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Abstract—In this paper, we propose an automatic my-
ocardial infarction segmentation framework from Delayed
Enhancement cardiac MRI (DE-MRI) using a convo-
lutional neural network (CNN) and prior information-
based post-treatments. The work was conducted on our
DE-MRI dataset, which is collected from daily clinical
practice. 195 cases of DE-MRI examinations constitute
this dataset, including on average 7 images per case with
manually drawn contours by an expert. The objective is
to automatically segment myocardial infarctions on both
healthy and pathological images in the dataset. In the
proposed framework, a downsampling-upsampling segmen-
tation CNN firstly generates high recall segmentations of
myocardial infarction from left ventricle DE-MR images,
then the proposed prior information-based post-processing
method identifies and removes false-positive segmentations
from the CNN’s prediction. To obtain a high recall pre-
diction, two U-NET like semantic segmentation networks
are investigated: CE-NET and its backbone with Dice loss
and Stochastic Gradient Descent (SGD) using a batch size
of value 1. The prior information-based post-processing
evaluates every single contour in the CNN’s segmentations:
region features in each contour are compared to criteria
which are firstly estimated based on the training set
images and eventually fine-tuned based on the validation
set images. All non-conforming contours are removed from
the predictions to improve the accuracy of the segmenta-
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the Mesocentre of Franche-Comté for the computing facilities.

tion. Combining the high recall networks and prior post-
processing information, we achieve segmentation results
comparable to those produced by human experts.

Index Terms—segmentation, deep learning, prior infor-
mation, myocardial infarction, DE-MRI

I. INTRODUCTION

Late Gadolinium Enhancement Magnetic Resonance
Imaging (Delayed enhancement MRI or DE-MRI) has
become the reference exam for myocardial infarction
quantification. In such an image, acquired several min-
utes after the injection of the gadolinium contrast agent,
normal myocardiums and ischemic tissues show different
signals, that allow to distinguish the myocardial infarc-
tion (that appears in bright) from its surrounding healthy
tissues (that appear in grey). Furthermore, this exam has
been largely applied worldwide for accurate myocardial
ischemic and non-ischemic pathology inspection [1] in
routine clinical practice.

The myocardial infarction segmentation is mainly
carried out by experts manually annotating the acquired
images. This task is time-consuming and depends highly
on the experience of the clinical experts. A robust fully
automatic myocardial infarction segmentation approach
for DE-MRI shows great potential for the clinical prac-
tice. With such an end-to-end solution, the physician
only needs to validate the automatic segmentation con-
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tours and add some minor corrections when necessary.
Meanwhile, the design of an automatic segmentation
method able to predict on mixed normal and pathological
images is very challenging. The network should be able
to predict on image-level and pixel-level at the same
time, i.e., both the recall and the accuracy of the seg-
mentation are demanding. Other difficulties include the
presence of noises, the lack of contrast between normal
and pathological areas due to the partial volume effect
and also to the grey zone between myocardial infarction
and normal myocardium. Finally, the heterogeneity in
the signal within the dataset makes it difficult to design
a robust method.

Current cardiac infarction segmentation approaches
are principally rule-based models, including threshold-
based approaches like Full-Width at Half-Maximum
(FWHM) [2] or n-Standard Deviations (n-SD) [3],
and clustering-based approaches like Gaussian Mixture
Models (GMM) [4]. In the framework of a MICCAI
challenge, Karim et al. [5] have compared most of
the current rule-based models from human and animal
datasets, showing that although they are time-saving,
their segmentation quality generally lags far behind the
intra-observation and inter-observation variations of the
datasets.

Learning-based approaches for medical imaging seg-
mentation have been widely researched and applied to
cardiac MRI. However, few works concentrate on the
myocardial infarction segmentation. For example, De
La Rosa et al. [6] applied first a CNN classifier to
detect pathological cases followed by a morphological
treatment to generate the segmentation of infarctions.
More works have been conducted for myocardium seg-
mentation on LGE MRI. E.g., Avendi et al. [7] combine
deep learning with a deformable model for left ventricle
segmentation.

For the general-purpose semantic segmentation by
deep learning, Fully Convolutional Networks (FCNs) [8]
use deconvolution as the upsampling operation for detail
reconstructions. To achieve a higher spatial precision
of pixel-level semantic segmentation, U-Net [9] and its
variants M-net [10], FusionNet [11], CE-Net [12], etc.
optimize the upsampling phases through skip connec-
tions: such connections share the feature maps from a
downsampling phase to the corresponding upsampling
one so that localization information can be taken into ac-
count during the reconstruction of segmentation. Besides
the design of the network architecture, some optimiza-
tion tricks of the loss function and convolutional blocks
have been proved meaningful on some application fields.

Metric-based loss functions such as Generalized Dice
[13] and the combination of Dice and Cross Entropy
(CE) [14] can thus outperform the CE or the L1/L2 dis-
tance on some specific data. The substitution of convolu-
tional blocks can also improve the segmentation results
under some circumstances. However, this benefit can
be mitigated by the larger number of network weights.
Apart from the downsampling - upsampling approaches,
Generative Adversarial Networks (GAN) have also been
employed for medical image segmentation. Majurski et
al. [15] and Xue et al. [16] have thus investigated such
generative models showing good results on cell image
and brain MRI segmentation.

It should be noted that in most of the previous works,
the authors assume that the images to be segmented
are always infarction images. The problem of image-
level prediction (if an image is showing an infarction
or not) has not been taken into account, which means
that most of these approaches could not guarantee the
correctness of the prediction on non-pathological images.
Additional designs are potentially necessary to overcome
this constraint, e.g., the classification of an image before
using a segmentation network, or alternatively to classify
the image after segmentation.

In the light of what has been said above, this paper
proposes an automatic myocardial infarction segmenta-
tion framework. This framework receives the left ven-
tricle myocardium from mixed normal and pathological
DE-MRI in short-axis orientation as input and gen-
erates segmentation contours of myocardial infarction
tissues. Our proposal includes three steps as shown
in Fig. 1 from left to right: image preprocessing, image
segmentation by an ensemble [17] of downsampling -
upsampling segmentation CNNs, and prior information
based post-processing. The contributions of this work
are twofold. First, we propose an efficient framework for
the infarction segmentation on highly class-imbalanced
DE-MRI. The main strategy is the generation of high
recall predictions through image preprocessing and CNN
image segmentation, followed by the selection of good
segmentation contours from the CNN’s output during the
prior information-based post-processing. Second, the de-
sign of a novel prior information-based post-processing.

The remainder of the paper is organized as follows. In
Section II is explained how our dataset was built, giving
in particular some details on the acquisition process. In
the next section we describe the proposed segmentation
framework, focusing on the segmentation CNN and the
post-processing method. Experimental results are then
presented in Section IV and more deeply discussed in



Fig. 1. Illustration of the proposed framework considering a single 2D input image. For a 2.5D input, three neighbouring images replace the
single input image.

the final section, as well as directions for future work.

II. DATASET

The dataset is composed of 195 patients’ DE-MRI
examination in short-axis orientation, with on average
7 slices that cover the left ventricle from the base to
the apex. MRI acquisitions were performed on 1.5 T
and 3 T magnet (Siemens Medical Solution, Erlangen,
Germany) with a phased thoracic coil. Images were ac-
quired 10 minutes after the injection of gadolinium-based
contrast agent (Gd-DTPA; Magnevist, Schering- AG,
Berlin, Germany) using a T1-weighted phase-sensitive
inversion recovery (PSIR) sequence. The mean pixel
spacing is 1.55 mm² ± 0.20 mm² according to the
patient, thus the left ventricular myocardium is always
included in a square of 80×80 pixel². Annotations of the
myocardium and myocardial infarction of each slice of
MR image were also provided. The myocardial contours
and the myocardial infarction areas (if present) were
manually drawn by an expert in the domain (with more
than 15 years of experience) on each slice, allowing the
accurate definition of the myocardium and the infarction
without considering the cavity.

For the experiments, the dataset is randomly divided
into training, validation, and test sets, corresponding
respectively to 888, 241, and 194 images. One entire
examination only belongs to one separated set. To eval-
uate manual annotations’ variation, the expert repeated
the manual segmentation on 35 cases randomly selected.
Another expert was invited to annotate on the same cases
to check the inter-observation agreement, in order to
validate the reliability of the dataset and quantify the
human expertise. The test set includes the same cases
as the intra-observer and the inter-observer variation
studies.

As the MR images were collected during daily clinical
practice, it can objectively represent the challenges the
medical imaging experts are facing. Difficulties such as
artifact, poor contrast, blurry effect cannot be completely
avoided. Besides the biases produced during image
acquisition, the internal variations among images are
more challenging: images on the apex or base could
appear very differently; patients’ physical state results
in different contrast ratios, etc.

III. METHODS

Applying existing segmentation frameworks on mixed
normal-pathological images showed that on pathological
images the result is satisfying. But on normal slices,
non-pathological tissues are frequently segmented as
infarctions. In this paper we will mainly present the
solution for false-positive prediction elimination (normal
tissue is predicted as infarction). Indeed our novel prior
information-based post-processing method is specially
designed for mixed normal-pathological images segmen-
tation.

The proposed framework includes preprocessing, seg-
mentation by CNN, and post-processing. Preprocessing
first transforms data from whole MRI acquisition to
focus on the myocardium (without cavity) as networks’
inputs. The resulting images are then normalized to
enhance the contrast. The obtained preprocessed images
are then fed to the CNN for myocardial infarction
segmentation. The different CNNs we considered are
trained using Stochastic Gradient Descent (SGD) (with
a batch size of one) instead of mini-batch SGD to get
a higher prediction recall. A set of different network
models’ predictions avoids uncertainty among different
training epochs. Finally, prior information-based post-
processing identifies each contour of a segmentation such
that only conforming contours are kept as final contours.



A. CNNs of High Recall Segmentation

Motivated by the huge success of the recently pub-
lished CE-Net architecture on multiple kinds of data
(cell, 2D CT images, optic disc etc.) [12], we chose
it as our segmentation CNN model. For comparison,
the backbone of CE-Net (CE-Net without dense atrous
convolution (DAC) and residual multi-kernel pooling
(RMP) blocks), which is very similar to FusionNet [11],
has also been tested on same data. CE-Net is a variation
of U-Net architecture [9]. Like the latter it uses skip con-
nections between mirrored layers in both downsampling
and upsampling stacks in order to recover the lost spatial
information during downsampling. As in FusionNet ,
residual blocks [18] replace the repeated convolutions
so that the feature extraction is more efficient. The
novelty of CE-Net is the context extractor which is
formed of DAC [19] and RMP blocks. In DAC block,
densely connected convolutions extract information of
different depths, allowing to decrease feature map size
without losing semantic information. While in RMP
block, residual pooling of different kernel size optimizes
predictions of both big and small objects.

Clinical practice shows that neighbouring images can
be referred to assist segmentation decision. Inspired by it,
we arrange 3 successive images in 3 channels as a 2.5D
input. To understand such 2.5D input, an 1D convolution
layer is added at the beginning of the network. This layer
merges the information between neighbouring images.
Fig. 2 shows the 2.5D input CE-Net based network
structure.

In most CNN applications, mini-batch SGD makes
training more robust and efficient [20]. Mini-batch SGD
takes into account all samples in the batch and returns the
average of the gradients. On one hand a large batch size
smoothes the update path during training by reducing
the variance of weight updates, but the gradient of noisy
samples has little impact. On the other hand a small batch
size has a higher risk of misleading the update path.
However, preliminary experiments indicate that SGD
(batch size of value 1) produces better segmentations. In
fact, the images in our dataset have large variations in
their characteristics, base and apex images in particular
can be quite different. As the mini-batch SGD tends to
ignore noisy features during backpropagation, the varia-
tions could be identified as noises. That means that some
useful information is dropped out during training, while
with SGD all features in a image contribute equivalently
to the weights update. Despite learning both features of
data variations and noises, and decelerating the training,
SGD outperforms mini-batch SGD on our dataset.

CE is one of the most common loss functions in
semantic segmentation networks. Nevertheless, it does
not work properly on our data because of the important
class imbalance. Weighted CE can alleviate this problem,
but the weight parameter is very difficult to determine.
Hence, we adopted the Dice loss in our experiments.

B. Post-processing with Prior Information

We use the ensemble technique to merge multiple
network models’ predictions to avoid the uncertainty of
the different training epochs. Hence, during the training
stage, multiple weights of the same network structure are
saved before early stopping. A saving occurs at the end
of a series of epochs whose interval depends on that of
the batch size used during training. For the validation and
test stages, these models of the same network structure
perform independent segmentations on each input im-
age before eventually merging their results. Finally, the
merged results are converted to binary images and the
binary threshold value is determined using the validation
set.

The prior information-based post-processing refers
to the rules that clinical experts employ for manual
annotation drawing and inspection. Based on these rules
and relative prior information in the data, criteria are
constructed to eliminate false-positive contours in the
CNN’s segmentations. To design such criteria, we firstly
investigated the image characteristics which can be
considered as criteria, then we inspected the statistics
of prior information in the training set to study the
relevance of the proposed criteria. Since our data have
significant variations, the criteria should be universal
enough for the whole dataset. On the strength of this
inspiration, three criteria were designed to improve the
accuracy of the segmentation.

The first criterion focuses on the infarction size. In
clinical practice, a validated myocardial infarction should
have a minimum area. Otherwise, it will be considered as
a noisy region, e.g. an artifact. Therefore, this criterion
compares the area of each single segmentation in CNN’s
outputs to a threshold value of the area. All segmentation
contours which do not meet the condition:

Area(C) > θarea (1)

are removed, where C is one contour belonging to a
coarse segmentation and θarea is the threshold area.
Impacts of noises on the CNN’s segmentations such as
the partial volume of fat or cavity, artifacts of high signal
should be eliminated by this criterion.

The second and third criteria take advantage of the
contrast agent’s nature. The gadolinium contrast agent



Fig. 2. Illustration of experimented 2.5D CE-NET. ResConv doubles the number of feature maps and halves their resolution. Skip connection
concatenates corresponding encoder feature maps and decoder feature maps. For 2D input, the 1D convolution layer is removed; backbone
network keeps same architecture as above except DAC and RMP blocks which are removed.

can enhance the signal intensity on our T1-weighted MR
images and agent-enriched tissues show high signals.
Blood transports the contrast agent in cardiac tissues.
The absorption and the release rate of the agent depend
on the type of tissue, which allows us to distinguish
each tissue in DE-MRI. Therefore, 10 minutes after the
injection of the contrast agent, infarction tissues and
cavity show high signals, while normal myocardium
tissues appear dark. According to the above rules, the
second criterion compares the median signal value of
the cavity (signal of the blood) and the candidate area:

M(C)−M(cavity) > θsignal (2)

where M() means the median signal value in the region,
C stands for the region of the candidate contour, and
cavity stands for the region of the cavity. If the signal
in the region of the candidate contour is high enough
compared to the cavity, this area will be kept. In this
criterion, the intensity signal of the blood inside the
cavity indicates the reference of low intensity. Indeed,
the cavity is a reliable reference tissue because its
contour is given in the dataset and the signal in the cavity
is relatively homogeneous.

However, the absolute difference between the infarc-
tion tissue and cavity is not always consistent between
examination cases as shown in the left part of Fig. 3. The
delayed acquisition time (the images are not acquired
exactly at the same delay time between examinations),
the patient’s physical state, characteristics of MRI ma-
chine, etc. can affect the optimal threshold value of our
criterion. To reduce the impact of such variations, the
third criterion refers to both intensities of the cavities and
non-pathological myocardium tissues, which constitute

a scope of signal. The candidate infarction area is then
compared to this scope:

(M(C)−M(cav))/(M(cav)−M(myo)) > θ% (3)

where M(myo) refers to the median signal of non-
infarction myocardium. The threshold value θ% becomes
a percentage of the scope rather than an absolute dif-
ference (θsignal) as in (2). Fig. 3 calculated on the
training set prior information proves that the index of
scope on the right is more consistent that the absolute
difference on the left. Nevertheless, the contours of
healthy myocardium tissues are not given for the in-
farction segmentation task (only the whole myocardium
contour annotation is provided). Reminding that our
neural network ensures high recall, we assume that all
the myocardium except the regions segmented by the
neural network is healthy, which means that the non-
selected myocardium is certainly non-pathological. The
final segmentation results testify the relevance of this
hypothesis.

According to the statistics of the prior information
and experiments, our framework employs the first and
third criteria to select true-positive segmentations. The
final post-processing is summed-up in Algorithm 1. All
threshold values are roughly determined on the training
set’s prior information 3, and then fine-tuned on the
validation set to obtain the best performance on the test
set and avoid data leakage.

IV. EXPERIMENTS AND RESULTS

To validate if the neighbouring image information
can be correctly interpreted by the CNN to improve
the segmentation accuracy, the 2.5D backbone and 2D



Fig. 3. Prior statistics supporting criterion (2) and criterion (3).
The absolute difference of signal (left) is less consistent than the
proportional difference on scope (right).

Algorithm 1: Post-processing
Result: removal of false-positive segmentation

contour(s) of one image
Input : Set of infarction contours {Si}
Input : Criterion (1) C1; Criterion (3) C3

Output: Final segmentation contour(s) Sfinal

Sensemble ← Avg({Si)};
Sensemble ← Binary(Sensemble);
for aContour ∈ Sensemble do

if aContour fulfills conditions {C1 ∪ C3}
then
Sfinal ← Sfinal + aContour

end
end
return Sfinal

backbone models are compared. The same parameters
are used, except for the dimension of the input images
and the 1D convolution layer. As shown in Tab. I, the
experiments show that no evident gain is obtained with
the 2.5D input.

The original CE-Net architecture takes as input larger
images than ours. Passing through 5 convolutional
blocks, the feature map size is pooled as 1

32 of the input
image, which means that the DAC block will receive
a 3 × 3 feature map if we feed the network with a
96 × 96 pixel² input image. To ensure the functionality
of DAC and RMP blocks without reducing the depth
of the network, in order to assess their benefit, we have
tested CE-Net on interpolated images having a five times
larger resolution than the original 96 × 96 ones. The
nearest neighbour interpolation guarantees unchanged
semantic information. The obtained results indicate two
facts. First, CE-Net does not bring us a better result. The
additional dense convolution and multi-kernel pooling on
high-level semantic information do not provide useful

information to the final segmentation. Second, interpo-
lated images slightly improve the performance after post-
processing. Indeed, interpolation equivalently changes
the size of the receptive field of convolution kernels.

Most of the healthy images are wrongly segmented
as false-positive by the CNN. The best CNN we tested
obtains 80.92% on accuracy and 100% on recall (2D
interpolated inputs, CE-Net), which means that all patho-
logical images are segmented, whereas without the
post-treatment 19.08% of the healthy test images are
segmented as infarctions. The prior information-based
post-processing obtains significant improvement on the
segmentation results, especially on healthy images. Af-
ter post-processing, the segmentation remains false on
8.25% of the images, including 5.81% false negative
and 2.44% false-positive. On pathological images, the
segmentation of infarction is also slightly improved.
This improvement majorly comes from the removing
of false-positive contours from noisy areas as shown
in the base image in Fig 4. Notice that the threshold
values of the criteria can affect the post-treatment results:
more strict thresholds decrease the rate of false-positive
segmentations, but increase the false-negative and vice
versa. The threshold values we used are fine-tuned on
the validation set by inspecting the Dice values and the
difference of proportion. Two metrics that can increase or
decrease differently depending on the threshold values.

Fig. 4 shows a segmentation result of an MRI exami-
nation. The result is globally satisfying in middle images.
Tab. I gives the results for each CNN model and the ef-
fect of the post-processing on the test set. The metric Dif-
ference is calculated as the absolute area difference be-
tween the segmentation and the label divided by the area
of the myocardium. Healthy images that are correctly
segmented return 100% Dice and 0% Difference. Values
in bracket stand for the results before post-processing.
Hausdorff distance is not taken as our metric because
in a single image multiple contours of infarction could
be present. Comparing the Hausdorff distance between 2
series of contours is meaningless. The metrics obtained
before and after the post-processing stage indicate that
the proposed post-processing efficiently removes most
wrong segmentation contours. Tab. II shows the final
results according to the categories of the slice position.
Apex and base images result in more failed segmentation
because of their higher uncertainty and less agreement
between clinical experts. Focusing on middle images, the
results are quite satisfying compared to the annotation’s
internal variations.

To summarize, 2.5D input images can not be correctly



Fig. 4. Segmentation result from the 2D backbone network. From left to right, a whole examination is segmented (base to apex). From top to
bottom, the contours are respectively the merged segmentations (the set of predictions, without the post-processing), post-treated segmentations,
and their labels. Dice values are given at the bottom of each slice (Dice value without post-processing in bracket). The artifact due to the MRI
acquisition on the first image is wrongly segmented as an infarction by CNN, then the post-processing successfully removes this false-positive
segmentation so that its Dice improves from 59.7 to 76.3.

TABLE I
EXPERIMENTS RESULTS ON TEST SET

Model1 Dice(%) Difference(%) Recall(%) Accuracy(%)

Intra-observation 81.00 4.14 85.45 71.20
Inter-observation 77.42 8.66 90.26 67.50

2D BB B1 74.19 (66.29) 7.72 (8.29) 83.20 (85.62) 65.00 (56.28)
2D BB B32 71.81 (57.88) 8.87 (11.65) 77.41 (81.69) 61.32 (46.61)
2.5D BB B1 75.71 (69.01) 7.70 (7.83) 84.72 (86.80) 66.41 (59.15)
2.5D BB B32 71.05 (59.09) 8.09 (11.22) 75.94 (81.20) 60.29 (42.62)
2D BB 5x B1 77.98 (65.2) 5.33 (7.93) 88.93 (90.34) 68.39 (55.97)
2D BB 5x B32 73.12 (59.51) 7.25 (11.98) 79.40 (85.97) 63.34 (48.73)
2D CE 5x B1 77.93 (65.67) 5.47 (7.64) 89.13 (90.56) 68.07 (56.38)
2D CE 5x B32 73.18 (59.93) 7.39 (11.19) 78.86 (84.96) 63.57 (49.17)

TABLE II
RESULTS ON DIFFERENT IMAGE POSITIONS

Middle Apex + Base
Dice(%) Difference(%) Dice(%) Difference(%)

Proposal 81.37 (69.70) 4.29 (6.03) 65.63 (48.86) 9.21 (14.36)
Intra-observation 81.96 3.89 76.72 6.19

interpreted by the CNN. SGD achieves the best results
with all network structures and input image resolution.
Interpolation slightly optimizes segmentation details.
The prior information-based post-processing largely im-

proves the final segmentation results by solving the prob-
lem of false-positive segmentation on healthy images;
the proposed framework provides results comparable to
clinical experts, especially on middle slices.

V. DISCUSSION

An automatic myocardial infarction segmentation
framework from cardiac DE-MRI has been designed
using the CE-Net architecture and prior-information-
based post-treatments. We have shown that SGD is more
suited than its widely adopted mini-batch variant to train
the CNN. SGD can efficiently increase the recall of
prediction on highly biased data, which is very favorable
for post-processing. 2.5D input does not provide more
correctly interpreted semantic information. One possible
explication is the delocalization between neighbouring
images. Although each myocardium is relocalized in the
center of the input image, the evolution of their form
along the z axis is uncertain, hence the 1D convolution
could wrongly merge inter-channel information. Another
possible reason is the amplified noise. Since noise in
one single image will corrupt both 3 channels due to

1BB: Backbone; CE: CE-NET; 5x: interpolated; B1/B32: batch size



the inter-channel convolution. CE-Net shows no differ-
ence to its backbone version, which could mean that
more feature extraction on high semantic information
is not helpful for the small and irregular region to be
segmented. The improvement observed with interpolated
images reveals also the effect of the receptive field size.

The prior information-based post-processing provides
a huge improvement, particularly on mixed healthy-
infarcted data. To generalize this prior information-based
post-processing on other kinds of medical imaging, first,
two (or more) labeled or region-confirmed tissues would
be chosen to create a dynamics window. Second, the
region signal in candidate contour would be compared
to a proportional threshold on this window. Only the
conformed contours would be finally kept as the result of
the segmentation. The representative value of the region
could be the median of its histogram. The difficulty of
this approach is the selection of characteristic tissues.

Compared to the intra-observation variations, the re-
sults demonstrate the possible application of the pro-
posed approach in clinical practice. Moreover, in terms
of Dice value, our automatic segmentation method has
reached the level of a human expert. Let us also em-
phasize that the combination of a high recall neural
network and prior information-based post-processing can
be adopted by other medical image segmentation frame-
works. Future work includes two objectives. First, false
predictions must be further reduced when dealing with
healthy and pathological images. Second, a more com-
plete framework able to segment myocardium, patho-
logical tissue (infarction and no-reflow areas), as well as
peripheral pathological tissue should be developed.
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