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Abstract—In this paper we discuss discrete-time H2 control for
unknown nonlinear system. We use recurrent neural networks
to model the system identification, then apply H2 tracking
control. The neural networks based critic control does not
require the system dynamics. Our optimal control policy uses a
recursive solution of the discrete algebraic Riccati equation and
reinforcement learning. The stabilities of system identification
and H2 tracking control are proven. he convergence of the
approach is also given by the use of Lyapunov stability theory.
The proposed method is validated with the control of a surge
tank.

Index Terms—neural control, reinforcement learning

I. INTRODUCTION

Control of discrete-time systems is becoming important in
recent years since almost all of the control schemes are imple-
mented on digital devices. Also machine learning techniques
are developed in discrete time and are designed according to
an optimization problem. Discrete optimal control is a well
known control philosophy which its main aim is to find a
controller that minimizes/maximizes a certain cost function
according to a desired performance [1].

The most popular approaches of optimal controllers are
designed in H2 sense such as the linear quadratic regulator
(LQR) control. Here it is used the system dynamics to com-
pute (off-line) the controller that minimizes/maximizes a cost
function. To obtain the optimal controller on-line we can use
the Hewer algorithm or Lyapunov recursions [2].

When the system dynamics is unknown, the classical H2

control cannot be applied directly and require other techniques
[3]. To obtain an optimal control for unknown system dynam-
ics, adaptive dynamic programming (ADP) or reinforcement
learning (RL) is proposed [4]–[6]. This method is model-free
or uses partial knowledge of the system dynamics [7]–[9] to
obtain on-line the optimal control policy [10]–[12] by using
data measured along the system trajectories. Some of its most
famous methods are Q-learning, Sarsa, and actor critic.

Q-learning and Sarsa are temporal difference methods of
RL [5], [13] that can obtain on-line the optimal control policy
using a value or policy iteration method; they are also called
critic methods. Actor-critic is a policy search method that uses
two separate functions to obtain the optimal value function
and policy, respectively. Those RL methods are designed in
discrete time and need approximators to deal with large state-
action space such as Gaussian kernels, linear parametrizations,

neural networks, among others [14]–[16]. Those approxima-
tors have good results, nevertheless they need big learning time
due the exploration phase of the large input space [17]–[19].

In order to accelerate the learning time, some authors
proposed to use a long-short term memory such as eligi-
bility traces [23] to take into account the visited states in
previous steps. Other methods use model learning [20], [21]
or reference-model learning [22], [23] where the learned
model serves as experience and exploit its knowledge for
a fast bootstrapping. This kind of methods need accurate
approximators to obtain a reliable solution of the optimal
control problem. Neural networks is one of the most wide used
approximator for RL methods and model-learning approaches.
The main advantage of neural networks is that they can
estimate and control complex systems by its feedback principle
[24], [25]. However they began learning from scratch and need
an exploration term as a persistent excitation (PE) signal for
a good identification [12], [18], [19].

Another methodology that can accelerate the learning time
and that is not well established at the current literature is
the use of recurrent neural networks (RNN) [26]–[28] as
a model learning method. Here the user proposes a stable
dynamics at the identification system such that it serves for the
weights update. Usually for discrete time systems, it is used
the gradient descent rule [29], [30] and robust modifications
[31] to guarantee the system identification with small bounded
error, however for control purposes, the neural identificator
is sensitive to modelling error and cannot guarantee optimal
performance.

In this paper we proposed a critic learning based on re-
current neural networks for discrete-time nonlinear system
identification and tracking control. The proposed method is
designed to obtain a solution of the H2 control problem. The
neural identificator is based on a parallel recurrent neural
network which provides an easy way to compute the opti-
mal solution recursively. In order to avoid sensitivity of the
controller against modellling error, it is proposed to use a re-
inforcement learning based on a neural network approximator.
Stability and convergence of the proposed method is proven
via Lyapunov stability theory. Simulations studies are carried
out in the control of a surge tank. The results show optimal
solutions with bounded error without knowledge of the non-
linear system dynamics.
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II. UNKNOWN NONLINEAR SYSTEM MODELING

Consider the following-discrete time state-space non-linear
system

xk+1 = f(xk, uk), (1)

where uk ∈ Rm is the control input, xk ∈ Rn is the state
vector, and f : Rn × Rm → Rn is the transition function or
dynamics.

Consider the discrete-time serial-parallel recurrent neural
network [30]:

x̂k+1 = Ax̂k +W1,kσ(W2,kxk) + Uk (2)

where x̂k ∈ Rn is the state of the RNN. The matriz A ∈ Rn×n
is a stable Hurwitz matrix which will be specified after. The
matrices W1,k ∈ Rn×r is the weight matrix of the output
weights and W2,k ∈ Rl×n is the weights matrix of the
hidden layer. Uk = [u1, u2, · · · , um, 0, · · · , 0]> ∈ Rn is the
control action. σ(·) : Rl → Rr is the activation function. The
elements of σi(·) can be any stationary, bounded and monotone
increasing functions.

Using the RNN identificator, the critic controller is designed
to guarantee the tracking of a desired reference xd ∈ Rn. The
desired trajectory is regarded as the solution of the following
discrete model:

xd,k+1 = ϕ(xd.k) (3)

In the following sections the on-line critic learning is
developed using tow approaches: recurrent neural networks
(RNN) solution and reinforcement learning (RL) solution.
Both approaches are designed for an exact model matching
case and modelling error case.

A. Exact model match

Consider that the RNN can exactly approximate the non-
linear system (1). According to the Stone-Weierstrass theorem
[32], the non-linear model (1) can be written as follows:

xk+1 = Axk +W ∗1 σ(W ∗2 xk) + Uk (4)

where W ∗1 and W ∗2 are optimal weight matrices. In order to
obtain the parameters update rule we expand the second term
of the right side of (2) using the Taylor formula [29]:

g(x) =

l−1∑
i=0

1

i!

[
(x1 − x0

1)
∂

∂x1
+ (x2 − x0

2)
∂

∂x2

]i
0

g(x0) + εg,

where x = [x1, x2]> and x0 = [x0
1, x

0
2]>, εg is the remainder

of the Taylor formula. Let x1 and x2 correspond to W1,k and
W2,kxk, x0

1 and x0
2 correspond to W ∗1 and W ∗2 xk, respectively,

and l = 2. The identification error is defined as:

x̃k = x̂k − xk.

Then from (4) and (2)

x̃k+1 = Ax̃k + W̃1,kσ(W2,kxk) +W1σ
′W̃2,kxk + εW (5)

where W̃1,k = W1,k −W ∗1 , W̃2,k = W2,k −W ∗2 and εW is a
second order approximation error of the Taylor series.

Assumption 1: There exists a constant β ≥ 1 such that:

‖xk+1‖ ≥
1

β
‖xk‖. (6)

Remark 1: The condition ‖xk+1‖ ≥ 1
β ‖xk‖ is a dead zone

[31]. If β is selected big enough, the dead-zone becomes small.
The dead-zone helps the neural network to update the weights
only in small zones where (6) is satisfied. Otherwise, the
weights are updated only in the cases where ‖xk+1‖ ≥ ‖xk‖
is satisfied.

Assumption 2: If the eigenvalues of the matrix A are
between the interval − 1

β < λ(A) < 0, then for any matrix
Q = Q> > 0 there exists an unique solution P = P> > 0 to
the following Lyapunov equation:

A>PA− P +Q+

(
1

β
I +A

)>
P

(
1

β
I +A

)
= 0. (7)

The above Lyapunov equation can be solved on-line as:[
I −A> ⊗A> −

[
1
β I +A

]>
⊗
[

1
β I +A

]>]
vec(P ) = vec(Q)

where ⊗ is the Kronecker product, and vec(·) is the matrix
stretch.

B. With unmodeled dynamic

Generally, the neural network cannot fully describe the
nonlinear system (1). The modeling error is defined as

εf = f(xk, uk)−Ax̂k −W ∗1 σ(W ∗2 x̂k). (8)

The dynamics of the nonlinear system (1) can be written as

xk+1 = Axk +W1,kσ(W2,kx̂k) + Uk + ξk (9)

where ξk = εf + W1,k[σ(W2,kxk) − σ(W2,kx̂k)] is also
bounded. The dynamics of the identification error (10) be-
comes

x̃k+1 = Ax̃k + W̃1,kσ(W2,kx̂k) +W1,kσ
′W̃2,kxk + ξk

III. NEURAL H2 CONTROL USING REINFORCEMENT
LEARNING

Now consider the tracking control problem using the RNN.
The non-linear dynamics is expressed as:

xk+1 = Axk +W1,kσ(W2,kxk) + Uk + ζk (10)

where ζk = W̃1,kσ(W2,kxk)+W1,kσ
′W̃2,kxk+εk. Let define

the tracking error as

ek = xk − xd,k.

If the control input Uk is chosen as

Uk = U1 + U2 (11)
= ϕ(xd,k)−Axd,k −W1,kσ(W2,kxk) + U2, (12)

where U2 is a state-feedback controller. Then the tracking error
dynamics is simplified to:

ek+1 = Aek + U2 + ζk. (13)



The state-feedback controller U2 has the form of [28]

U2 = −Kek = −(Rc + Pc)
−1PcAek, (14)

where Rc = R>c > 0, which satisfies the following assump-
tion:

Assumption 3: There exists a strictly positive definite matrix
Qc such that the discrete algebraic Riccati equation (DARE)

A>PcA+Qc −A>Pc(Rc + Pc)
−1PcA− Pc = 0 (15)

has a positive solution Pc = P>c > 0.
The solution of the above Riccati equation can be obtained

iteratively using Lyapunov recursions [2] as:

P j+1
c = (A−K)>P jc (A−K) +Qc +K>RK,

where j is the step index. Since (A −K) is stable, then the
recursion converges to the solution of the Riccati equation for
any choice of initial value P 0

c .
Assumptions 2 and 3 define the Recurrent Neural Networks

solution for the critic learning control. The following theorem
gives the learning procedure and the convergence of the critic
learning to the desired reference.

Theorem 1: Consider the non-linear dynamics (1), the
reference (3) and the model matching neural network (2),
whose weights are adjusted by

W̃1,k+1 = W̃1,k − η
(
PAx̃k +W1σ

′W̃2,kxk

)
σ>

W̃2,k+1 = W̃2,k − ησ′>W>1,kPAx̃kx>k
(16)

where η satisfies:

η =

{
η0

1+‖PAσ‖2+‖σ′>W>
1,kPAxk‖2

if ‖x̃k+1‖ ≥ 1
β ‖x̃k‖

0 other case,
(17)

with η0 ∈ (0, 1]; and assume that assumptions 1, 2 and 3 are
satisfied. Then the identification error and the tracking error
converge globally asymptotically to zero.

Proof 1: Consider the Lyapunov function:

Vk = x̃>k Px̃k + e>k Pcek +
1

η

(
tr(W̃>1,kW̃1,k) + tr(W̃>2,kW̃2,k)

)
(18)

The time difference of the Lyapunov equation, ∆Vk = Vk+1−
Vk is:

∆Vk =x̃>k+1Px̃k+1 + e>k+1Pcek+1 − x̃>k Px̃k − e>k Pcek

+
1

η

(
tr(W̃>1,k+1W̃1,k+1) + tr(W̃>2,k+1W̃2,k+1)

)
− 1

η

(
tr(W̃>1,kW̃1,k) + tr(W̃>2,kW̃2,k)

)

Consider only the identification components ∆V1,k = ∆Vk −
e>k+1Pcek+1 + e>k Pcek. Substituting the identification error
dynamics (5) on ∆V1,k yields:

∆V1,k =x̃>k (A>PA− P )x̃k + σ>W̃>1,kPW̃1,kσ

+ 2x̃>A>P (W̃1,kσ +W1,kσ
′W̃2,txk + εW )

+ 2σ>W̃>1,kP (W1,kσ
′W̃2xk + εW ) + ε>WPεW

+ x>k W̃
>
2,kσ

′>W>1,kPW1,kσ
′W̃2,kxk + ηtr(Z>1 Z1)

+ 2x̃>W̃>2,kσ
′>W>1,kPεW − 2tr(W̃>1,kZ1)

− 2tr(W̃>2,kZ2) + ηtr(Z>2 Z2)

where Z1 = (PAx̃k + PW1σ
′W̃2,kxk)σ> and Z2 =

σ′>W>1,kPAx̃kx
>
k . The above expression is simplified by

using the assumption 2 and the Minkowski inequality as

∆V1,k ≤x̃>k (A>PA− P )x̃k + ‖P‖‖x̃k+1 −Ax̃k‖2

+ 2ε>WP (x̃k+1 − εW ) + η‖σ′>W>1,kPAx̃kx>k ‖2

+ η‖(PAx̃k + PW1,kσ
′W̃2,kxk)σ>‖2

The second term of the above expression can be written as:

‖P‖‖x̃k+1 −Ax̃k‖2 ≤ ‖P‖(‖x̃k+1‖2 + ‖Ax̃k‖2)

≤ ‖P‖
(

1

β2
+ ‖A‖2

)
‖x̃k‖2

≤ ‖P‖
∥∥∥∥ 1

β
I +A

∥∥∥∥2

‖x̃k‖2

= x̃>k

(
1

β
I +A

)>
P

(
1

β
I +A

)
x̃k

Note that the second term of the output weights update rule
asymptotically converges to zero since it depends on the error
of the hidden layer weights. Then

∆V1,k ≤−
(
λm(Q)− 1

β2

−η0

‖PAσ‖2 + ‖σ′>W>1,kPAxk‖2

1 + ‖PAσ‖2 + ‖σ′>W>1,kPAxk‖2

)
‖x̃k‖2

+ (λ2
M (P )− 2λm(P ))‖εW ‖2.

∆V1,k ≤− Ξ‖x̃k‖2 + Π‖εW ‖2.

where

Ξ = λm(Q)− 1

β2
− η0κ

1 + κ
,

κ = max
k

(‖PAσ‖2 + ‖σ′>W>1,kPAxk‖2)

Π = λ2
M (P )− 2λm(P ).

where Ξ is positive if λm(Q) > 1
β2 + η0κ

1+κ . Since the
second order approximation error depends on powers of the
weight errors, then they converge asymptotically to zero as the
identification error approximates to zero.



Now consider the control components of ∆Vk,

∆V2,k =e>k+1Pcek+1 − e>k Pcek ± e>k Qcek ± U>2 RcU2

=e>k (A>PcA− Pc ±Qc)ek ± U>2 (Rc + Pc)U2

+ 2e>k A
>Pc(U2 + ζk) + 2U>2 Pcζk + ζ>k Pcζk

=− e>k (Qc + (Rc + Pc)
−1)ek + ζ>k Pcζk

− 2e>k A
>Pc(Rc + Pc)

−1Pcζk

≤− e>k (Qx −A>Pc(Rc + Pc)
−2PcA)ek

+ ζ>k (Pc + P 2
c )ζk

≤− e>k Υek + ζ>k Ωζk

where Qx = Qc + (Rc + Pc)
−1, Υ = Qx − A>Pc(Rc +

Pc)
−2PcA and Ω = Pc + P 2

c . Qx is positive definite since
− 1
β < λ(A) < 0. The perturbation ζk is equal to zero

since it depends on the NN weights error and the second
order approximation error. Hence the tracking error converges
asymptotically to zero. This completes the proof.

With unmodeled dynamic, the tracking error dynamics
under the controller Uk of (12) is

ek+1 = Aek + U2 + dk

where dk = W̃1,kσ(W2,kx̂k) +W1,kσ
′W̃2,kxk + ξk.

Theorem 2: Consider the nonlinear system (1), the reference
(3) and the recurrent neural network (2), whose weights are
adjusted by (16); and assume that assumptions 1-3 are satis-
fied. Then the identification error and tracking error converge
into a small bounded set which implies input-to-state stability
(ISS) and semi-global convergence.

Proof 2: Consider the same Lyapunov equation (18). It is
used the same procedure of Theorem 1, obtaining:

∆V1,k ≤ −Ξ‖x̃k‖2 + Π‖ξk‖2

∆V2,k − λm(Υ)‖ek‖2 + λM (Ω)‖dk‖2

The above inequalities satisfy the ISS condition and there
exists a big enough Ξ and Υ such that the identification
error converges into a small bounded set µ1 =

√
Π
Ξ ‖ξk‖

and the tracking error converges into a small bounded set
µ2 =

√
λM (Ω)
λm(Υ)‖dk‖.

However the control input Uk of the recurrent neural
network is sensitive to modeling error and disturbances. The
feedforward term U1 assumes that it compensates the nonlinear
dynamics with some modeling error, but it is well known that a
bad design of this controller affects the tracking performance.
The optimal control U2 is a simple linear quadratic controller
(LQR) that does not have any information of the real system
since it is assumed that the feedforward control term com-
pensates the system nonlinear dynamics. To overcome this
issue we use reinforcement learning. Let define the discounted
Lyapunov value function [5] as

V2,k =

∞∑
i=k

γi−k
(
e>i Qcei + U>2,iRcU2,i

)
V2,k = e>k Qcek + U>2 RcU2 + γV2,k+1 (19)

where γ < 1 is a discounted factor that guarantees the
convergence of the Lyapunov value function. Consider the
following NN approximator

V̂2,k = φ>(ek)θk = φ>k θk (20)

where θl ∈ Rp is a weight vector and φ(·) : Rn → Rp are the
NN activation functions with p neurons at the hidden layer.
The value function V2,k can be rewritten as

V2,k = φ>k θ
∗ + ε(ek)

where θ∗ is an optimal weight value and εk = ε(ek) is the
NN approximation error. Substituting the above expression in
(19) yields:

φ>k θ
∗ + εk = e>k Qcek + U>2 RcU2 + γ(φ>k+1θ

∗ + εk+1)

ε(ek)− γε(ek+1) = e>k Qcek + U>2 RcU2 + (γφ>k+1 − φ>k )θ∗

H(ek, U2, θ
∗) = νk = rk+1 + (φ>k+1 − φ>k )θ∗

(21)

where νk = εk−γεk+1 is the residual error of the NN approx-
imator which is equivalent to the discrete-time Hamiltonian,
and rk+1 = e>k Qcek + U>2 RcU2 is the immediate reward or
utility function. We want to design an optimal controller which
minimizes the residual error using reinforcement learning.
Consider the approximate Hamiltonian as:

Ĥ(ek, U2; θk) = δk = rk+1 + (γφ>k+1 − φ>k )θk.

Here δk stands to the temporal difference error of reinforce-
ment learning algorithms, which also can be written as:

δk = (γφ>k+1 − φ>k )θ̃k + νt (22)

where θ̃k = θk − θ∗. Consider the objective function defined
as the squared temporal difference error:

E =
1

2
δ2
k.

We use the normalized gradient descent algorithm [18] for the
NN weights update as:

θk+1 = θk − α
∂E

∂θk
= θk − αδk

qk
(q>k qk + 1)2

, (23)

where α is the learning rate and q>k = (γφ>k+1−φ>k ). Here it is
used the normalized gradient descent to assure that the weights
update are bounded. Also the update rule can be rewritten as:

θ̃k+1 = θ̃k − α
qkq
>
k

(q>k qk + 1)2
θ̃k − α

qk
(q>k qk + 1)2

νk. (24)

Assuming that the optimal control is designed as:

U2 = −1

2
R−1
c ∇φ>(ek+1)θk, (25)

where ∇ = ∂/∂et+1. Substituting the optimal control (25) at
the Hamiltonian yields:

δk = e>k Qcek −
1

4
θ>k ∇φk+1R

−1
c ∇φ>k+1θk + (φ>k+1 − φ>k )θk.



To guarantee convergence of the NN parameters, θk → θ∗, let
introduce the following persistent exciting (PE) definition of
discrete-time systems.

Definition 1: Let q/(q>q + 1) be persistently exciting (PE)
in T steps if there exist constants β1, β2 > 0, such that

β1I ≤ S1 =

k+T∑
j=k+1

qjq
>
j

(q>j qj + 1)2
≤ β2I (26)

Lemma 1: Consider the parameters error dynamics (24) be
rewritten as a linear time variant (LTV) discrete-system of the
form:

θ̃k+1 = α
qk

q>k qk + 1
uk

yk =
q>k

q>k q + 1
θ̃k,

(27)

where uk = −yk− qk
q>k qk+1

νk is an output feedback controller.

Consider qk
q>k qk+1

be PE. Then the parameters error ‖θ̃k‖
converges into a bounded set

‖θk‖ ≤
√
β2T

β1
(‖yk‖+ αβ2(‖yk‖+ ‖νk‖)) (28)

Proof 3: It is similar with the proofs in [29].
Theorem 3: Let q/(q>q + 1) be persistently exciting (PE).

Then there exists contraction mappings H and H′ with con-
traction factor γ and γ′, respectively, such that the parameters
error θ̃ and the NN approximator F (θ) are bounded as:

‖θ − θ∗‖ ≤ 1 + γ

1− γ′
ν̄ (29)

‖F (θ)− F (θ∗)‖ ≤ γ′(1 + γ)

γ(1− γ′)
ν̄. (30)

where ν̄ is an upper bound of the residual error νk.
Proof 4: It is similar with the proofs in [29].
Bound (29) is the strictest upper bound that our approach

can possess by assuming a rich exploration of the PE signal.
However this exploration is limited to a series of limited steps
which are not seen at bound (29). In order to see how the PE
signal affects the parameters error upper bound, let introduce
the following theorem.

Theorem 4: Let U2 be any admissible control. Let the critic
parameters are updated by (24) and assume that qk/(q>k qk+1)
is PE. Then the parameters error converge into the following
bounded residual set:

‖θ̃k‖ ≤
√
β2T [(1 + γ)γ′ + αβ2(γ + γ′)]

β1γ(1− γ′)
ν̄ (31)

Now we are in position to prove Theorem 4.
Proof 5: From Lemma 1 we have the bound (28). The

system output yk is defined by the normalization of the NN
approximation F (θ), then from Theorem 3 we have that

‖yk‖ =

∥∥∥∥ 1

q>k qk + 1
(F (θ)− F (θ∗))

∥∥∥∥ ≤ ‖F (θ)− F (θ∗)‖

since q>k qk + 1 ≥ 1. Then the system output is bounded by
(30) as

‖yk‖ ≤
γ′(1 + γ)

γ(1− γ′)
ν̄,

and the residual error ‖νk‖ ≤ ν̄. Substituting the output and
residual error upper bounds in (28) yields:

θ̃k ≤
√
β2T [(1 + γ)γ′ + αβ2(γ + γ′)]

β1γ(1− γ′)
ν̄

If the number of neurons at the hidden layer are increased,
i.e., p → ∞, then the residual error is decreased νt → 0.
Nevertheless, this can cause the overfitting problem in the
training of the neural network approximator.

Remark 2: Both the LQR and RL methods use the RNN as
a model reference for the control design. The LQR controller
is obtained according to the proposed matrix A and assumes
that the modelling error and disturbances are small enough
such that the control gain compensates them, hence is sensitive
to the modelling error. On the other hand, the RL controller
learns the control law by considering the complete closed-
loop dynamics which includes the modelling error and it only
uses the RNN model as previous knowledge. Therefore the RL
control law is more robust in comparison to the LQR control
law [35].

IV. SURGE TANK EXAMPLE

Consider the surge tank model [33] that is represented by
the following differential equation:

dh(t)

dt
= −

c
√

2gh(t)

Ar(h(t))
+

1

Ar(h(t))
u(t) (32)

where u(t) is the input flow, h(t) is the liquid level; Ar(h(t))
is the cross-sectional area of the tank; g = 9.81 m/s2 is the
gravitational acceleration; c = 1 is the known cross-sectional
area of the output pipe. Let Ar(h(t)) =

√
ah(t) + b, where

a = 1 and b = 3. Using Euler approximation to discretize the
system yields

hk+1 = hk + T

[
−
√

19.62hk
Ar(hk)

+
1

Ar(hk)
uk

]
(33)

where T = 0.01 is the sample time. Here we compare the
performance of the RNN solution with our RL solution. The
simulation lasts 100 seconds of simulation time.

We choose a scalar A = −0.5 and a constant β = 4 for the
recurrent neural network identifier. For the discrete Lyapunov
function it is proposed a scalar Q = 5 which gives a kernel
solution of P = 7.2727. For the LQR control design it is
proposed the following scalar values: Qc = 1 and Rc = 0.1
and a initial value of P 0

c = 0.5. The Lyapunov recursion
converges to the DARE solution which is Pc = 1.023. It is
used 10 hidden nodes at the hidden layer and one node at the
output layer. The elements of W1,0 ∈ R1×10 and W2,0 ∈ R10

are random numbers between [0, 1]. The initial liquid level
is h0 = 0.2 and the RNN initial condition is x0 = 0.
We use as activation function σ(·) = tanh(·) and therefore
σ′(·) = sech2(·).

The PE signal is chosen as a sum of sine functions which
are given at the reference signal as:

xd,k = 1.8 + sin(0.5k) + 0.15 cos(0.3k) + 0.5 sin(0.75k).



For the RL solution it is used only one neuron with quadratic
activation function, i.e., φk = e2

k with a learning rate of α =
0.5 and a discount factor of γ = 0.9.
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Fig. 1: Tracking control for the surge tank

The tracking results are given in Fig. 1 and the control
input in Fig. 2. The results show good tracking performance
of both methods using the RNN identifier and the LQR or
RL controllers since the non-linear system is simple and the
reference is designed to avoid complex solutions. The main
difference between the RNN and the RL solution is their
accuracy, since our RL takes into account the modelling error
then the output control policy is improved. We used the mean
error to see the accuracy of each controller as follows:
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Fig. 2: Tracking control for the surge tank

ēRNN =
1

k

k∑
i=0

eRNNi = 0.0707

ēRL =
1

k

k∑
i=0

eRLi
= 0.0032.

Notice that the RL error is much smaller than the RNN error.
Another advantage of our RL approach is that we enhanced

the robustness of the controller in presence of modelling error
and converges to an optimal or near optimal control policy. On
the other hand, the RNN solution is simple to design but it can
only guarantee local optimal performance which is affected by
disturbances or modelling error.
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Fig. 3: Value function V2,k learning curves

The learning curve of the value function V2,k using RNN
and RL is given in Fig. 3. Here is more evident how the
modelling error affects the controller design, even more the
use of a discounted factor is essential because if the reference
trajectory does not go to zero, then the value function is infinite
and the term U>2 RcU2 does not go to zero as time goes to
infinity.

V. CONCLUSION

In this work, the discrete-time critic-learning control is
proposed. The critic-learning method is based on a serial-
parallel recurrent neural network which serves for system
identification and tracking control. The tracking control is
achieved by using a model-compensation via the neural model
and a feedback term. The feedback controller is designed



using two control techniques: discrete LQR control and re-
inforcement learning. Stability and convergence are presented
using Lyapunov stability theory and the contraction property.
Simulations are carried out to show that our approach presents
optimal or near optimal performances with high accuracy
without knowledge of the system dynamics.

Since artificial neural networks have demonstrate the effec-
tiveness as an model identifier, then further work will consider
the use of neuromorphic neural networks as approximators of
reinforcement learning architectures for the design of optimal
and robust controllers.
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