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Abstract—Unsupervised anomaly detection for time series is
of great importance for various applications, such as Web
monitoring, medical monitoring, and device fault diagnosis. Time
series anomaly detection (TSAD) aims to find the observations
that most different from others in a sequence of observations.
With the development of deep learning, deep-autoencoder-based
methods achieve state-of-the-art performance. These methods are
usually able to find single anomaly points but fail to detect the
anomaly segment and the change point. To tackle this problem,
this paper proposes a novel TSAD method, which consists of
a bidirectional LSTM (BiLSTM) autoencoder and a subsequent
Gaussian segmentation model. BiLSTM encodes a time series in a
predictive format from both positive and negative time directions,
then outputs the latent feature vectors and restructured errors.
After that, the latent features are used to find anomaly segments
by the Gaussian segment model; the restructured errors are
used to find change points and extreme single anomaly by a
scoring function. In this way, our method can find all three
kinds of anomaly points. Experiments on two real-world datasets
demonstrate the effectiveness of the proposed method.

Index Terms—Time series, anomaly detection, change point
detection, deep learning.

I. INTRODUCTION

Detecting unexpected events or rare items in the temporal
evolution of a system is of importance in both fundamental
machine learning research and industrial applications. This
task is generally referred to as time series anomaly detection,
which aims to find the data points that most differ from
other observations in a temporal sequence of observations. The
time series anomaly detection technique has a wide range of
applications such as Web attack detection, medical monitoring
[1], and device fault diagnosis. For example, Microsoft also
builds a time series anomaly detection service [2] to monitor
various web metrics (such as Page Views and Revenue), which
further help engineers move faster in solving live site issues.

Over the years, a considerable amount of literature studies
on the TSAD problem. Most traditional statistical methods
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are based on similarity search [3], regression [4], or clustering
[5, 6]. Since these methods typically have assumptions for the
time series, it needs expert’s knowledge to extract features and
to build a suitable detector for a given time series. Recently,
neural-network-based autoencoders draw researchers’ atten-
tion because of their good performance in the TSAD problem.
The philosophy of the autoencoder-based TSAD method is
to compress the original sequence into a fixed-length hidden
representation and then reconstruct the input sequence based
on the hidden representation. Since the hidden representations
are compact, only samples with common patterns can be well
reproduced and the outliers with specifics patterns will be less
reproduced. Therefore, the reconstruction error can be used as
the measure of the anomaly. Hawkins et al. [7] proposed a so-
called replicator neural network for outlier detection, which
is essentially a fully-connected autoencoder. Tung et al. [8]
merged several sparsely-connected recurrent neural networks
into an ensemble framework to advance TSAD performance.
Ergen et al. [9] combined the LSTM neural network and
one-class SVM into an end-to-end structure to detect the
anomaly points. However, all these methods only focus on
extreme anomaly points, not considering the change points
and anomaly segments, as defined in III-A

Despite the rapid development of TSAD methods, there are
still some open challenges in time series anomaly detection.

(1) Lack of Labels. A time-series often has more than thou-
sands of observations along the time axis, but the abnormal
points are usually very sparse and their happening time is
random. What’s worse, time-series data is more abstract than
image data. As a result, there is no easy way to label enough
data to train a supervised classifier. The supervised model also
suffers the unbalanced problem [10].

(2) Hard to accurately locate. Some existing methods [8,
9] segment the time series with a sliding window, treat each
window of observations as an independent sample and finally
detect whether each sample is an anomaly or not. As a result,
these methods fail to detect whether a single observation is
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an anomaly or not. However, we usually hope an anomaly
detection method can find the exact time point of each anomaly
rather than finding a sub-sequence that contains the anomaly.

(3) Multiple kinds of anomaly points. Autoencoder-based
TSAD methods perform well in detecting the extreme anomaly
points, but if there is a successive sequence of anomaly points
in the time series, these methods may encode the anomaly
segment as normal observations. So an anomaly detector is
supposed to find all kinds of anomaly points.

Considering the above challenges, we propose a novel
TSAD method, referred as One-step predictive encoder -
gaussian segment model (OPE-GSM). The OPE is based
on the BiLSTM autoencoder, different regular encoder OPE
reconstructs the time series in a predictive form from bidirec-
tions. Based on the restructure errors, a scoring function is
used to detect the extreme anomalies. To detect the change
points and anomaly segments, a Gaussian segment model is
proposed, which divides the latent features into segments by
maximizing a cumulative gaussian likelihood function. To sum
up, the contributions of this paper are three-fold as follows,
• We propose a BiLSTM-based one-step predictive encoder

(OPE), which can accurately locate the extreme anoma-
lies because of the bidirectional encoding.

• Based on the output of the OPE, we propose a Gaussian
segment model to detect the change points and the
anomaly segments.

• We conduct experiments on two real-world datasets to
evaluate our proposed method, and the results shows that
OPE-GSM outperforms the best comparison method with
3.67% improvement.

The rest of this paper is organized as follows. Section
II gives preliminaries to the LSTM neural network. Section
III details the proposed method. Section IV presents the
experimental results and analysis. The conclusion is given in
Section V.

II. PRELIMINARIES

Many existing papers [11, 12] confirmed that LSTM can
model the correlation of observations in time series. In this
section, we give a brief introduction to the classical LSTM
neural network. LSTM is a kind of recurrent neural network
(RNN), which uses its inherent memory structures (cell states)
to store the ”time” information and use the control structure
(gates) to regulate the amount of stored information. We
follow classical structure of LSTM in [13], where the internal
propagation equations follow.

it = σ(Wxixt +Whiht−1 +Wci ◦ ct−1 + bi) (1a)
ft = σ(Wxfxt +Whfht−1 +Wcf ◦ ct−1 + bf ) (1b)
ct = ft ◦ ct−1 + it ◦ tanh(Wxcxt +Whcht−1 + bc) (1c)
ot = σ(Wxoxt +Whoht−1 +Wco ◦ ct−1 + bo) (1d)
ht = ot ◦ tanh(ct) (1e)

where xt is the input vector, ct and ct−1 are the cell state
vectors at time t and (t−1), ht and ht−1 are the output vectors
at time t and (t − 1). Besides, it, ft and ot are the input,

forget and output gates, respectively. Here, σ is the sigmoid
function and ◦ is the elementwise multiplication. Furthermore,
W s are the weight matrices whose subscripts indicate which
two variables are connected by this wight matrix. For example,
Wxi is the wight matrix from the input vector xt to the input
gate it. bs are biases of LSTM.

In this LSTM structure, the cell state vector ct stores the
hidden features of the input time series, Hense, we can use
the LSTM to obtain a fixed-length vector representation for
each time series X = {xi}T1 . In the following contents, we
also call the cell state vector by latent feature vector and use
it to segment the time series as presented in Section III-E.
The output of LSTM is also a sequence, so it can be used to
restructure the input sequence and the restructured error vector
can be used to detect the anomaly points. In this paper, we use
a variant of LSTM, the bidirectional LSTM, to restructure the
time series and detect the anomaly points, as shown in Section
III-C and III-D.

III. PROPOSED METHOD

A. Problem formulation

We consider a given time series X = {xi}T1 , where T is
the length of the time series, xi = [xi,1 xi,2 · · · xi,d] ∈ Rd

denotes the i-th observation and d ∈ Z+ is the dimension
of observations. Following existing papers [14], we assume
that the majority of the observations are normal and the
anomalous observation randomly happens. We also follow the
unsupervised scenario that we have no labeled time series as
the training set. Our goal contains two parts: (1) to find a
scoring function to measure xi’s anomaly degree, (2) to find
a decision function to determine whether xi is anomalous or
not. Throughout the paper, vectors are denoted by boldface
lowercase letters and matrices are represented by boldface
uppercase letters.

Yahoo-8

Extreme 
anomaly

Yahoo-56

Change
point

Yahoo-16

Anomaly
segment

Fig. 1. Examples of anomaly points in real-world datasets. The blue curve is
the original time series. The vertical line with the triangle sign indicates the
extreme anomaly; the vertical line with the circle sign indicates the change
point; the colored background indicates the anomaly segment.

After reviewing the related literature [15], we categorize the
anomaly points into three classes: (1) the extreme anomaly,
which extremely differs from the temporally neighboring
observations; (2) the change point, whose antecedent and
subsequent observations follow different latent models (dis-
tributions, ARMA models, etc.). (3) the anomaly segment,
which contains a successive sequence of anomalous points.
Fig.1 shows examples of three types of anomaly points in the
Yahoo dataset. The proposed method can effectively find all
three types of anomaly points.



B. Overall framework

The main idea of our method is to use an encoder-decoder
structure to reconstruct the raw time-series data, and then use
the restructured errors to predict the extreme anomaly and use
the latent compact representation to predict the change points
and anomaly segments. Fig. 2 shows the framework of the
proposed method, i.e. the OPE-GSM. In the pre-processing
step, the raw time series is split into subsequences with
a sliding window. Each window of data is regarded as an
independent sample and fed into the OPE-GSM. The OPE-
GSM method contains three parts: (1) The BiLSTM-based
one-step predictive encoder, which encodes the time series
from both directions and outputs the restructured errors and
latent feature vectors. (2) A scoring function, which fits the
errors under a Gaussian distribution and computes the negative
log likelihood as an anomaly score. (3) The Gaussian segment
model, which divides the latent features into segments by
maximizing a cumulative gaussian likelihood function. The
following subsections will detail each component of the OPE-
GSM.

C. Bidirectional LSTM Encoder for long time series

The basic idea of encoder-based AD methods is to use
restructured errors to determine whether the input observation
is anomalous or not. Following this general idea, we propose
the One-step Predictive Encoder (OPE), which predicts the
subsequent observation xt+1 at time t rather than restructuring
the present observation xt. The OPE takes advantage of
BiLSTM [9, 16] to encode a time series in both positive and
negative time directions. Fig. 3 shows the unfolded structure
of OPE over n steps, where the target encoding sequence is
Xe = [x1,x2, · · · ,xn], the forward decoding sequence is
Xfd = [x′1,x

′
2, · · · ,x′n] and the backward decoding sequence

is Xbd = [x′′1 ,x
′′
2 , · · · ,x′′n]. Here, we aim to compute the

restructured error for every observation in Xe and further
detect if there is anomalous observation in Xe and which
one is. To achieve this, we first extend the encoding sequence
with a head initializer x0 and a tail initializer xn+1, so
that we can give a prediction for x′1 and x′′n, respectively.
Then we feed [x0,Xe] into BiLSTM step by step along
the positive time direction and BiLSTM outputs the forward
decoding sequence Xfd. Similarly, [Xe,xn+1] are fed into
BiLSTM along the negative direction and we can get the
backward decoding sequence Xbd. Finally, OPE outputs the
latent feature vector h and restructured error vector e for
further anomaly detection (more details in section III-D and
III-E). The h with the shape of R2dh×dh concatenates the
forward hidden state hf ∈ Rdh×n and backward hidden state
hb ∈ Rdh×n. The e ∈ Rn is the mean of forward and
backward restructured errors, where the i-th element of e can
be calculated by

ei =
1

2
(||xi − x′i||2 + ||xi − x′′i ||2) (2)

D. Anomaly points prediction
Different from references [7, 8] that using the restructured

errors as anomaly scores directly, we model the errors {ei}Ti=1

with a normal distribution N (µ, σ2) and regard the negative
log likelihood as the anomaly score. Specifically, we first
estimate µ and σ using Maximum Likelihood Estimation, then
calculate the negative log likelihood by − log(f(ei, µ, σ)),
where f(ei, µ, σ) is the probability density function. Ignoring
the constant, the anomaly score is

si =
(ei − µ)2

2σ2
(3)

Having the anomaly scores, we simply use the 3σ principles
to binary the scores where the observation locating 3σ away
from the mean error will be regarded as an extreme anomaly.

E. Anomaly segment and change points prediction
The anomaly segment means a sequence of consecutive

anomaly points. Since the anomaly score is calculated for each
observation, it can only indicate whether a certain observation
differs from the current trends or not, but fails to detect the
duration of the anomaly. Furthermore, anomaly-score-based
detection can not distinguish the single extreme anomaly point
and the change point. Motivated by this, we apply a Guassian
segment model (GSM) to detect the anomaly segments and
change points.

Based on the autoencoder shown in Fig. 3, we can calculate
the latent feature vector for each observation of a time series,
then we predict the anomaly segment and change points.
Why using the latent features rather than the raw time series?
Because the time series may have seasonal periods and trends,
where the observations are not independent. However, it is
more reasonable to assume the encoded features follows
Gaussian distribution.

We denote the latent features by {ht}Tt=1 and assume that
ht ∼ N (µt,Σt), where the µt’s and Σt’s only vary at K
change points [b1, b2 · · · , bK ]. In another word, these change
points split the time series into K + 1 segments where two
consecutive segments draw from different Gaussian distribu-
tions. Here we aim to find the change points [b1, b2 · · · , bK ]
and further detect whether each segment is anomalous or not.

The regularized log-likelihood of hidden feature sequences
under SGM is

`(b,µ,Σ) =

K+1∑
i=1

bi−1∑
t=bi−1

f(ht,µ
(i),Σ(i))−λTr(Σ(i))−1 (4)

where b,µ,Σ are the lists of change points b = {bi}Ki=1,
segment means µ = {µi}Ki=1and segment covariances Σ =
{Σi}Ki=1, respectively. f(ht,µ

(i),Σ(i)) is the probability
density value of ht under N (µ(i),Σ(i)), and the term
−λTr(Σ(i))−1 is the regulation item. If the change points are
fixed, the segment means and covariances can be empirically
estimated by

µ̂(i) =
1

bi − bi−1

bi−1∑
t=bi−1

ht (5)



Anomaly segments
Change points

Extreme
Anomaly 

…  

Encoding sequence

BiLSTM BiLSTMBiLSTM BiLSTM

Decoding sequence (forward and backward)

OPE-GSM

(1) BiLSTM-based encoding

Restructured errors

Latent features

(2) Scoring 
function

(3) Gaussian 
segment model

Raw time series

Fig. 2. The framework of OPE-GSM. The input of OPE-GSM is subsequence of observations generated by a sliding window. The outputs are the anomaly
scores for extreme anomalies; the time steps for change points and anomaly segments.
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Fig. 3. BiLSTM-based one-step predictive encoder. The input is extended
encoding sequence [x0,x1, · · · ,xn+1]. The final outputs contain latent
feature vectors and the restructured error vectors. The forward and backward
encodings are represented in different colored lines. The dashed boxes are not
taken into account when computing the restructured errors.

Σ̂(i) =
1

bi − bi−1

bi−1∑
t=bi−1

(ht − µ(i))2 +
λ

bi − bi−1
I (6)

Therefore, the log-likelihood estimation is only related to
the change points b and the regularized maximum likelihood
estimation problem can be formulated by

max
b
−1

2

K+1∑
i=1

(
(bi − bi−1) log det(Σ̂)− λTr(Σ̂)−1

)
(7)

Solving the optimization problem 7 by Dynamic program-
ming [15] or the fast greedy search algorithm in [17], we
can find the time series change points. Paper [17] also gives
a method to determine the number of change points K.
Furthermore, we can set a threshold for segment means
{µ̂(i)}Ki=1 and segment covariances {Σ̂(i)}Ki=1 to detect the
anomaly segments. The anomaly segment detection is usually
application-dependent because a time series may have multi-
underlying states (as shown in the Fig.7 and Fig. 8) will be
discussed in the future journal version.

IV. EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of the
proposed algorithm on two real-world TSAD dataset. The
dataset information is listed in Table I. Yahoo1 contains the
real traffic data of Yahoo services where the anomaly points
are labeled by editors manually. Following [18], we select
parts of data in our experiments. KPI2 consists of multi KPI
curves collected from various Internet companies, such as
eBay, Tencent, etc.

TABLE I
DATASET INFORMATION

Dataset Length #Sequences #Dimension Interval Percent(%)

Yahoo 1432.13 15 R1 1 hour 2.52
KPI 17568 3 R1 5 min 1.13

Evaluation metrics Similar to papers [19, 20], we use area-
under-the-curve (AUC) and F1-score as the evaluation metrics.
AUC, i.e. the area of under the receiver operating characteristic
curve (ROC), evaluates the performance of the anomaly scores
with a varying discrimination threshold. F1-score, being the
harmonic mean of precision and recall, evaluates the perfor-
mance of the anomaly decision function. Both AUC and F1-
score are effective evaluation metrics for TSAD tasks because
they are robust to the extremely unbalanced distribution.

Comparison methods We compare our proposed method
with six competing methods, including

• Isolation Forest (ISF) [5], which isolates the outlier by a
randomized clustering forest.

• Local Outlier Factor (LOF) [6], which uses the distribu-
tion density to detect anomaly points.

• One-class SVM [21], which learns a kernel-based deci-
sion frontier to describe the major samples.

1https://github.com/OctoberChang/klcpd code/tree/master/data/yahoo
2https://github.com/shubhomoydas/ad examples
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Fig. 4. ROC curves of all methods on 6 randomly selected time series from Yahoo dataset

• Matrix Profile (MP) [3], which is the state-of-the-art
similarity searching TSAD method.

• Deep autoencoder (DeepAD) [7], which uses a deep
autoencoder to reconstruct subsequences of a time series.

• LSTM autoencoder (LSTMAD) [19], which uses LSTM-
based autoencoder to detect the anomaly points.

Implementation Details All the algorithms are
implemented in Python 3.5. ISF, LOF and One-
class SVM are implemented using Scikit-learn.
DeepAD and LSTMAD are reimplemented based on
https://github.com/KDD-OpenSource/DeepADoTS.
For traditional methods, we use the default parameters. For
all deep learning methods, we use the Adadelta optimizer
and set the learning rates to 10−3. The hidden dimension of
our BiLSTM is set as 16, the Regularization parameter λ in
GSM is set as 1.

We report AUC and F1-score in Table II and Table III,
respectively. Firstly, as can be seen from Table II, our proposed
method outperforms other methods on both datasets when
using the AUC metric, and achieves 3.67% better on average
than the best baseline method, i.e. DeepAD. Our method’s
performance is also significantly better than that of LSTMAD,
indicating that encoding the time series in a predictive form
with BiLSTM is better than simply reconstructing with a
regular LSTM. Secondly, the deep learning methods perform
better than non-deep learning methods when using F1-score.
The bad performance of non-deep methods may be caused
by that the build-in anomaly decision function in Scikit-learn
package is not suitable for time series data. However, the
traditional methods also give comparable results on the AUC

TABLE II
AUC ON TWO REAL-WORLD DATASETS

Methods Yahoo KPI Average

ISF 0.8636 0.7679 0.8158
LOF 0.5266 0.5129 0.5197
MP 0.5707 0.4637 0.5172

SVM 0.8463 0.7254 0.6849

DeepAD 0.8759 0.7832 0.8295
LSTMAD 0.8510 0.6477 0.7500

OPE-GSM (Proposed) 0.9072 0.8252 0.8662

TABLE III
F1-SCORE ON TWO REAL-WORLD DATASETS

Methods Yahoo KPI Average

ISF 0.1359 0.0333 0.0846
LOF 0.0354 0.0174 0.0264
MP 0.0717 0.0625 0.0671

SVM 0.0751 0.0311 0.0434

DeepAD 0.3185 0.3077 0.3131
LSTMAD 0.1436 0.0386 0.1922

OPE-GSM (Proposed) 0.3022 0.3436 0.3229

metric.
To present the results more intuitively, we randomly select

6 time-series examples from the Yahoo dataset and plot the
ROC curves of all methods in Fig. 4. In Fig. 4, the horizontal
axis is the false positive rate and the vertical axis is the true



Fig. 5. Visual analysis on Yahoo-16

Fig. 6. Visual analysis on Yahoo-22

positive rate, so the area under the curve is the AUC metric.
Fig. 4 shows that our method achieves the best performance
in most cases, but the second-best method varies among ISF,
DeepAD and LSTMAD.

We select four time series from Yahoo to further show
how does the proposed method find the anomaly points. The
selected time series include Yahoo-16, Yahoo-22, Yahoo-27,
and Yahoo-56, as shown in Fig. 5, 6, 7 and 8, respectively. In
all 4 figures, the subfigure (a) shows the raw time series where
the vertical dashed lines indicate the change points predicted
by the GSM. The subfigure (b) is the error curve computed
by equation (2). The subfigure (c) presents the anomaly scores
calculated by equation (3) and the red triangles label the
ground-truth anomaly points. The subfigure (d) shows the 32-
dimensional latent feature vectors where the vertical dashed
lines are also the predicted change points.

As shown in Fig. 5-(a), Yahoo-16 mainly has anomaly seg-
ments, where the normal segments have seasonal periods with
small variance, but the anomaly segments are unpredictable
with large variance. The subfigure (b) and (c) show that most

Fig. 7. Visual analysis on Yahoo-27

Fig. 8. Visual analysis on Yahoo-56

observations in the anomaly segments have larger restructured
errors and anomaly scores than those in the normal segments,
but parts of the anomalous observations still have low scores.
Therefore, only score-based detection can not find anomaly
segments. However, as can be seen in subfigure (d), the hidden
features are distinguished between normal and anomalous
segments and our GSM model can find the change points
accurately, so simple extra criterion can help to find the
anomaly segments.

Fig. 6 shows the visual analysis on the Yahoo-22. The
Yahoo-22 has only one underlying state and several extreme
anomaly points. Although the seasonal period is not clear as
Yahoo-16, subfigure (c) shows that the OPE model can give
accurate predictions for the anomaly points. The subfigure (d)
shows the latent features keeps consistent throughout the time
series and no change points are found.

Fig. 7 shows the visual analysis on Yahoo-27. Different
from other examples, Yahoo-27 have a segment that always
equals to 0. This is caused by the missing data, i.e. the monitor-
ing system does not receive any data during this period. From



Fig. 7-(b) and (c), we can see that this ‘null’ segment’s errors
and anomaly scores also nearly equal to zero, indicating that
the encoder-based method can not detect it. Actually, all other
methods can neither find it directly. However, our Gaussian
segment model can detect the beginning and end of this ‘null’
segment, so we can further detect this anomaly segment with
a simple extra criterion.

As shown in Fig. 8-(a), Yahoo-56 has two normal states, one
with small fluctuations that starts from beginning to around
960 timesteps and the other with relatively large fluctuations
that starts from around 960 to the end. Therefore, one change
point happens at the junction of two states. From Fig. 8-(a),
we can see that our segment model can find the change point,
although, the dataset maker hasn’t labeled it as an anomaly
point. Fig. 8-(d) also shows that the bidirectional OPE encodes
the two states into different hidden features.

TABLE IV
AUC BY UNIDIRECTIONAL AND BIDIRECTIONAL OPE

Datasets Forward Backward Bidirectional Improvement

Yahoo 0.8281 0.8828 0.8928 4.35%
KPI 0.6923 0.6402 0.7854 17.88%

We also compare the performances of bidirectional OPE
and unidirectional OPE to demonstrate that bidirectional OPE
is better for the TSAD task. Table IV shows the results
where the Forward means using a unidirectional LSTM to
encode the time series in the positive time direction, and the
Backward means encoding in the negative direction. For a
fair comparison, we double the number of parameters for the
unidirectional-LSTM, so that the three models in Table IV
have a similar amount of parameters. As can be seen from
Table IV, bidirectional OPE outperforms the unidirectional
OPE by 4.35%, 17.88%, respectively. The reason for the ad-
vantage of bidirectional encoding over unidirectional encoding
is that the structure of BiLSTM enables it to use all available
information in the past and future of a specific time window.
In contrast, the unidirectional LSTM is usually disturbed at
the anomaly point, failing it to encode subsequent points in a
time window, and regarding them as anomaly points wrongly.
To sum up, BiLSTM can locate the anomaly points more
accurately than regular LSTM.

V. CONCLUSION

In this paper, we propose a novel unsupervised time se-
ries anomaly detection method, referred to as OPE-GSM,
which can find all three kinds of anomaly points defined in
III-A, including extreme anomaly, change points and anomaly
segment. Specially, we propose a novel BiLSTM-based one-
step predictive encoder that can reconstruct the time more
accurately than regular LSTM and deep autoencoder. Based
on the latent features generated by OPE, we apply a SGM
model to predict the change points and anomaly segments and
use the negative log likelihood to detect the extreme anomaly
points. Experiments on two real-world datasets demonstrate

the effectiveness of the proposed method. In the future, we
attempt to generate our method to online time series anomaly
detection.
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[1] J. L. P. Lima, D. Macêdo, and C. Zanchettin, “Heartbeat anomaly detec-

tion using adversarial oversampling,” in International Joint Conference
on Neural Networks, IJCNN 2019 Budapest, Hungary, July 14-19, 2019,
2019, pp. 1–7.

[2] H. Ren, B. Xu, Y. Wang, C. Yi, C. Huang, X. Kou, T. Xing, M. Yang,
J. Tong, and Q. Zhang, “Time-series anomaly detection service at
microsoft,” in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2019, pp. 3009–
3017.

[3] Y. Zhu, C.-C. M. Yeh, Z. Zimmerman, K. Kamgar, and E. Keogh,
“Matrix profile xi: Scrimp++: time series motif discovery at interac-
tive speeds,” in 2018 IEEE International Conference on Data Mining
(ICDM). IEEE, 2018, pp. 837–846.

[4] O. Salem, A. Guerassimov, A. Mehaoua, A. Marcus, and B. Furht,
“Anomaly detection in medical wireless sensor networks using svm
and linear regression models,” International Journal of E-Health and
Medical Communications (IJEHMC), vol. 5, no. 1, pp. 20–45, 2014.

[5] P. J. Rousseeuw and K. V. Driessen, “A fast algorithm for the minimum
covariance determinant estimator,” Technometrics, vol. 41, no. 3, pp.
212–223, 1999.

[6] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identifying
density-based local outliers,” in Proceedings of the 2000 ACM SIGMOD
international conference on Management of data, 2000, pp. 93–104.

[7] S. Hawkins, H. He, G. Williams, and R. Baxter, “Outlier detection
using replicator neural networks,” in International Conference on Data
Warehousing and Knowledge Discovery. Springer, 2002, pp. 170–180.

[8] T. Kieu, B. Yang, C. Guo, and C. S. Jensen, “Outlier detection for time
series with recurrent autoencoder ensembles,” in 28th international joint
conference on artificial intelligence, 2019.

[9] T. Ergen and S. S. Kozat, “Unsupervised anomaly detection with lstm
neural networks,” IEEE transactions on neural networks and learning
systems, 2019.

[10] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE
Transactions on knowledge and data engineering, vol. 21, no. 9, pp.
1263–1284, 2009.

[11] S. Arshi, L. Zhang, and R. Strachan, “Prediction using LSTM networks,”
in International Joint Conference on Neural Networks, IJCNN 2019
Budapest, Hungary, July 14-19, 2019, 2019, pp. 1–8.

[12] J. Zhao, F. Deng, Y. Cai, and J. Chen, “Long short-term memory - fully
connected (lstm-fc) neural network for pm2.5 concentration prediction,”
Chemosphere, vol. 220, pp. 486 – 492, 2019.

[13] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[14] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao, D. Pei,
Y. Feng et al., “Unsupervised anomaly detection via variational auto-
encoder for seasonal kpis in web applications,” in Proceedings of the
2018 World Wide Web Conference, 2018, pp. 187–196.

[15] C. Truong, L. Oudre, and N. Vayatis, “Selective review of offline change
point detection methods,” Signal Processing, p. 107299, 2019.

[16] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural net-
works,” IEEE transactions on Signal Processing, vol. 45, no. 11, pp.
2673–2681, 1997.

[17] D. Hallac, P. Nystrup, and S. Boyd, “Greedy gaussian segmentation of
multivariate time series,” Advances in Data Analysis and Classification,
vol. 13, no. 3, pp. 727–751, 2019.

[18] W.-C. Chang, C.-L. Li, Y. Yang, and B. Póczos, “Kernel change-
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