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Abstract—Heterogeneous domain adaptation adapts a machine
learning model, here classification model, from a source domain
to a target domain to leverage data from both domains. Thereby,
supervised heterogeneous domain adaptation expects labeled
data from the target domain, while unsupervised heterogeneous
domain adaptation does not. In this article, we study the inclusion
of active learning to bridge unsupervised and supervised domain
adaptation. The active learning approach iteratively queries the
most useful instances from the target domain, which are then
labeled and used to improve the classification model. Using active
learning, the selection of training instances can focus on areas
where ambiguity in the source domain resolves in the target
domain. Hence, we achieve the same performance with fewer
labels. Experiments on real activity recognition data confirm our
claims.

Index Terms—Active Learning, Activity Recognition, Hetero-
geneous Domain Adaptation, Sensor Adaptation

I. INTRODUCTION

Assume the following example for illustration purposes:
Your smartphone includes an activity recognition system to
switch between different profiles depending on the current
situation, e.g., muting the phone during meetings and hid-
ing work-related notifications when relaxing after work. The
activity recognition system of your smartphone is not able
to acquire data about your physiological state, i.e., it cannot
detect if your body is relaxing. Buying a new smartwatch to
use it with your phone can provide such data. This scenario
is sketched in Fig. 1. The user buys a new smartwatch with
the expectation of a better activity prediction. Hence, case (1),
ignoring the smartwatch’s data and continuing to use the old
prediction model, is not acceptable. Case 2 provides excellent
performance. However, training a new classifier from scratch
is very expensive, as a new potentially large dataset has to be
labeled. Case (3) sketches the setting we study in this article.
We use the unsupervised heterogeneous domain adaptation
(HDA) method proposed by Jänicke et al. [1] to learn from
labeled data in the source domain, as well as unlabeled data
from the target domain. Their idea is to train an unsupervised
model using the freely available unlabeled data collected after
installing the new sensor. They use the old labeled data to infer
a classification model using the expensively labeled data from
the past. So far, this method is not able to incorporate labeled
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Fig. 1. An exemplary application of our approach: In the past, we expensively
trained a personalized activity recognition system on our smartphone. Adding
a new sensor (e.g., a smartwatch), we (1) do not want to use the existing model
as our system should improve, (2) we do not want to repeat the expensive
complete training procedure, instead (3) we would like to only ask for the
necessary information, which is expected to improve the system which is used
for adaptation.

data from the new sensors. In this article, we overcome this
deficit and use active learning (AL) to further increase the
performance. Thus, we can maintain lower annotation costs
induced by experts. It ensures a well-performing model with
reasonable cost by prioritizing instances from the pool of
newly gathered unlabeled data that are likely to improve the
classification result.
The contribution of this article is to use AL to outperform
a model adapted from a source domain to a target domain
with unsupervised HDA. Using a real-world activity recog-
nition dataset, we show that the proposed method achieves
similar performances using less labeled data compared to
traditional training with fully labeled data.

The following section discusses related work. Section III
gives a short introduction to the fundamental methods of this
article. In Section IV, we propose our method to further train
a Classifier based on mixture models (CMM) and show how
active learning can be applied to do so efficiently. We present
our design of experiments and discusses the obtained results in
Section V. The last section provides a summary and sketches
directions for possible future work.
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II. RELATED WORK

Activity recognition methods aim to distinguish between
various activities the user may be doing currently. Chen et
al. [2] give an overview over activity recognition methods.
They categorize activity recognition in knowledge and data-
driven approaches. Knowledge-driven approaches use prior
knowledge of experts from the specific domain where the
inference model will be used. This knowledge is then used
to infer classification models, e.g., a rule-based system. These
models have the advantage that they are often easier to be
interpreted as their origin stems from human knowledge.
However, a disadvantage of those methods is the need for
an expert who can provide such knowledge [2]. Data-driven
approaches use a high amount of data to construct an activity
recognition model using the underlying knowledge within the
data. However, they often rely on a large dataset and may
exploit individual characteristics shown in the data, which
limits the application across different persons. An advantage
of these approaches is that only labels are needed, instead of
the formalization of the expert’s knowledge [2].

The task of domain adaptation is to learn a machine learning
model using data from a source domain in some other domain,
often referred to as the target domain. In this article, we focus
on heterogeneous domain adaptation, which assumes that
number and type of features in the source and target domain
may differ [3]. This is especially the case, when new sensors
are added to a classification system. Jiang [4] and Daumé III
[5] distinguish between supervised and unsupervised domain
adaptation. In both scenarios, we assume that labeled data
from the source domain is available. The difference between
supervised and unsupervised domain adaptation is that the
former uses labeled data from the target domain, while the
latter does not. Our proposed method extends the approach
introduced by Jänicke et al. [1], an unsupervised HDA method.
Additionally to the unlabeled data in the target domain, we
have a budget to label this dataset. Thus, we are bridging
unsupervised and supervised domain adaptation. Our method
assumes that the source domain is a subspace of the target
domain, as this is the assumption of the method proposed by
Jänicke et al. [1]. However, other methods do not necessarily
rely on that assumption and may only require a common
subspace between source and target domain [3].

The goal of active learning is to reduce costs for data an-
notation. Instances are selected depending on their usefulness
for the classifier [6]. There are two relevant active learning
scenarios, namely pool-based active learning and stream-based
active learning. The main difference between both scenarios
is the source of unlabeled data. Pool-based active learning
queries its instances from a static pool, while stream-based
active learning only sees a single instance coming from the
data stream. The selection strategy can then decide to query
this instance or discard it completely. A thorough explanation
for these scenarios can be found in [7]. In this work, we
focus on pool-based active learning, as unlabeled data is
abundantly available. The usefulness is often derived from

the classifier’s prediction. A common approach is uncertainty
sampling [8]. Uncertainty sampling selects the instance which
is closest to the model’s decision boundary and thus has the
highest uncertainty [8]. However, uncertainty sampling only
handles binary classification problems. Thus, we use multi-
class variants of uncertainty sampling for our experiments
[7], [9]. Those selection strategies use different uncertainty
measures such as confidence-based uncertainty, where the
probability of the most probable class is used as a selection
criterion. Margin sampling selects the classes according to the
difference between the confidences of the two most likely
classes, while using the entropy as an uncertainty measure
takes the prediction for all classes into account.

Another approach, which is often used is expected error
reduction [10]. This approach simulates label acquisitions and
evaluates the performance improvement using a representative
evaluation set . However, the simulation of a label acquisition
requires retraining of the classifier.

Krempl et al. [6] proposed probabilistic active learning
and identified shortcomings in assessing the usefulness solely
based on the classifier’s probabilistic prediction. This short-
coming is that uncertainty may arise due to lack of knowledge,
i.e., epistemic uncertainty, or uncertainty intrinsic to the data,
i.e., aleatoric uncertainty. While adding labeled data reduces
the epistemic uncertainty, the aleatoric uncertainty remains
unchanged. Thus, observing high uncertainty in a large amount
of data within a small region may indicate high aleatoric
uncertainty. Hence, Krempl et al. incorporate the number
of nearby labeled instances as a proxy for the classifier’s
reliability [11]. Here we use the multi-class variant of proba-
bilistic active learning, namely Multi-class probabilistic active
learning (McPAL) [11].

Active learning has been used successfully in various set-
tings to improve the detection rate of activities with fewer
labels [12]–[14]. Zhao et al. [13] combine active learning with
crowdsourcing for motion data as well as a synchronized video
recording of a cooking scenario. The instances to be labeled
(in this case, single frames of video recordings) were selected
by using various active learning strategies based on the motion
data. Next to the activities, various objects in the video were
labeled to help improve the quality of activity labels. Liu et al.
[12] and Stikic et al. [14] used active learning with multiple
classifiers to improve the training of their activity recognition
system with various sensors. Liu et al. used one classifier
per motion sensor, while Stikic et al. used one classifier for
the motion data and another classifier for infra-red sensors.
All works above show that performances comparable to the
passively trained classifiers are achievable with active learning
using fewer labeled instances.

III. METHODOLOGICAL FOUNDATION

This section provides the relevant information on Gaussian
mixture models (GMM), the Classifier based on mixture
models (CMM), and structure-based sensor adaptation with
CMM, and Multi-class probabilistic active learning which is
needed to understand our approach.



A. Gaussian Mixture Models

Gaussian mixture models [15] use a linear combination,
cf. Eq. (1), of multiple (here J) normal distributions (Gaus-
sians) called components. Each component has its own set
of parameters. These are a mean vector µj that describes its
location and a covariance matrix Σj that describes its shape.
To ensure that a GMM retains the properties of a density (i.e.,∫
P (x)dx = 1), mixture coefficients πj , with the constraints

given in Eq. (2), are introduced for each component. GMMs
are a popular choice to approximate arbitrary continuous
probability distributions.

P (x) =

J∑
j=1

πj · N (x|µj ,Σj) (1)

0 ≤ πj ≤ 1 1 =

J∑
j=1

πj (2)

The parameters for a GMM are estimated with unsuper-
vised machine learning algorithms applied to training data,
such as Variational Bayesian Inference (VI) or Expectation-
Maximization (EM) (cf. [15] for an in-depth discussion on
GMMs, EM, and VI).

B. Classifier Based On Mixture Models

A fitted GMM can be used for decision-making, i.e., clas-
sification in a supervised manner, which is called Classifier
based on mixture models (CMM) [16]. The class posteriors
P (c|x) are estimated from labeled training data X :

P (c|x) =
J∑

j=1

P (c|j) · P (j|x) =
J∑

j=1

ξj,c · γx,j . (3)

The probabilities γx,j in Eq. (4) are often called responsi-
bilities [15] and specify the probability that a given sample
x ∈ X originates from the component j of the given GMM.
The other term ξj,c describes the probability that a certain
component j belongs to class c. These are estimated from the
subset Xc ⊂ X , cf. Eq. (5), which contains all samples that
belong to a class c.

γx,j =
πjN (x|µj ,Σj)∑J

j′=1 πj′N (x|µj′ ,Σj′)
(4)

ξj,c =

∑
x∈Xc

γx,j∑
x∈X γx,j

(5)

The actual decision function h(x) is given by the maximum
a-posteriori of the class probabilities:

h(x) = argmax
c∈{1,...,C}

(P (c|x)) . (6)

C. Structure-Based Sensor Adaptation With CMM

The data-based adaption method for activity recognition
tasks proposed by Jänicke et al. [1] and is sketched in
Fig. 2. This approach trains the data’s structure using unlabeled
high dimensional data and infers the class distributions using

Backproject

Infer labels

Forwardproject

Fig. 2. Adaptation from source domain to target domain. [1]

labeled low dimensional data. The approach assumes that the
set of features from the source domain is a strict subset of
the features in the target domain. We denote the unlabeled
high dimensional data from the target domain as xt ∈ X t

and the labeled data from source domain as (xs, yxs). The
main idea is to train a GMM (GMMt) in the target domain
using X t. The GMMt is then projected into the source domain
discarding the dimensions not present in the source domain
from the mean vectors µj and the covariance matrices Σj

for each component. The resulting GMM (GMMs) can then
be used to infer the class probabilities for each component,
summarized in ξ, as shown in Eq. (5). These class probability
estimates can be used in conjunction with GMMt as a CMM
to classify data in the target domain. Thus, the more detailed
knowledge about the data’s structure in the target domain is
combined with the available labels in the source domain.

D. Multi-Class Probabilistic Active Learning

Multi-class probabilistic active learning (McPAL) [11] is an
active learning method extended from Optimised probabilistic
active learning [6]. The main idea of McPAL is the acquisition
of labels for instances from an unlabeled pool of data (X)
with the highest usefulness, which in case of McPAL is the
density weighted performance gain, when acquiring the label
for a given classifier. To calculate this, we use the density
estimate (P (x|X)) and the frequency estimate for each class
(kx) provided by the classifier.

usefulness(x) = P (x|X) · gain(kx) (7)

The performance gain is the difference between the current
performance and the performance when M additional labels
are acquired at x.

gain(kx) = max
m∈{1,...,M}

expPerf(kx,m)− expCurPerf(kx)
m

(8)
The performances for calculating gain(kx) are estimated by
modeling the accuracy as a random variable. This depends on



the frequency estimate for each class kx and the true posterior
px. As px is unknown, the authors show that px can be
estimated with the dirichlet distribution with the parameter
kx+1:

P (px | kx) = Dir(px | kx + 1). (9)

The current performance (Eq. (10)) and the performance after
m label acquisitions (Eq. (11)), with 1 < m ≤ M , can be
estimated as expected value of the performance measure, in
this case accuracy.

expCurPerf(kx) = E
px

[perf(kx | px)] (10)

expPerf(k,m) = E
px

[
E
l
[perf(kx + l | px)]

]
(11)

To simulate the label acquisitions, the authors denote the
frequency estimates per class for m label acquisitions as l,
which is multinomially distributed given px, with:

C∑
c=1

lc = m. (12)

The accuracy is the true posterior for the class ŷ where k has
its highest value (Eq. (14)), as the classifier predicts the most
likely class according to the labeled data:

perf(kx | px) = px,ŷ, (13)

ŷ = argmax
y∈{1,...,C}

(kx,y). (14)

IV. IMPROVING DOMAIN ADAPTED CMMS USING AL

This section shows how the prediction quality of a CMM
can be further improved after it has been adapted from the
source domain to the target domain. We propose a method
to combine labeled data from both domains. Following that,
we show how the frequency estimate kx required for McPAL
can be calculated to use the probabilistic gain for selecting the
most useful instances

A. Learning From New Labels After Structure-Based Sensor
Adaptation

In this section, we propose methods that build upon this
approach but allows to further improve the classification per-
formance using additional labeled data from the target domain.
While the structure is learned from the target domain, the class
distribution is derived from labels in the source domain. As
overlapping classes in the source domain may be separable
in the target domain, we need additional labeled data from
the target domain, as shown in Fig. 3. Using only 2 label
acquisitions allows the CMM to distinguish the 3 classes,
while this was not possible with the unsupervised HDA alone.

The setting differs slightly from the setting in Section III-C.
Now, we have labeled and unlabeled data from target domain.
To simplify the notation in this section, γsx,j and γtx,j denote
the responsibilities using GMMsand GMMt, respectively. Ad-
ditionally, we use X s

c and X t
c to denote the labeled instances

After sensor adaptation

Representation in   

Representation in Representation in 

Representation in   

After acquiring new instances (    )

Fig. 3. Using active learning to improve a CMM after HDA.

from class c ∈ {1, . . . , C} coming from the source and target
domain, respectively.

A naive way to integrate the newly labeled data is shown
in Eq. (15), which combines the responsibilities from both
domains:

ξnaivej,c =

∑
x∈X s

c

γsx,j +
∑
x∈X t

c

γtx,j∑
x∈X s

γsx,j +
∑
x∈X t

γtx,j
. (15)

While this may be sufficient to incorporate new knowledge
into the model, this method lacks efficiency. As we assume to
have only few labeled instances from target domain, the sum
of the responsibilities for instances from the target domain
is a lot lower than from the source domain. The higher the
number of labeled samples in the source domain compared to
those in the target domain, the lower the model adaptation.
Therefore, decreasing the influence of X s hopefully leads
to a better performance. Scaling down the responsibilities
solves this problem. Hence, we normalize the responsibilities
from the source domain by dividing through the sum of all
responsibilities from there. Additionally, we introduce a new
parameter α ∈ R, which expresses the average weight of
each class for instances from the source domain. Thus, α · C
expresses the weight of the data from the source domain,
which we use to rescale the normalized responsibilities. To
simplify the equations we denote the scalar value used to
rescale the responsibilities from the source domain as β ∈ R
as shown in Eq. (16).

β =
α · C

J∑
j=1

∑
x∈X s

γsx,j

(16)

Hence, the equation to calculate the class probabilities is as
follows:

ξfinalj,c =

β
∑
x∈X s

c

γsx,j +
∑
x∈X t

c

γtx,j

β
∑
x∈X s

γsx,j +
∑
x∈X t

γtx,j
. (17)



Instead of storing responsibilities, we store a matrix φ, which
contains the sum of responsibilities per component j and
class c.

φj,c =
∑
x∈Xc

γx,j . (18)

The matrix φ is the matrix ξ (Eq. (5)) without the normaliza-
tion to obtain valid probabilities. This allows us to simplify
Eq. (16) and Eq. (17) as follows:

β =
α · C

J∑
j=1

C∑
c=1

φj,c

, (19)

ξfinalj,c =
βφsj,c + φtj,c

C∑
c=1

(
βφsj,c + φtj,c

) . (20)

B. Optimizing Label Acquisition With Active Learning

This section presents how we can select the necessary
labeled data efficiently using McPAL. To be able to apply
this selection strategy, we need kx, the vector of frequency
estimates, for each instance x ∈ X u. We can calculate kx
based on the matrix φ (Eq. (18)). For this, we calculate the
number of labels in the neighborhood for each components’
center, denoted as nµj :

nµj =

C∑
c=1

φfinalj,c . (21)

Using these, we can calculate nx, the number of labels in
the neighborhood of x, as sum of nµj weighted with the
corresponding responsibilities:

nx =

J∑
j=1

nµjγx,j . (22)

The observed class posteriors p̂x = P (c | x) (Eq. 3) of the
CMM are used to get the frequency estimate kx:

kx = nx · p̂x. (23)

Using the frequency estimate from Eq. (23) and the density
estimate from GMMt, we can calculate the density weighted
performance gain (Eq. (7)), and use McPAL to successively
select the most beneficial instances for labeling to train the
adapted CMM.

V. EXPERIMENTAL EVALUATION

In this section we present and discuss our experimental
results. The goal of the experiments is to assess whether the
proposed approach is able to achieve good performances with
fewer labels compared to other active learning strategies. We
show the design of our experiments and present the obtained
results.

A. Activity Recognition Data

For our experimental evaluation we use the PAMAP2
dataset [17]. This dataset provides data collected in a 45-
minute experiment with nine subjects, which were asked to do
various activities each for 1 to 3 minutes. During those activi-
ties, the subjects were monitored using a heart rate sensor and
three inertial measurement units (IMUs). Those IMUs record
data with a sampling rate of 100Hz, such as temperature, 3D-
acceleration, and 3D-gyroscope data, with the latter two being
relevant for our experiments. The IMUs were placed on the
chest, the ankle, and wrist on the subject’s dominant side.
Additionally, a heart rate sensor was placed on the chest but
only had a sampling rate of 9Hz and provides the heartbeats
per minute. In total, there are 12 monitored activities such
as lying, ironing, ascending as well as descending stairs, and
running.

B. Data Preparation

One of the subjects (subject 9) was discarded due to having
a lot fewer classes than the other subjects. Due to the different
sampling frequencies of heart rate monitor and the IMUs, we
resampled them to 32 Hz. We use the mean and variance from
a sliding window of 4 seconds without overlap as features for
the classifier. The data processed this way are the heart rate,
acceleration, and gyroscope data. Thus, the data of each IMU
consists of 12 dimensions, while the data for the heart rate
sensor only consists of 2 dimensions.

C. Design of Experiments

The experiments are done using 5-fold cross-validation with
40 repetitions to compare the proposed method against differ-
ent selection strategies, namely the proposed algorithm (Mc-
PAL) to random selection (Random) and uncertainty sampling
with various uncertainty measures, i.e., best vs. second best [7]
(1vs2), density weighted uncertainty sampling [9] (DWUS),
entropy [7] (Entropy), and confidence [7] (Confidence). The
uncertainty measures used for uncertainty sampling are given
in the equations below. To simplify the equations, we denote
the most probable class as well as the second most probable
class according to the classifier’s prediction for x as c1 and
c2, respectively. Additionally, we denote the density estimate
of the GMMt trained on the target domain data as PGMMt(x)

US1vs2(x) = px,c1 − px,c2 (24)
USDWUS(x) = PGMMt(x) · US1vs2(x) (25)

USEntropy(x) =

C∑
c=1

(px,c · ln(px,c)) (26)

USConfidence(x) = 1− px,c1 (27)

The classifier used for the experiments is a CMM with 30
components. The CMM is extended from the BayesianGaus-
sianMixture in sklearn [18]. For each fold, the training data
is permutated randomly and split evenly into two separate
training datasets. These represent the labeled data in the
source domain and the unlabeled data in the target domain.



Additionally, the training dataset of the source domain is
modified so that it only contains the features available in the
source domain. The task is to acquire 60 labels for unlabeled
instances to improve the CMM. After each label acquisition,
we assess the performance using the classifier’s accuracy and
F1 score, more specifically the macro F1 score, on the test
dataset, which is often used in evaluating active learning
[19]. The difficulty of datasets may vary greatly between
subjects, as each of them is different. Therefore, we normalize
the obtained learning curves to be able to aggregate them
across subjects. For this purpose, in addition to the selection
strategies, we train another classifier, which we denote as Full.
Here, we use a CMM trained on all labels. Simply dividing
the achieved performance, i.e. accuracy and F1 score, of the
selection strategy by the performance of Full allows us to
express the performance in relation to the performance of Full.
The averaged learning curve of those performance values is
then multiplied by the mean performance of Full to obtain
normalized performance values. To reduce the number of
tested sensor combinations, we fix the order in which sensors
can be added. This order depends on the performance a trained
CMM could achieve using a sensor alone. We assessed this by
splitting the sensor data 40 times into training and test data.
These are used to evaluate the performance a CMM could
reach. The performance across subjects is then aggregated in
the same fashion as we did for the real experiments (explained
in more detail in Section V-C). The CMM performs the
worst on the heart rate sensor (HR) data, while the order of
IMUs is as follows: ankle (AI), chest (CI), and hand (HI).
For our experiments, we sorted the sensors according to this
ranking (HR, AI, CI, HI) for one half of our experiments and
sorted them in the reverse order of the ranking (HI, CI, AI,
HR) for the other half. Thus, for half of our experiments,
we add increasingly better-performing sensors to a set of
worse-performing sensors. In contrast, for the other half, we
add worse sensors to sensors that perform better individually
compared to the new sensor. To denote the various sensor
constellations, we separate the sensors, which span the source
domain, with a ”+“ from the sensors, which are additionally
used to spawn the target domain. Hence, for ”HR + AI, CI“
the source domain is spanned by HR while HR, AI, and CI
span the target domain. Additionally, we set α (Eq. (16)) to
1, 10, 20 and 50 to evaluate the sensitivity of the parameter.

D. Experimental Results

In this section, we present the results for our experiments.
A good active learning algorithm achieves high performances
with few labels. Hence, a learning curve for such an approach
can be identified by a steep performance increase. In this
article we can only show a subset of the results for our
experiments. To see our testing framework, all results and all
learning curves confer to our appendix1.

1https://p.ies.uni-kassel.de/hdaal

TABLE I
THE NUMBER OF DATASETS WHERE THE CHOSEN α RESULTS IN THE

HIGHEST PERFORMANCES FOR Full. THE NUMBER OF DATASETS IS 20.

α=1 α=10 α=20 α=50
Datasets, where α leads 3 6 8 3to the best accuracy
Datasets, where α leads 3 5 10 2to the best F1 score

In Table I, we compare the four tested α-values in terms
of achievable performance. An α of 20 results in higher
performances more often than 1, 10 and 50. Even though
the performance differences are often small, the performance
difference during the first 60 label acquisitions varies greatly.
This is shown in Fig. 4.
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Fig. 4. Accuracy and F1 score for α ∈ {1, 10, 20, 50}. The dataset used in
these plots is HI,CI,AI + HR.

There, we show the learning curves for a single sen-
sor setting (HI,CI,AI + HR) with all tested α-values
(α ∈ {1, 10, 20, 50}). In the case of α = 1, we observe a sud-
den decrease in performance during the first label acquisitions
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Fig. 5. Accuracy and F1 score for α = 1 where there is no sudden decrease
in classification performance.

for almost all selection strategies. This phenomenon is not
present for the other 3 cases. The reason for this phenomenon
is that the knowledge gained from the source domain is almost
ignored with such a small α. Hence, prior knowledge learned
from the source domain has to be relearned. Thus, we see
a sudden decrease in performance for the first acquisitions
which leads to a worse performance after 60 label acquisitions
than after the initial adaptation. There are only three cases
where the performance of the classifiers do not decrease after
acquiring new labels for α = 1. Those are the configurations
where the source domain is spanned by HR as shown in Fig. 5.

This indicates that separating the classes is easier using the
IMU sensors than HR. Hence, the trade-off between forgetting
the knowledge from HR and gaining knowledge from the other
sensors is still beneficial in terms of classification performance.
For α ∈ {10, 20, 50}, there is no such sudden decrease, with
the exception of DWUS, which performs poorly regardless of
the chosen α. The approaches 1vs2, Entropy and Confidence
perform better for α = 1. However, McPAL outperforms all its
competitors in the remaining three cases, where even Random
achieves a higher performance than the uncertainty sampling
strategies.

Out of all 60 experiments for α ∈ {10, 20, 50}, there are
only two experiments where McPAL does not outperform its
competitors after 60 label acquisitions in terms of accuracy.
However, in terms of F1 score, McPAL outperforms the
other selection strategies with α ∈ {1, 10, 20, 50} in each
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Fig. 6. Accuracy and F1 score for experiments with α ∈ {10, 20, 50} where
McPAL performs worse or only negligible better, in terms of accuracy, than
its competitors.

experiment. The experiments where McPAL performs worse,
are CI + AI with α = 10, and HR + AI,CI,HI with α = 50.
Additionally, for AI + CI with α = 10 McPAL performs only
negligible better than 1vs2. Those cases are shown in Fig. 6.

In Fig. 7, we present learning curves for different sensor
constellations but fixed α = 20. The experiments show that
1vs2 performs best out of all tested uncertainty measures, but
is still outperformed by Random in some experiments. Confi-
dence performs similarly to 1vs2 while Entropy and DWUS
achieve poor results. In some cases, DWUS even leads to
worse performance than prior to acquiring new labels. McPAL
achieves the highest performances after 60 label acquisitions
for all plots shown in Fig. 7. For HR + AI,CI,HI, the perfor-
mance increases for 1vs2 during the first label acquisitions is
higher than for McPAL, but plateaus quickly.

E. Discussion

Our experiments show that the usage of labeled data from
the target domain can help to improve a model adapted from
the source domain to the target domain using unsupervised
HDA. This is especially noticeable as the performance of
Full is always higher than the performance of the adapted
classifier without any label acquisitions from the target do-
main. Additionally, the usage of active learning in this sce-
nario reduces the number of required labeled data. McPAL
outperforms its competitors in this case as its performance
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Fig. 7. Accuracy and F1 score for various sensor constellations with α = 20.

improvement occurs after fewer label acquisitions than with
the tested strategies. However, the experiments highlight the
importance of using an appropriate value for α. Given an
α which is too small, in our case α = 1, the performance
decreases as the model has to relearn knowledge from the
original input source. Additionally, our experiments show that
using uncertainty sampling may result in worse performances
compared to random sampling.

VI. CONCLUSION

This article shows that active learning is beneficial in HDA.
The setting we investigate starts with a model adapted using
unsupervised HDA. Using active learning, we incorporate
labeled data iteratively to improve this model. To do that, we
extended the HDA method proposed in [1].

Our extension allows for further tuning of the classifier,
which improves the classification performance in areas where
the classes overlap in the source domain, but are separated in
the target domain. Furthermore, we use the underlying CMM
to obtain density and frequency estimates, which allows us to
efficiently query instances using McPAL. Hence, we are now
able to handle unsupervised as well as supervised HDA.

We conducted experiments using the PAMAP2 dataset,
which consists of real data for activity recognition using
different sensors simultaneously. The results show that the
model can be improved, using only a few label acquisitions (in
our case 60) compared to using only the unsupervised HDA.

The proposed method can be extended in various ways. This
method can still be optimized by automatically estimating a
suitable α. Another research direction is streaming data. This
impacts the adaptation as we expect to know the data’s distri-
bution beforehand to fit the CMM’s components as well as the
incorporation of knowledge in the target domain. Currently, the
method expects all sensors available in the source domain to
be available in the target domain. This is not necessarily the
case and should be investigated in the future as well. Finally,
the proposed algorithms may be applied to other suitable areas
of machine learning.
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