
Synaptic Integration of Spatiotemporal Features
with a Dynamic Neuromorphic Processor

Mattias Nilsson, Foteini Liwicki, and Fredrik Sandin
Embedded Intelligent Systems Lab (EISLAB)
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Abstract—Spiking neurons can perform spatiotemporal feature
detection by nonlinear synaptic and dendritic integration of
presynaptic spike patterns. Multicompartment models of non-
linear dendrites and related neuromorphic circuit designs enable
faithful imitation of such dynamic integration processes, but these
approaches are also associated with a relatively high computing
cost or circuit size. Here, we investigate synaptic integration of
spatiotemporal spike patterns with multiple dynamic synapses on
point-neurons in the DYNAP-SE neuromorphic processor, which
offers a complementary resource-efficient, albeit less flexible,
approach to feature detection. We investigate how previously
proposed excitatory–inhibitory pairs of dynamic synapses can
be combined to integrate multiple inputs, and we generalize that
concept to a case in which one inhibitory synapse is combined
with multiple excitatory synapses. We characterize the resulting
delayed excitatory postsynaptic potentials (EPSPs) by measuring
and analyzing the membrane potentials of the neuromorphic
neuronal circuits. We find that biologically relevant EPSP delays,
with variability of order 10 milliseconds per neuron, can be
realized in the proposed manner by selecting different synapse
combinations, thanks to device mismatch. Based on these results,
we demonstrate that a single point-neuron with dynamic synapses
in the DYNAP-SE can respond selectively to presynaptic spikes
with a particular spatiotemporal structure, which enables, for
instance, visual feature tuning of single neurons.

Index Terms—Spiking Neural Networks, Neuromorphic, Spa-
tiotemporal, Feature Detection, Synaptic and Dendritic Integra-
tion, Temporal Delay, DYNAP

I. INTRODUCTION

Neural circuitry is a main source of inspiration in the devel-
opment of more efficient and potent computing architectures,
such as deep neural networks [1]. The neuron models used
in such artificial neural networks are greatly simplified state-
based models, which require computationally costly iterations
to process the spatiotemporal patterns that characterize most
real-world events. However, the fact that such basic models
of neurons are so successfully used in applications motivates
further investigations of neuroscientifically inspired computa-
tional principles and architectures [2], [3].

In the quest for more energy- and resource-efficient com-
puting and learning architectures, neuromorphic sensors and
processors, which more faithfully reproduce the observed
dynamic behavior of neurons, are developed by exploiting the
dynamics of conventional microelectronic devices and novel
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nanomaterials [4], [5]. With such a dynamic computing ap-
proach, more resource-efficient signal processing and percep-
tion systems can be engineered [6]—one example being event-
based vision [7], which can benefit applications in real-time
interaction systems, such as robotics and wearable electronics
[8], for which low power, low latency, and high dynamic range
are important properties [9].

Dynamic neuromorphic processors have parallel instances
of mixed-signal analog/digital circuits, operating in real-time,
that emulate the biophysical dynamics of neurons and synapses
[10], [11], [12]. Such processors are different in comparison
to digital computers, from a physical information-processing
point of view. Consequently, such neuromorphic systems can
offer efficiency advantages in the development of computa-
tional intelligence inspired by the observed functions of brains,
the senses, and neural circuits.

In neuromorphic processing of spatiotemporal patterns,
temporal delays are essential computational elements [13].
Delays have, for instance, been implemented using dedicated,
specifically tuned delay neurons serving as axonal delays in
Spiking Neural Network (SNN) architectures [14], [15], as
well as using synaptic dynamics [16]. In biology, the delays
of Excitatory Postsynaptic Potentials (EPSPs) in dendrites
range up to tens of milliseconds [17], and make out part
of the critical role of dendrites in processing of spatiotem-
poral information in neurons [18]. In neuromorphic systems,
dendritic integration has been investigated with nonlinear and
multicompartment models—see for example [19], [20], [21],
[22], [23].

Fig. 1 illustrates two examples of feature-selective neural
circuits based on nonlinear neuronal dynamics. One such
example is illustrated in Fig. 1A, in which a nonspiking
(NS) neuron with one inhibitory synapse is stimulated by
a presynaptic spike that leads to a Postinhibitory Rebound
(PIR) of the membrane potential, VNS , with maximum after
20 ms. The PIR generates a delayed EPSP in the spiking
coincidence-detection (CD) neuron, which implies that the
firing probability of the CD neuron depends on the relative
timing of presynaptic spikes. This type of circuit can be
observed in the auditory system of crickets [24], and has been
mimicked in a neuromorphic implementation [16], in which
an excitatory–inhibitory pair of dynamic synapses was used
to imitate the delayed excitation of a coincidence detecting
neuron caused by the PIR mechanism.
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A pyramidal neuron with millimeter-scale dendrites of
varying width, conductance and capacitance is illustrated in
Fig. 1B. The Postsynaptic Potentials (PSPs) from excitatory
synapses, located (on spines) at different positions along
the dendrites, propagate with varying velocity and amplitude
depending on the variable properties of the dendrite. Thus,
the propagation of each PSP towards the soma is subject
to a dendritic delay, and the relative timing of presynaptic
spikes influence their contribution to the eventual firing of
the soma, as well as long-term plasticity [18]. Pyramidal
neurons are abundant in the neocortex and hippocampus, and
synaptic integration of this type is an essential aspect of neural
information processing. Short-term synaptic plasticity further
increases the capacity of synapses and neurons to dynamically
integrate temporally encoded information [25], [26].

Neuromorphic multicompartment models enable increas-
ingly faithful and flexible implementations of dendritic inte-
gration and plasticity [19], [20], [22], [23]. However, such
neuromorphic circuits are also complex, and require larger
neuromorphic circuit designs and more power than dynamic
point-neuron implementations, which can matter in resource-
constrained applications with high-dimensional inputs, such as
battery-powered machine vision systems. The results in [16],
in which excitatory–inhibitory pairs of dynamic synapses on
point neurons are used to generate a delayed EPSP, suggest
that multiple dynamic synapses of that type can potentially be
used to integrate spatiotemporal spike patterns within single
point-neurons in a dynamic neuromorphic processor. To what
extent can patterns with different temporal extensions and
spatial dimensions be detected that way?

Here, we investigate synaptic integration of spatiotemporal
spike patterns with multiple dynamic synapses [10] on point
neurons in the DYNAP-SE neuromorphic processor [27]. The
DYNAP-SE is a mixed-signal processor for low-power, real-
time emulation of SNNs, providing a platform for spike-based
neural processing with colocalized memory and computation
[28]. We characterize the resulting delayed EPSPs by measur-
ing and analyzing the membrane potentials of the neuromor-
phic neuron circuits, and we find that biologically relevant
EPSP delays with variability of order 10 milliseconds per
neuron can be realized. Albeit less flexible and general than a
multicompartment implementation, our presented work offers
a complementary resource-efficient approach to integration
and detection of spatiotemporal features.

The contribution of this work is twofold: (i) we use dynamic
synapses in the DYNAP-SE neuromorphic processor integrat-
ing multiple delayed EPSPs as a simple model of dendritic
integration [20], [23]; (ii) we model, in effect, axonal, as
well as dendritic and synaptic, temporal delays—instead of
only axonal ones [14], [15]—and we thereby perform synaptic
integration of spatiotemporal information using point neurons
in a mixed-signal neuromorphic processor, which is subject to
device-mismatch related challenges.
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Fig. 1: Examples of feature-selective biological circuits that
depend on nonlinear neuronal dynamics. A: A nonspiking
(NS) neuron featuring postinhibitory rebound (PIR) when
stimulated by a presynaptic spike-pulse. B: A pyramidal
neuron with millimeter-scale dendrites of varying conductance
and capacitance.

II. MATERIALS AND METHODS

The experimental setup used in this work consisted of a
DYNAP-SE unit—a Dynamic Neuromorphic Asynchronous
Processor (DYNAP) [27] from SynSense—connected to a PC
via a USB interface. The DYNAP-SE was controlled from
the PC using the cAER event-based processing framework
for neuromorphic devices. Since the DYNAP-SE emulates
neuronal and synaptic dynamics in real-time—using analog
circuitry—we configured it in a hardware-in-the-loop setup, in
which a PC receives digital spike-event data and analog neu-
ron monitoring, while iteratively reconfiguring the DYNAP-
SE in order to carry out the measurement series described
in the following. All stimuli were synthetically generated
using the built-in FPGA spike-generator in the DYNAP-SE,
which generates spike-events according to assigned Interspike
Intervals (ISIs) and virtual source-neuron addresses. The 8-bit
USB oscilloscope SmartScope from LabNation was used for
measurements of analog neuronal membrane potentials in the
DYNAP-SE.

A. The DYNAP-SE Neuromorphic Processor

The DYNAP-SE is a reconfigurable, general-purpose,
mixed-signal SNN processor, which uses low-power, inho-
mogeneous, sub-threshold, analog circuits to emulate the bio-
physics of neurons and synapses in real-time. One DYNAP-
SE unit comprises four four-core chips—each core having
256 Adaptive Exponential Integrate-and-Fire (AdEx) neuron-
circuits. Each neuron has a Content-Addressable Memory
(CAM) block containing 64 addresses, see Fig. 2, which
represent connections to presynaptic neurons. Four differ-
ent synapse types are available for each connection: fast
and slow excitatory, and subtractive and shunting inhibitory,
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Fig. 2: Simplified block diagram of one of the 256 mixed-
signal analog/digital neuronal nodes in each core of the
DYNAP-SE. Each node contains 64 mixed-memory words,
each with a 10-bit CAM cell and a 2-bit SRAM cell, four
synaptic DPI circuits, and one AdEx neuron circuit. The
digital-to-analog signal-converting circuitry for each mixed-
memory word is here simplified with a block labeled Digital-
to-Analog Current Converter (DACC). Also, the four 20-bit
SRAM cells holding fan-out spike routing information are
displayed.

respectively. The dynamic behaviors of the neuronal and
synaptic circuits in the DYNAP-SE are governed by analog
circuit parameters, which are set by programmable on-chip
bias-generators providing 25 bias parameters independently
for each core. Information about spike-events is transmitted
between the neurons of the DYNAP-SE using the Address-
Event Representation (AER) communication protocol.

1) Spiking Neuron Model: The AdEx spiking neuron model
[29] describes the neuronal membrane potential, V , and an
adaptation variable, w, with two coupled nonlinear differential
equations:

C
dV

dt
= −gL(V − EL) + gL∆T e

(V−VT )/∆T − w + I, (1a)

τw
dw

dt
= a (V − EL)− w, (1b)

in which C is the membrane capacitance, gL the leak
conductance, EL the leak reversal potential, VT the spike
threshold, ∆T the slope factor, I the postsynaptic input cur-
rent, τw the adaptation time constant, and a the subthreshold
adaptation. For V > VT , the membrane potential increases
rapidly, due to the nonlinear exponential term, leading to a
rapid depolarization and spike generation, at time of which,
t = tspike, the membrane potential and the adaptation variable
are both, respectively, updated according to

V → Vr, (2a)

w → w + b, (2b)

where Vr is the neuronal reset potential and b is the spike-
triggered adaptation.

2) Dynamic Synapse Model: The synapses of the DYNAP-
SE are implemented with subthreshold Differential Pair Inte-
grator (DPI) log-domain filters, which are proposed in [10]
and further described in [12]. The following first-order linear

TABLE I: Bias parameter values used to implement disynaptic
delay elements in the DYNAP-SE.

Parameter type Parameter name Coarse Fine Current
value value level

Neuronal IF_AHTAU_N 7 35 L
IF_AHTHR_N 7 1 H
IF_AHW_P 7 1 H
IF_BUF_P 3 80 H
IF_CASC_N 7 1 H
IF_DC_P 1 30 H
IF_NMDA_N 1 213 H
IF_RFR_N 4 40 H
IF_TAU1_N 5 39 L
IF_TAU2_N 0 15 H
IF_THR_N 6 135 H

Synaptic NPDPIE_TAU_S_P 5 70 H
NPDPIE_THR_S_P 0 210 H
NPDPII_TAU_F_P 5 100 H
NPDPII_THR_F_P 3 60 H
PS_WEIGHT_EXC_S_N 0 140 H
PS_WEIGHT_INH_F_N 0 150 H
PULSE_PWLK_P 5 40 H
R2R_P 4 85 H

differential equation approximates the response of a DPI to an
input current Iin:

τ
d

dt
Iout + Iout =

Ith
Iτ
Iin, (3)

where Iout is the postsynaptic output current, τ and Iτ are
time-constant parameters, and Ith is an additional control
parameter that can be used to change the gain of the filter.
This approximation is valid for Iin � Iτ and Iout � IIth .

B. Disynaptic Delays

We used excitatory–inhibitory pairs of dynamic synapses
in the DYNAP-SE to implement temporally delayed interneu-
ronal connections in the DYNAP-SE—in the manner that is
described in detail in [16]. More specifically, one excitatory–
inhibitory synapse pair, connected to the same input-neuron,
constitutes one delay element and—in a manner resembling
PIR—generates a delayed excitation in the postsynaptic neu-
ron upon stimulation. For the inhibition, a synapse of the
subtractive type was used, which allows the combination of
excitation and inhibition by summation of the postsynaptic cur-
rents. A synapse of the slow type was used for the excitation,
which operates with on a relatively long time-scale—leaving
the fast type available for use for direct stimulation of the
neuron, in potential future cases. The excitation delay was re-
alized by giving the excitatory synapse a longer time-constant
than that of the inhibitory one, so that, following the decay
of the inhibition—which was set to a time-constant matching
the desired temporal delay—the EPSP still contributes to raise
the neuronal membrane potential and, thereby, generates the
delayed excitation. The bias-parameter values used for this
configuration of the DYNAP-SE are provided in Table I.

The disynaptic delay elements can be simulated using
Eq. (3), and the postsynaptic neuronal membrane potential
using Eq. (1). Fig. 3 shows the result of such a numerical
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Fig. 3: Simulation of the disynaptic delay-element model
[16]. The figure shows the postsynaptic neuronal membrane
potential following presynaptic single-spike stimulation of one
delay element.

simulation for a single-spike input. Since the simulated neuron
is in the subthreshold regime, where V < VT , Eq. (1) was
simplified by setting the exponential term to zero, and by
omitting the adaptation variable. The neuronal and synaptic pa-
rameters used in the simulation were selected for the neuronal
membrane potential to be comparable to those measured in the
DYNAP-SE, and should, therefore, not be directly compared
with potentials and threshold values.

Due to the device mismatch inherent to the analog neuronal
and synaptic circuits of the DYNAP-SE, any set of bias-
parameter values generates a distribution of the corresponding
neuronal and synaptic dynamic behaviors in the core being
configured. Thus, implementation of the disynaptic delays
as described above—by configuring the bias parameters of
one core of the DYNAP-SE accordingly—should generate
a distribution of delays in the population of neurons. Fur-
thermore, even though all 64 CAMs of one DYNAP-SE
neuron technically use the same four synaptic circuits—for
the four different synapse types, respectively—there is digital-
to-analog current-converting circuitry between the CAMs and
the synaptic circuits, which constitutes a further source of
inhomogeneity. Thus, different disynaptic delays implemented
on the same neuron, but using different CAMs, are expected to
exhibit some degree of variation in behavior, why a distribution
of temporal delays can be expected also in one and the same
neuron.

C. Feature Detection Architectures

Given the expected temporal variation in disynaptic delay
elements implemented using different CAMs on the same
single neuron, input-spikes arriving to such a neuron—via
different delay elements—should generate EPSPs with coin-
cident maxima, if the differences in presynaptic spike times
compensate for the differences in the synaptic delay times.
Thus, input patterns with spike-time intervals that match the
delay-time differences should generate maximal excitation of
the neuron, why a single neuron should be able to respond
selectively—with increased intensity—to such spatiotemporal
input patterns. To investigate this, we performed two different
experiments, in which single neurons were set up to receive
spatiotemporal input spike-patterns consisting of temporally

separated single spikes received through different input chan-
nels. In both of the experiments—described in the following—
an off-line Hebbian-like learning rule was used to select the
synapses of the neurons, for them to respond selectively to
different ISIs in the input spike-patterns. More specifically, we
investigated whether the single-neuron systems could respond
with increased intensity to some limited range of pattern ISIs
in the millisecond-range, and, thereby, discriminate against
both longer and shorter intervals.

1) Pair-Selective Circuit: We configured a single neuron
with two inputs via two different excitatory–inhibitory disy-
naptic delay elements configured as described in Section II-B.
The input pattern consisted of a pair of spikes separated with
an ISI—one spike to each delay element (see Section III-B).
The delay-element synapses were selected for the neuron to
respond selectively to intermediately long intervals but not to
shorter or longer intervals.

2) Triplet-Selective Circuit: To investigate the generaliz-
ability of our use of synaptic dynamics for single-neuron
spatiotemporal pattern recognition, we set up a single neuron
to receive single-spike inputs on three different excitatory
synapses and one inhibitory synapse. In this experiment, the
stimulation pattern consisted of one single spike to each of
the excitatory synapses, each spike temporally separated from
the previous one with the same ISI—such that the first and
the third spike were separated with twice the ISI—as well
as one spike to the inhibitory synapse, simultaneous with
the first excitatory spike (see Section III-C). The same bias
parameter values as in the pair-detection experiments were
used, except for a lowering of the excitatory synaptic weight—
to compensate for the higher number of excitatory synapses
and lower number of inhibitory ones. Synapses were selected
for the neuron to respond with increased intensity to a range
of intermediately long ISIs, as compared to shorter and longer
intervals.

The stimulation pattern used in this experiment can be
likened to the response of three spatially distributed contrast-
detecting visual receptor neurons to a bright line moving
across the visual field of the receptor array, causing each
receptor to fire asynchronously; this concept is illustrated in
Fig. 4. This setup is aligned with the fact that biological
vision is highly sensitive to contrast changes rather than to the
overall illumination, and that a neuromorphic vision system
such as that in [30] would generate an output of this type.
As a historical note, in 1981, Hubel and Wiesel [31] got the
Nobel Prize in Psychology for their discoveries concerning the
visual system. In their experiment, they used the projection of
a single line in different orientations as stimulus, while they
were recording the activity of a single neuron in the cats brain.
They discovered that the specific neuron was highly activated
when then line had a vertical orientation.

In the example described above, both the angular orien-
tation and the velocity of the stimulus would influence the
ISI separating the asynchronous responses of the receptor
cells. Furthermore, the projection to the inhibitory synapse, as
well as the specific EPSP delays of the excitatory synapses,
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Fig. 4: Selective response of a single hardware neuron with
dynamic synapses to different visual stimuli. A: One hardware
AdEx neuron receives inputs from three simulated visual
receptors (red squares) that output spikes asynchronously
when detecting a contrast change. B: Spikes resulting from
the presentation of one visual stimulus. The three excitatory
synapses receive, respectively, one presynaptic spike from
each receptor, with time difference tα that depends on the
orientation and speed of the stimulus. The inhibitory synapse
receives a presynaptic spike from one of the three receptors
(inhibitory interneuron not required in DYNAP processors). C:
Selective response (N = 100) of a single DYNAP-SE neuron to
the spatiotemporal spike-triplet stimulus illustrated in panels
A and B, for different values of the time-interval tα. Error
bars denote ±1 standard deviation. D: Response (N = 100)
to spike-triplet vs tα for a different neuron and selection of
synapses—the standard deviation is zero for all data-points in
this case. Due to device mismatch, the feature tuning curves
are neuron- and synapse-specific.

determines the feature tuning of the neuron. This solution is
possible because, in the DYNAP architecture—as opposed to
in biology—inhibitory interneurons are not required.

III. RESULTS AND DISCUSSION

A. Delay Characteristics

We implemented the disynaptic delays, as described in
Section II-B, in parallel, on all neurons in one core of the
DYNAP-SE—one delay element on each neuron (N=256). For
the purpose of characterization, we defined the duration of
the delay as spanning from the onset of the inhibition to the
maximum postinhibitory value of the membrane potential—
making the definition practical also for neurons that generate
a spike as a consequence of their delayed excitation. The onset
of the inhibition was defined at half minimum of the membrane
potential, in line with the definition of Full Duration at Half
Minimum (FDHM), given the lack of exact spike-time data
in the analog measurements. Fig. 5A shows the membrane
potential, following a single-spike input stimulus, of a neuron
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Fig. 5: Characteristics of disynaptic delay elements imple-
mented in the DYNAP-SE neuromorphic processor, for single-
spike input. A: Subthreshold (nonspiking) neuronal membrane
potential for single-spike stimulation via one disynaptic delay
element. B: Distribution (N = 256) of temporal delays when
implemented on different neurons with shared global biases.
C: Distribution (N = 256) of temporal delays when imple-
mented on the same neuron, but using different synapse-CAM
combinations. The two colors represent CAM configurations
for which the neuron was spiking or nonspiking, respectively.

from the configured core, alongside an illustration of the
temporal delay. While this neuron exhibits typical behavior in
the nonspiking case, spike-firing was triggered by the delayed
excitations in roughly half of the neurons in the population.
The resulting distribution of temporal delays is presented in
Fig. 5B, according to which, for example, almost 80 out of the
256 neurons display an EPSP that is delayed by about 15 ms.

Furthermore, we characterized the distribution of temporal
delays that are generated in a single neuron when varying the
CAMs used for the two synapses that constitute one delay
element. We did this by configuring the disynaptic delay in
256 different instances, using unique pairs of CAMs each
time. The resulting delay distribution is presented in Fig. 5C.
The bimodal shape of this histogram appears because some
of the longer delays correspond to CAM combinations where
the neurons spikes, while others do not. When the neuron
spikes, the duration of the spike-firing process adds to the
delay, according to the delay definition used here. The peak
at shorter delay corresponds to nonspiking instances, and the
second peak is formed where the largest number of spiking
delays are found.

B. Spike-Pair Selectivity

We stimulated the spike-pair sensitive neuron described in
Section II-C with ISIs ranging from 0 to 10 ms, with incre-
ments of 1 ms. Stimulation with each ISI was repeated 100
times, in order to extract the mean number of spikes generated
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Fig. 6: Selective responses (N = 100) of a single neuron to
different input ISIs in spatiotemporal spike-pair feature for dif-
ferent excitatory and inhibitory synaptic weights, respectively.
The legends denote the fine integer value of the bias parameter
corresponding to the varied weight. Error bars denote ±1
standard deviation. A: Varying excitatory synaptic weight. B:
Varying inhibitory synaptic weight.

in the receiving neuron. This investigation was repeated with
variations to both the excitatory and the inhibitory synaptic
weights of the delay elements, through which the neuron
received the stimuli. The results, presented in Fig. 6, show
that the neuron responded selectively to the different ISIs,
and how this selectivity varies for different choices of the
synaptic weights. Summing the data-points for each of these
tuning curves, respectively, generates the following relative
areas under the curves: 5.87, 5.19, and 2.88 for Fig. 6A, and
5.10, 4.25, and 3.13, for Fig. 6B.

C. Spike-Triplet Selectivity

In the investigation of triplet-interval sensitivity, as in the
pair-selection experiment, we stimulated the neuron with ISIs
of 0 to 10 ms, with increments of 1 ms—meaning that, for
the largest ISI, the first spike and the third were, on different
input synapses, separated with 20 ms. The results, presented in
Fig. 4, illustrates that the neuron—having a baseline response
of two spikes per input—does indeed respond with increased
average activity for input ISIs ranging between 3 and 8 ms.
The response peaks at three spikes per stimulus for the 5-ms
ISI. This selective response disappeared when we permuted
the order of the excitatory synapses—as is expected, since
maximum excitation is obtained when the delayed EPSPs are
matched by the timings of the presynaptic spikes.

One slightly more complex variation to the spike-triplet
feature could consist of three spikes separated by two different
ISIs instead of the uniform interval tα. This would represent
stimulation by a nonlinear visual edge or, alternatively, by
the same linear edge as in Fig. 4A, except now presented to
the receptors with a nonuniform speed. Such a feature could
be detected using the same architecture as described in this
work—simply requiring a different choice of synapse-CAMs,
for the EPSPs to add up maximally.

For learning and detection of more complex spatiotemporal
features and patterns, more than one neuron is, of course,
necessary—see for instance [2], [32] for further reading. One
immediate step from the work presented in this paper could

be to combine the tuning curves of two or more of the pro-
posed single-neurons systems, in order to—where these tuning
curves correlate most strongly—create a narrower tuning curve
in a subsequent neuron. Activation of this neuron would, then,
depend on the feature sensitivities of the preceding neurons,
and the relative timing with which these are activated.

IV. CONCLUSION

In this paper, we propose a resource-efficient approach to
spatiotemporal pattern recognition using dynamic synapses
and point-neurons in the DYNAP-SE neuromorphic processor
to, in effect, model axonal delays and some aspects of dendritic
integration. We use this approach to integrate multiple in-
puts by using excitatory–inhibitory disynaptic delay elements
[16]. Furthermore, we generalize this concept by combining
one inhibitory synapse with multiple excitatory synapses.
We conclude that biologically relevant EPSP delays with a
variability in the order of 10 ms per neuron can be realized
due to device mismatch in the analog electronic neuromorphic
circuits. Based on these findings, we demonstrate that a single
point-neuron with dynamic synapses in the DYNAP-SE can
respond selectively to presynaptic spikes with a particular
spatiotemporal structure, which enables feature detection with
single neurons. We note that the temporal feature tuning
of the neuromorphic neurons, as illustrated in Fig. 4C, is
comparable to the width of temporal feature detection neurons
in biology, see for example Fig. 3B in [24]. Further work
is required to investigate how SNNs with feature detectors
of this type could be configured and trained in a systematic
manner given a particular task, in order to make efficient
use of the dynamic synapses. Further work is also required
to investigate under what conditions a simple and relatively
resource-efficient feature detector of this type is favored over a
more generic multicompartment model of nonlinear dendrites.
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