
Hybrid approach for Anomaly Detection in Time
Series Data

1st Zeineb Ghrib
Devoteam Research, France

University of Paris VIII
Paris, France

zeineb.ghrib@devoteam.com

2nd Rakia Jaziri
University of Paris VIII

Paris, France
rakia.jaziri@univ-paris8.fr

3rd Rim Romdhane
Devoteam Research, France

Paris, France
rim.romdhane@devoteam.com

Abstract—Anomaly detection is an active research field which
attracts the attention of many business and research actors. It
has led to several research projects depending on the nature of
the data, the availability of labels on normality, and domains
of application that are diverse such as fraud detection, medical
domains, cloud monitoring or network intrusions detection, etc.
However, dealing with effective anomaly detection for complex
and high-dimensional time series data remains a challenging task.
In this work, we propose hybrid approach composed of an LSTM
Autoencoder trained on normal records to learn efficient normal
sequence representations combined with an SVM classifier for
anomaly detection. Experimental results show that by encoding
time series via a pretrained LSTM encoder allows efficient
representation of data so that we can accurately detect abnormal
records. In fact, the encoded representation reduces significantly
the correlations between normal and abnormal records and
allows us to have an efficient latent data representation that
separates consistently the two classes. The proposed hybrid
approach outperforms state-of-the art approaches [1], [2], [3],
[4].

Index Terms—Anomaly detection · Supervised Classification ·
Recurrent Neural Network · LSTM Autoencoder · Latent

I. INTRODUCTION

It has been shown that the performance of any machine
learning algorithm applied on complex tasks, such as images
classification or sequence prediction, is highly correlated with
the quality of the extracted features. Handcrafted feature
extraction is tedious and usually inefficient. Many researches
have been conducted to overcome this challenge by proposing
different approaches to extract efficient features for time series
classification [5].
In our case, we address the anomaly detection issue as a
fraud detection application. We work on a public data set
composed of time-stamped banking transactions. This type of
data raises several challenges: (1) First, the sequence length is
variable, which is problematic because most of machine learn-
ing algorithms, are designed to process fixed length data in-
puts.(2)Second, we have to find an efficient representation that
captures chronological sequencing across transaction records:
which often requires deep domain expertise or complex signal
processing. The model that would be the most appropriate to
learn the sequencing of transactions representation would be
the Long Short Term Memory Model (LSTM) [6] which is a
Recurrent Neural Network (RNN), that has shown excellent

results in applications involving sequencing in the data such
as : machine translation (or sequence to sequence embedding)
[7], image captioning [8], hand writing generation [9]. LSTMs
[6] are based on sophisticated cells allowing the model to
capture long-term dependencies and patterns in time series.
Furthermore, another powerful model called Autoencoder [10],
is used for reconstructing data input and more specifically,
for learning efficient representations of the input data, called
encodings. These models turned to be very powerful feature
detectors. Many recent researches has been conducted around
this topic [11], [12]. Authors in [13] have used Autoencoders
called Generative Adversarial Networks to detect efficient
features, they were able to generate new realistic data that have
the same distribution as the training data. This Autoencoder
model was able to generate synthesized pictures that are very
realistic people faces. In a later work [14] , authors have used
generative Autoencoders to make novel molecular structures
with desirable pharmacological and physio-chemical proper-
ties. In our work, we propose to investigate the power of a
merged LSTM Autoencoder to tackle the problem of sequence
representations of banking transactions to adress anomaly
detection problem. Our model inherits from the Autoencoders
the ability of learning efficient representations, and from the
LSTM Neural Networks the sequence embedding.

II. RELATED WORK

Anomaly detection or outlier detection, aims to identify rare
items, events or observations that significantly deviate from
the normal data distribution. Typically, anomalous data can
be connected to some kind of problem or rare event such as
bank fraud [15], medical problems [16], structural defects or
malfunctioning equipment [11] etc. Many anomaly detection
algorithms have been proposed [1], [2], [3], [4] to address
outlier detection issues. Among the most used ones we can
mention one-class support vector machine (OCSVM) [17],
[1], which is trained only on examples belonging to one of
the two classes, and proceeds by constructing an hyper-sphere
around the observed data samples so that new observations
are classified as normal if they get through the sphere, outliers
otherwise.
However, OCSVMs are very heavy in term of computational
complexity, which makes it unsuitable for large volume of

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

data or if we have limited resources. Another wellknown
algorithm used for outlier detection with linear complexity
is the isolation forest [3], it consists of building an ensemble
of trees for a given data set, and then anomalies are those
instances which have short average path lengths on the trees.
Recent works [18], [19] have applied more advanced tech-
niques such as Autoencoders, which are composed of pairs of
Neural Network models that learn to reconstruct the training
inputs making the Autoencoders very efficient in learning con-
sistent latent representations. For a well-trained Autoencoder
the encodings are so representative that the decoder is able
to rely on it to reconstruct the input data without much loss.
Most of the work have used the reconstruction error as a key
indicator: the model is trained on “normal” records aiming to
minimize the reconstruction error (which is the loss function).
The main assumption in using Autoencoders is that anomalies
would suffer from a remarkable high reconstruction error, that
can be used as an outlier score.
In our approach, we proceed in a different way by using the
Autoencoder to learn efficient latent representation then we
keep only the trained encoder model part and we combined
it with a binary supervised classifier, in our work we used
different implementations of SVM classifier to compare the
classification performances.
Very recently, [20] have applied a neural network as an outlier
classifier following a basic pretrained encoder. The use of a
Neural Network assumes that the Autoencoder can fail to pro-
duce enough representational encoding so that the following
Neural Network can compensate this lack of efficiency due
to its ability to extract progressively new features. However
in our work we will prove that using the adequate type of
Autoencoder for time series with the suitable parameters can
be efficient enough that a simple classifier is quite sufficient
to conduct accurate classification, without need to deploy
complex and costly neural network model.
The type of the deployed Autoencoder, which is the keystone
of our model, is LSTM Neural Networks [6]. This type of
Neural Network have basically been designed to overcome
the limitation of RNN (Recurrent Neural Network) vanishing
gradient problem [21] by employing elaborated recurrent cells
that are able to capture long-range dependencies. However,
to the best of our knowledge the power of using the LSTM
Autoencoder to learn efficient latent representation in time
series combined with basic supervised classifier for predicting
time series and using it for anomaly detection task have not
been proposed before.
This paper is organised as follows: Section 3 describes our
approach. In Section 4, we present temporal anomaly detec-
tion results on real-world dataset using our combined LSTM
autoencoder approach as well the comparison with state of art
approaches.

III. THE PROPOSED HYBRID APPROACH FOR ANOMALY
DETECTION

a) Long Short-Term Memory Network (LSTM): is a
type of Recurrent Neural Network with sophisticated memory

cells allowing the model to remember long term dependencies
and forget insignificant information. As mentioned in the
previous section, LSTM was proposed to overcome RNNs
limits [21]. RNNs are a class of ANN models that are recurrent
in the sense that they possess an internal state or short-term
memory with recurrent feedback connections. This implies
maintaining for each time step an activation parameters vector.
However, if they are trained with SGD (stochastic gradient
descent iterative method), it would be more difficult to learn
long-term dependencies due to the vanishing gradient problem
[21]. To address this issue, a more sophisticated neuron (called
also ”cell”) was proposed. It integrates regulatory structures
called gates that gives to the network the ability to remove or
add information to the cell state, allowing it to learn long-term
dependencies.
Given a sequence with a fixed T-length time window: X =
[x1, .., xt, .., xT], where xt ∈ Rn is an n-featured input at
time step t, a Recurrent Network maintains a hidden state
vector ht ∈ Rh that resumes the sequence information from
the current input xt and the previous hidden state ht−1. LSTM
cells integrate new components called ”gates” to produce
a more refined hidden state. We have the input gate, the
output gate and the forget gate. The hidden state vector ht
is computed as follows:

it = σ(WT
xi ∗ xt +WT

hi ∗ ht−1 + bi) (1)

ft = σ(WT
xf ∗ xt +WT

hf ∗ ht−1 + bf) (2)

ot = σ(WT
xo ∗ xt +WT

ho ∗ ht−1 + bo) (3)

gt = tanh(WT
xg ∗ xt +WT

hg ∗ ht−1 + bg) (4)

ct = ft ⊗ ct−1 + it ⊗ gt (5)

=⇒ ht = ot ⊗ tanh(ct) (6)

Where :
• W are the Neural Network weights, b are the bias terms,
σ is the sigmoid function and ⊗ represents element-wise
product operator. operator

• For a given time-step t we have: it: input gate, ft: forget
gate, ot: output gate and ct: cell activation vector.

LSTM is able to recognize important incoming patterns thanks
to the input gate, besides, it detects noisy information that
will be omitted from the cell state via forget gate, and
finally the output gate is associated with filtering operations to
obtain more relevant result. With such structure, LSTM cells
outperform regular cells at capturing long-term patterns in time
series.

b) LSTM Autoencoder :: Similarly to the word embed-
ding, in which words are represented in a continuous space
where semantic relationships between words are preserved,
the LSTM Autoencoder realizes the sequence-embedding: in
fact, the Encoder learns an internal representation of the input
sequence that captures the latent information within a fixed-
sized vector called encoding-vector. This last will be used
as input to the Decoder that will try to reproduce the input

sequence with a reconstruction error. This model has shown
good results in video representation [22], machine translation
[23]. In short, the overall process of an LSTM Autoencoder is
designed to read the input sequence, encode it, decode it and
recreate it. The performance of the model is evaluated based
on its ability to recreate the input sequence.
Considering a time widow T, a sequence of T transactions is
represented by a vector X= {x1, .., xT } where xt ∈ Rn is the
transaction record at time step t.
1. Encoder: It encodes the transaction sequence X with an
LSTM Neural Network: for a given time-step t the corre-
sponding hidden vector of the encoder hent is a function of
xt, h

en
t−1:

hent = fen(xt, h
en
t−1) (7)

The sequence input will be truncated with a fixed time
window T so henT captures the information of whole sequence.

2. Decoder: it is a Neural Network that adopts the T-length
sequence representation henT as the input to reconstruct the
original sequence:

hdect = fdec(h
en
T , hdect−1) (8)

where hdect is the hidden state vector of the decoder at time
step t.
We consider the combination of both the encoder and the
decoder as an overall Neural Network with an activation
function F so the reconstructed transaction x̂t at time step
t is given as follows:

x̂t = F (hdect) (9)

The loss function of our model is expressed by the Euclidean
distance between the generated vector and the original se-
quence input:

Loss =

T∑
t=1

(x̂t − xt)2 (10)

In this work, we omit the decoder once the whole model
has reached the desired performance, and keep the encoder
part which encodes input sequences into a fixed length vector.
The resulting vectors are used as input, to another supervised
learning model, as an efficient representation of the input
sequence. Normal and fraudulent transaction sequences would
be encoded in separate regions in the internal latent continuous
space.

A. LSTM Autoencoder for Anomaly Detection

In the raw form of our input data, normal and fraudulent
transaction sequences are highly correlated, which makes
the classification task very hard for classic classifiers based
approaches to distinguish between the two classes. To deal
with this problem, we propose to train beforehand an LSTM
Autoencoder on normal sequences in order to capture efficient
latent representations. And then, we propose to keep the pre-
trained encoder part to map normal and fraudulent transactions
to separate regions in the latent continuous feature space. This

representation is then provided as input to a binary classifier
that would easily distinguish between the two classes. The
overall process can be described in two main steps (See Fig.1):

Fig. 1. The overall process : latent representations computation with LSTM
Encoder and SVM based classification.

Step 1:
Given a training data set Enormal that contains labeled
normal and abnormal transaction sequences, we first train
the LSTM Autoencoder model with normal data sequences
(Fig. 2) as detailed in the algorithm 1. For comparison,
We have implemented both a dense Neural Network
and an LSTM Autoencoders, and as expected the LSTM
Autoencoder has learned much better representation encoding.

Fig. 2. Time Series Data Encoding based LSTM Autoencoder.

Step 2: Once the Autoencoder finished the training phase,
we omit the decoder and we keep the encoder to make
sequence representation of new records, that will be fed as
input for a binary classifier. In our work, we tested several
implementations of SVM classifiers as detailed in the pseudo-
code of the algorithm 2.

IV. EXPERIMENTS

A. Experimental Dataset

We have evaluated the proposed hybrid model on a la-
beled dataset containing time series records1 composed of
time-stamped credit card transactions which have occurred

1https://www.kaggle.com/mlg-ulb/creditcardfraud

Algorithm 1:
Result: Trained LSTM-Autoencoder
Inputs:

• Supervised Training dataset E=({x1, .., xN}, {y1, ..yN}):
with yi=0 if xi is a normal transaction, yi=1 otherwise

Parameters:
• Training time window T
• Training epoch for LSTM-Autoencoder epochs

Begin
Initialize LSTM parameters
Extract normal subset Enormal= {xi, for i in [1, N] ,
if yi=0}
i← 1 while i ≤ epochs do

Select random T-length sequence from Enormal

Forward propagation : reconstruct the sequence
Backward propagation algorithm minimizing the
loss function (10)

end
End

Algorithm 2:
Result: Trained classifier
Inputs:

• Supervised Training dataset E=({x1, .., xN},{y1, ..yN}):
with yi=0 if xi is a normal transaction, yi=1 otherwise

• Trained LSTM Autoencoder
Begin:
Randomly split E to trainSubset and testSubset
Utrain={}
for each x in trainSubset do
• compute the latent representation vector vx of x using

the encoder
• Utrain = Utrain+ vx

end
Initialize classifier
Train the classifier on Utrain

Utest={}
for each y in testSubset do
• compute the latent representation vector uy of y using

the encoder
• Utest = Utest+ uy

end
Test the classifier on Utest

Evaluate classification performances
End

in September 2013 by european cardholders. It contains only
numerical input variables which are the result of a PCA trans-
formation for confidentiality issues. But the original values of
the time and the Amount of transactions were preserved. The
target feature takes value 1 in case of fraud and 0 otherwise.
This dataset is highly skewed with only 0,1% of ”1” tagged
data inputs.

B. Experimental Setup

We have implemented both dense (classic fully connected
NN) and LSTM Autoencoder via Keras framework with
tensorflow back-end using Python 3.5.6 by optimizing the
networks using Adelta. For the LSTM Autoencoder the chosen
dimension of the hidden layer (which is also the latent feature
space dimension) is set to 150, the time window length T is
set to 10, the chosen value for training epoch is 20 and the
batch size is set to 256. We carry out extensive experiments
to set empirically these values which maximize our model
performance. The main difference between dense and LSTM
Autoencoder at the implementation level, is that in the second
one, the input has to be 2D-reshaped, in fact, it takes a
sequence of T ∗ n− dim transaction records, whereas for the
dense Autoencoder, each input is 1 ∗ n dimensional record.

C. Experimental Results

We have trained both dense Autodencoder and LSTM
Autoencoder on our training dataset. Fig. 3. shows the 2D
visualisations using T-distributed Stochastic Neighbor Embed-
ding (t-SNE) on raw data, we notice that the two classes
are highly correlated, and applying a binary classifier on that
form of data is doomed to failure, fig. 4. corresponds to the
latent representation of the data obtained with a dense Neural
Network Encoder: we note that the two classes are more
separated, in fact, we can distinguish more clearly the two
classes and finally fig. 5. shows the latent representation of
the sequences obtained with the LSTM Encoder: the efficient
LSTM data encoding has distinguish normal and fraudulent
transactions, in two diagonally-opposite regions which makes
the two classes straightly separable. This last encoding do best
discriminative encoding power compared to the dense Neural
Network representations.

For the classification step, we tried several SVM classifiers
implementations with three different optimizers provided by
sklearn library which are:

• SVC-Support Vector Classification : The implementation
is based on libsvm.

• LinearSVC which is based on liblinear library: it consti-
tute a better choice for large numbers of samples than the
first implementation.

• Stochastic Gradient Descent (SGD) is a general optimiza-
tion method which can optimize many different convex-
optimization problems.

Furthermore, we have trained several classifiers on different
representations of our data. To evaluate the different
performances, all the experimented models has been trained
on 80% of the dataset and evaluated on the remaining

Fig. 3. Original data representation : strong correlation between the two
classes (normal and fraud)

Fig. 4. Data Encoded with a pre-trained dense neural network encoder.

Fig. 5. Data Encoded with a pretrained LSTM Encoder

20%. The train/test sampling was stratified along the target
variable in such a way that the fraudulent and normal

transactions proportions are kept in both train and test
samples. We compute the Precision, Recall and F1 score to
evaluate classification performances, applied on the different
representations of our data : the overall results are resumed in
table I. We can notice that there is a significant improvement
with the second representation (b) : f1 score increased from
0.25 to 0.9 for linear SVC optimizer and from 0.61 to
0.9 for SGD. However, the best representation in terms of
classification performances is given by the LSTM encoding
(c), in fact, the SVM classification score has increased from
0.61 to 0.98. But the difference was more significant with
the use of SVM classifier based on SGD optimizer: f1 score
measure has increased to 0.99 with the last encoding: it
was impossible for the classifier with SGD optimizer to
dicriminate between classes at the raw form of our data
(a), meanwhile it has been much more easier at the LSTM
encoded representation.

The obtained results show that the transactions sequences
representations given by LSTM autoencoder was able to
capture the salient latent information about transactions se-
quences, which improved the performances of basic classifiers.

TABLE I
CLASSIFICATION ERRORS OF THREE CLASSIFIERS APPLIED SEPARATELY
AT THE ORIGINAL DATA INPUT (A) THEN AT THE SAME DATA ENCODED
WITH A CLASSIC PRE-TRAINED NEURAL NETWORK ENCODER(B) AND
FINALLY AT THE ENCODING OBTAINED THROUGH THE PRE- TRAINED

LSTM ENCODER(C)

Input Representation Metric SGD LinearSVC SVC
(a) Original data Precision 0 0.45 0.49

Recall 0 0.17 0.80
F1-score 0 0.25 0.61

(b) Dense encoder Precision 0.84 0.90 0.90
Recall 0.93 0.91 0.912
F1-score 0.88 0.9 0.90

(c) LSTM encoder Precision 0.99 0.99 1
Recall 0.995 0.96 0.97
F1-score 0.997 0.98 0.98

D. Comparison with state-of-the-art outlier detection algo-
rithms

The proposed method is compared with several state-of-the-
art models (One Class SVM ”OCSVM”, Isolation Forest and
Local Outlier Factor ”LOF”). Table II shows that we have
obtained poor performances with isolation forest (f1-score of
0.66) and with LOF (f1-score of 0.35) whereas with our hybrid
model using SGD optimizer for the SVM classifier we have
obtained a score of 0.99.
We also evaluated other non outlier detection oriented algo-
rithms, the experimented models are the following:

• Logistic regression classifier: [24] with L2 norm penalty
and an inverse regularization strength constant set to 2

• Random forest [25] with 50 estimators and maximum
depth equals to 3. this model has been implemented with
a class weighting technique [26] to overcome the heavy
data skewness by giving weights inversely proportional to
each class. This technique changes the weight that each

class has when the Random forest algorithm calculates
the gini score of a chosen split point. Fraudulent transac-
tions were weighted by 10 against 1 for normal entries.

• LightGBM 2 model which is basically a gradient boost-
ing framework based on tree learning algorithms [27]
with 100 estimators

The used hyper-parameters of each model are fixed with
random search technique [28]. Table III illustrates the ob-
tained performances. It shows that Random forest coupled with
weighting method has shown better results than the others.
This is due to the ”gini” scores calculation at each split, is
biased in favor of the minority class (fraudulent transactions),
allowing with this way some false positives for the majority
class (normal transactions).

TABLE II
COMPARISON WITH STATE-OF-THE-ART METHODS: THE PROPOSED

HYBRID MODEL (LSTM & SVC) AND (LSTM & SGD) HAVE SHOWN
BETTER RESULTS COMPARED STATE-OF-THE-ART METHODS.

Metric Isolation LOF OCSVM Hybrid Hybrid
Isolation (LSTM (LSTM

+ SVC) + SGD)
Precision 0.50 0.35 0.82 1 0.99
Recall 0.95 0.35 0.42 0.97 0.995
F1-Score 0.66 0.35 0.56 0.98 0.997

TABLE III
RESULTS OF OTHER NON OUTLIER DETECTION ORIENTED MODELS

Algorithm LogiticRegression RandomForest LightGBM
Precision 0.006 0.70 0.12
Recall 0.125 0.88 0.50
F1-Score 0.012 0.77 0.19

V. CONCLUSIONS

In this paper, we proposed an hybrid approach for
anomaly detection in time series by combining an LSTM
Autoencoder with a linear classifier. Our model inherits
from the Autoencoders the ability of learning efficient
representations, and from the LSTM Neural Networks the
sequence embedding. The latent representation based on
LSTM Autoencoder was so efficient that we don’t need
any complex model with high computational complexity
for the classification task, a linear classifier is sufficient to
achieve high classification performances. Experiments were
conducted on real world dataset, and the comparison with
the state-of-the-art methods showed that our hybrid model
outperforms the others in term of classification rate. In future
work, we plan to tackle another complex issue in anomaly
detection task which is the problem of the unbalanced dataset
between normal and abnormal class consisted of rare outliers.
The source code of our approach is publicly available on
github3. It was furthermore extended as a web application
that can also be provided.

2https://github.com/microsoft/LightGBM
3https://github.com/Athena75/hybrid lstm ijcnn

REFERENCES

[1] M. Y. Larry M. Manevitz, “One-class document classification via neural
networks,” Neurocomputing, vol. 70, p. 1466–1481, 2007. [Online].
Available: https://doi.org/10.1016/j.neucom.2006.05.013

[2] R. T. N. J. S. L. Markus M. Breunig†, Hans-Peter Kriegel, “Lof:
Identifying density-based local outliers, in acm sigmod record,” Procedia
Manufacturing, vol. 29, p. 93–104, 2000.

[3] F. T. L. . K. M. T. . Z.-H. Zhou, “Isolation forest,” Eighth IEEE
International Conference on Data Mining, 2008.

[4] G. S. P. A. Pankaj Malhotra, Lovekesh Vig, “Long short term memory
networks for anomaly detection in time series,” In European Symposium
on Artificial Neural Networks, Computational Intelligence and Machine
Learning, 2015.

[5] M. A. T. M. J. Leonard, “Time series feature extraction,” 2018.
[6] J. S. Sepp Hochreiter, “Long short-term memory,” Neural Computation,

vol. 9, p. 1735–1780, 1997.
[7] Q. V. L. Ilya Sutskever, Oriol Vinyals, “Sequence to sequence learning

with neural networks,” in Advances in Neural Information Processing
Systems. NIPS Montreal, 2014.

[8] S. O.Vinyals, A.Toshev and D.Erhan, “Show and tell: A neural image
caption generator,” 2015.

[9] G. Alex., “Generating sequences with recurrent neural network,” 2014.
[10] P. Baldi, “Autoencoders, unsupervised learning, and deep architectures,”

JMLR: Workshop and Conference Proceedings, vol. 27, p. 37–50, 2012.
[11] J. L. J. H. G. L. Changfan Zhang, Xiang Cheng, “Deep sparse

autoencoder for feature extraction and diagnosis of locomotive
adhesion status,” Procedia Manufacturing, 2018. [Online]. Available:
https://doi.org/10.1155/2018/8676387

[12] A. B. G. A. S. Marco Maggipinto, Chiara Masiero, “A convolutional au-
toencoder approach for feature extraction in virtual metrology,” Procedia
Manufacturing, vol. 17, pp. 126–133, 2018.

[13] S. O. Ian J. Goodfellow, Jean Pouget-Abadie, “Generative adversarial
nets,” 2014.

[14] O. E. J. B. H. C. Thomas Blaschke, Marcus Olivecrona,
“Application of generative autoencoder in de novo molecular
design,” Journal of Cheminformatics, 2017. [Online]. Available:
https://doi.org/10.1186/s13321-018-0286-7

[15] L. T. U. M. R. I. Mohiuddin Ahmed, Abdun Mahmood, “A survey of
anomaly detection techniques in financial domain,” 2015.

[16] S. S. Girik Pachauri, “Anomaly detection in medical wireless sensor net-
works using machine learning algorithms,” Procedia Computer Science
70, vol. 70, p. 325 – 333, 2015.

[17] B. S. R. W. A. S. J. S.-T. J. Platt, “Support vector method for novelty
detection,” In NIPS’99 Proceedings of the 12th International Conference
on Neural Information Processing Systems, 1999.

[18] A. B. Andrea Borghesi, “Anomaly detection using autoencoders in high
performance computer systems,” 2018.

[19] G. A. L. V.-P. A. G. S. Pankaj Malhotra, Anusha Ramakrishnan,
“Lstm-based encoder-decoder for multisensor anomaly detection,” TCS
Research, 2016.

[20] A. K. M. S. C. Raghavendra Chalapathy, “Anomaly detection using one-
class neural networks,” 2019.

[21] P. F. R. C.-A. K. M. S. C. Y. Bengio, P. Simard, “Learning long-term
dependencies is difficult,” IEEE, vol. 5, no. 2, p. 15 –166, 1997.

[22] E. M. Nitish Srivastava and R. Salakhutdinov, “Unsupervised learning
of video representations using lstms,” ICML’15 Proceedings of the
32nd International Conference on International Conference on Machine
Learning, vol. 37, pp. 843–852, 2015.

[23] e. a. Kyunghyun Cho, et al., “Learning phrase representations using
rnn encoder–decoder for statistical machine translation,” Association for
Computational Linguistics, p. 1724–1734, 1997.

[24] J. Brzezinski, “Logistic regression modeling for context-based classifi-
cation,” Proceedings. Tenth International Workshop on Database and
Expert Systems Applications. DEXA 99, 1999.

[25] L. Breiman, Random Forests, 2001, vol. 45.
[26] A. L. Chao Chen and L. Breiman, “Using random forest to learn

imbalanced data,” 2004.
[27] G. K. Q. M. T. F. T. W. W. C. W. M. Q. Y. T.-Y. Liu, “Lightgbm:

A highly efficient gradient boosting decision tree,” Advances in Neural
Information Processing Systems 30 (NIP 2017), 2017.

[28] Y. B. James Bergstra, “Random search for hyper-parameter optimiza-
tion,” Journal of Machine Learning Research 13, 2012.

