and precision metrics. Further-
more, in a statistical point of view, the DyDaSL was similar to
the AWE method, but both methods were statistically superior
to others.

B. Airline dataset

Table III presents the results obtained in the Airline dataset,
for each metric analyzed, using both batch sizes of 500 and



(a) Batch size = 500 (b) Batch size = 5000

Fig. 2. Critical Difference for Adult Dataset

TABLE III
RESULTS FOR AIRLINES DATASET

Method Accuracy F-Score Precision Recall
batch size = 500

DyDaSL 0.60 ± 0.08 0.48 ± 0.09 0.46 ± 0.13 0.52 ± 0.05
HT 0.66 ± 0.07 0.60 ± 0.06 0.61 ± 0.07 0.60 ± 0.06
AC 0.55 ± 0.12 0.53 ± 0.11 0.53 ± 0.13 0.55 ± 0.05

OBA 0.49 ± 0.12 0.37 ± 0.10 0.30 ± 0.13 0.51 ± 0.02
AWE 0.55 ± 0.13 0.35 ± 0.05 0.28 ± 0.07 0.50 ± 0.00

ADACC 0.55 ± 0.13 0.35 ± 0.05 0.28 ± 0.07 0.50 ± 0.00

batch size = 5000
DyDaSL 0.55 ± 0.11 0.48 ± 0.12 0.46 ± 0.16 0.53 ± 0.04

HT 0.67 ± 0.04 0.64 ± 0.03 0.64 ± 0.03 0.63 ± 0.04
AC 0.45 ± 0.12 0.30 ± 0.06 0.22 ± 0.06 0.50 ± 0.00

OBA 0.50 ± 0.13 0.33 ± 0.06 0.26 ± 0.08 0.50 ± 0.00
AWE 0.54 ± 0.11 0.36 ± 0.06 0.28 ± 0.07 0.50 ± 0.01

ADACC 0.55 ± 0.12 0.35 ± 0.05 0.27 ± 0.06 0.50 ± 0.00

5000 instances. As can be seen from this table, the DyDaSL
approach was better than others in 65% (13 of 20) and in 75%
(15 of 20) of cases, respectively. However, we can see that the
HT method achieved the best results in all evaluated metrics,
regardless the batch size. Consequently, this method was
statistically superior to others approaches – Figures 3a and 3b.

C. Electricity dataset

Table IV presents the results obtained in the Electricity
dataset, for each metric analyzed, using both batch sizes of
500 and 5000 instances. As can be seen from this table, the
DyDaSL approach was better in 60% (12 of 20) of cases when
using batch size of 500. On the other hand, when using batch
size of 5000, the DyDaSL was the best method in 100% (20 of
20) of cases. Figures 4a and 4b compare the relevance of the
methods in a statistical point of view and we can observe that
DyDaSL was statistically significant because it had a better
ranking than other three methods using batch size of 500 and
better than five others methods while using 5000.

D. Gears2C2D dataset

Table V presents the results obtained in Gears2C2D dataset,
for each metric analyzed, using both batch sizes of 500 and

(a) Batch size = 500 (b) Batch size = 5000

Fig. 3. Critical Difference for Airline Dataset

TABLE IV
RESULTS FOR ELECTRICITY DATASET

Method Accuracy F-Score Precision Recall
Batch size = 500

DyDaSL 0.74 ± 0.11 0.71 ± 0.13 0.72 ± 0.15 0.71 ± 0.12
HT 0.80 ± 0.10 0.78 ± 0.13 0.79 ± 0.14 0.77 ± 0.10
AC 0.78 ± 0.10 0.78 ± 0.10 0.78 ± 0.10 0.77 ± 0.10

OBA 0.51 ± 0.15 0.39 ± 0.18 0.32 ± 0.22 0.54 ± 0.11
AWE 0.58 ± 0.08 0.36 ± 0.03 0.29 ± 0.04 0.50 ± 0.00

ADACC 0.57 ± 0.08 0.37 ± 0.07 0.30 ± 0.09 0.50 ± 0.03

Batch size = 5000
DyDaSL 0.73 ± 0.08 0.72 ± 0.10 0.73 ± 0.10 0.72 ± 0.09

HT 0.51 ± 0.15 0.45 ± 0.20 0.42 ± 0.27 0.56 ± 0.11
AC 0.46 ± 0.11 0.37 ± 0.16 0.31 ± 0.21 0.53 ± 0.08

OBA 0.49 ± 0.08 0.33 ± 0.04 0.25 ± 0.05 0.50 ± 0.00
AWE 0.57 ± 0.04 0.36 ± 0.02 0.28 ± 0.02 0.50 ± 0.00

ADACC 0.52 ± 0.08 0.36 ± 0.05 0.27 ± 0.07 0.50 ± 0.00

(a) Batch size = 500 (b) Batch size = 5000

Fig. 4. Critical Difference for Electricity Dataset

5000 instances. As can be seen from this table, DyDaSL was
the best method in 80% (16 of 20) and in 100% (20 of 20),
except when using batch size of 500 with the AC method.
These results are confirmed from the statistical point of view
in Figure 5a.

E. Ug2C3D dataset

Table VI presents the results obtained in Ug2C3D dataset,
for each metric analyzed, using both batch sizes of 500 and
5000 instances. As can be seen from this table, the DyDaSL
approach was better than others in 80% (16 of 20) and in 100%

TABLE V
RESULTS FOR GEARS2C2D DATASET

Method Accuracy F-Score Precision Recall
Batch size = 500

DyDaSL 0.94 ± 0.04 0.95 ± 0.03 0.95 ± 0.03 0.94 ± 0.04
HT 0.53 ± 0.11 0.38 ± 0.15 0.31 ± 0.19 0.53 ± 0.10
AC 0.95 ± 0.02 0.95 ± 0.02 0.95 ± 0.02 0.95 ± 0.02

OBA 0.57 ± 0.16 0.44 ± 0.22 0.38 ± 0.26 0.57 ± 0.15
AWE 0.50 ± 0.02 0.33 ± 0.01 0.25 ± 0.01 0.50 ± 0.00

ADACC 0.50 ± 0.03 0.33 ± 0.03 0.25 ± 0.04 0.50 ± 0.02

Batch size = 5000
DyDaSL 0.97 ± 0.02 0.97 ± 0.02 0.97 ± 0.03 0.97 ± 0.02

HT 0.50 ± 0.00 0.33 ± 0.00 0.25 ± 0.00 0.50 ± 0.00
AC 0.50 ± 0.00 0.33 ± 0.00 0.25 ± 0.00 0.50 ± 0.00

OBA 0.50 ± 0.03 0.34 ± 0.05 0.25 ± 0.05 0.50 ± 0.03
AWE 0.50 ± 0.00 0.33 ± 0.00 0.25 ± 0.00 0.50 ± 0.00

ADACC 0.50 ± 0.00 0.33 ± 0.00 0.25 ± 0.00 0.50 ± 0.00

(a) Batch size = 500 (b) Batch size = 5000

Fig. 5. Critical Difference for Gears2C2D Dataset



TABLE VI
RESULTS FOR UG2C3D DATASET

Method Accuracy F-Score Precision Recall
Batch size = 500

DyDaSL 0.91 ± 0.08 0.91 ± 0.08 0.92 ± 0.08 0.91 ± 0.08
HT 0.79 ± 0.23 0.73 ± 0.30 0.70 ± 0.34 0.79 ± 0.23
AC 0.94 ± 0.06 0.94 ± 0.06 0.95 ± 0.06 0.94 ± 0.06

OBA 0.57 ± 0.23 0.56 ± 0.31 0.51 ± 0.35 0.67 ± 0.23
AWE 0.50 ± 0.02 0.33 ± 0.01 0.25 ± 0.01 0.50 ± 0.00

ADACC 0.50 ± 0.03 0.33 ± 0.03 0.25 ± 0.04 0.50 ± 0.02

Batch size = 5000
DyDaSL 0.94 ± 0.07 0.94 ± 0.07 0.94 ± 0.08 0.94 ± 0.07

HT 0.57 ± 0.17 0.43 ± 0.23 0.36 ± 0.26 0.57 ± 0.17
AC 0.50 ± 0.00 0.33 ± 0.00 0.25 ± 0.00 0.50 ± 0.00

OBA 0.53 ± 0.11 0.37 ± 0.15 0.29 ± 0.17 0.53 ± 0.11
AWE 0.50 ± 0.00 0.33 ± 0.00 0.25 ± 0.00 0.50 ± 0.00

ADACC 0.52 ± 0.09 0.36 ± 0.13 0.28 ± 0.15 0.52 ± 0.09

(a) Batch size = 500 (b) Batch size = 5000

Fig. 6. Critical Difference for UG2C3D Dataset

(20 of 20) of cases, respectively. Comparing all the methods,
DyDaSL was the best except using batch size of 500 with AC
method. Figure 6b confirms these results using a statistical
analysis.

In general, DyDaSL was better than the other methods in
77.5% (31 of 40), in 70% (28 of 40), in 80% (32 of 40),
in 90% (36 of 40), in 90% (36 of 40) for Adult, Airlines,
Electricity, Gears2C2D and UG2C3D dataset, respectively.
Therefore, DyDaSL, the framework proposed in this work,
is a valid approach because it uses only 5% of labeled data
and obtains positive results when compared with supervised
approaches in 81.5% of cases (163 of 200).

VII. CONCLUSIONS

In this paper we presented a new semi-supervised classifi-
cation approach for a non-stationary data stream environment.
This framework, named DyDaSL, aims to investigate the
performance of FlexCon-C method applied to dynamic data
stream.

In order to perform a comparative analysis, we carried
out experiments with five datasets, using two batches size of
instances with 500 and 5000, and five supervised methods:
HT, AC, OBA, AWE and ADACC. Four metrics were selected
to be analyzed: Accuracy, F-Score, Precision and Recall.
Therefore, in order to run DyDaSL as a semi-supervised
learning, each batch had 5% of data labeled.

According to the obtained results, the proposed frame-
work had performance equal or higher than all supervised
approaches in 81.5%. It is important to emphasize that the
DyDaSL performed better than the others methods in 80% (4
of 5) of datasets with batch size of 5000.

By analyzing the statistical tests, we could observe that
the performances of the several methods are statistically sig-
nificant. Then, we observed that DyDaSL were statistically

superior in 80% (8 of 10) of the analyzed cases. However,
we conclude that the proposed framework is a valid approach,
because it had performance equal or better than supervised
approaches analyzed in this work.

Future works can investigate other percentages of initially
labeled data or evaluate the performance of this framework
using other ensemble settings. Also, it is possible to apply
DyDaSL combined with others semi-supervised learning al-
gorithms.
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