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Abstract—Scarcity of large publicly available retinal fundus
image datasets for automated glaucoma detection has been the
bottleneck for successful application of artificial intelligence
towards practical Computer-Aided Diagnosis (CAD). A few
small datasets that are available for research community usually
suffer from impractical image capturing conditions and stringent
inclusion criteria. These shortcomings in already limited choice
of existing datasets make it challenging to mature a CAD system
so that it can perform in real-world environment. In this paper
we present a large publicly available retinal fundus image dataset
for glaucoma classification called G1020. The dataset is curated
by conforming to standard practices in routine ophthalmology
and it is expected to serve as standard benchmark dataset
for glaucoma detection. This database consists of 1020 high
resolution colour fundus images and provides ground truth
annotations for glaucoma diagnosis, optic disc and optic cup
segmentation, vertical cup-to-disc ratio, size of neuroretinal rim
in inferior, superior, nasal and temporal quadrants, and bounding
box location for optic disc. We also report baseline results
by conducting extensive experiments for automated glaucoma
diagnosis and segmentation of optic disc and optic cup.

Index Terms—Retinal Fundus Images, Glaucoma Detection,
Computer-Aided Diagnosis, Glaucoma Dataset, Medical Image
Analysis, Artificial Intelligence in Medical Imaging

I. INTRODUCTION

Computer-Aided Diagnosis (CAD) of ocular diseases is
receiving a lot of attention from research community due
to its far-reaching benefits of providing swift and accurate
large-scale screening as well as reducing physicians’ workload
in routine clinical setup [1]. Machine Leaning (ML) and
Deep Learning (DL) based techniques are commonly used to
automatically detect various ocular diseases like glaucoma [2],
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diabetic retinopathy [3], Age-related Macular Degeneration
(AMD) [4] and many other retinal disorders [5]. Recently,
it has been shown that Retinal Fundus Images (RFIs) can be
used to detect many non-ocular diseases as well like Type-
II diabetics [6], anaemia [7], and cardiovascular risks [8].
For automated glaucoma detection, different image modalities
and clinical tests are used, for instance, RFIs [9], Optical
Coherence Tomography (OCT) [10], and Visual Field Tests
(VFTs) [11]. However, fundus imaging is the most common
and inexpensive imaging technique [12] for large-scale screen-
ing of various retinal diseases.

Most of the publicly available RFI datasets have only
a few hundred images (see section II). These datasets are
collected with many imaging constraints like centralising Optic
Disc (OD) [13] or macula and removing images containing
certain artefacts [14]. Since the most important application
of automated glaucoma detection is cost-effective and large-
scale screening [15] of general population, these automated
solutions should be able to perform well in real-world scenar-
ios with fundus images taken in day-to-day practice without
many constraints [16]. Removing images that do not conform
to strict inclusion criteria for example, from the available
datasets might result in a CAD that works exceptionally well
in controlled laboratory environment but might fail in routine
screening or clinical workflow.

In this paper we present a new publicly available RFI dataset
called G10201 for segmentation of OD and Optic Cup (OC)
and detection of glaucoma. This dataset contains images taken
under realistic conditions without many imaging constraints
and, as a result, is fairly representative of real-world fundus
imaging practices. We provide ground truth annotations for

1Available at: https://www.dfki.uni-kl.de/g1020
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OD and OC segmentation, bounding box coordinates for OD
localisation, vertical Cup-to-Disc Ratio (CDR), and size of
neuroretinal rim in Inferior, Superior, Nasal and Temporal
quadrants to see if ISNT rule is followed. We also provide
gold standard clinical diagnosis for glaucoma and many other
ocular disorders. We believe that this challenging dataset can
be used as a benchmark dataset to train robust algorithms for
glaucoma detection capable of performing in the field or in
clinics.

II. RELATED WORK

In this section we first present some of the largest publicly
available RFI datasets for glaucoma detection and segmenta-
tion of OD and OC. Later, we survey a handful of contem-
porary works involving segmentation and classification tasks
using these and other datasets.

A. Existing RFI Datasets

1) ORIGA: Online Retinal fundus Image database for Glau-
coma Analysis and research (ORIGA) [13] is one of the largest
and most commonly used dataset for glaucoma detection made
public since 2010. This dataset consists of 650 images (168
glaucoma, 482 healthy) collected by Singapore Eye Research
Institute between 2004 and 2007. The dataset provides class
labels for healthy and glaucoma, OD and OC contours and
CDR values for each image.

2) RIM-ONE: This small dataset [17] consists of 169 high
resolution RFIs collected at three Spanish hospitals. Each
image is classified as healthy, early glaucoma, moderate glau-
coma, deep glaucoma or ocular hypertension. Additionally,
it provides OD segmentation annotations to evaluate OD
detection algorithms.

3) RIGA: Retinal fundus Images for Glaucoma Analysis
(REGA) [18] consists of 750 images taken from Messidor
dataset [19] and two clinic in Saudi Arabia. This dataset
provides OD and OC boundary annotations; however, it does
not provide any diagnosis with regards to glaucoma.

4) REFUGE: REtinal FUndus Glaucoma ChalengE
(RIGA) [20] is the largest and one of the latest RFI datasets
publicly available for glaucoma detection. It was made public
in 2018 as a grand challenge and consists of 1200 fundus
images with ground truth segmentation of OD and OC and
clinical glaucoma labels. Despite large size of this dataset,
this dataset is highly unbalanced towards healthy class as it
contains only 120 glaucoma images.

5) ACRIMA: This new dataset [14] consists of a total
of 705 fundus images with 396 glaucoma images and 309
normal images taken with centred optic disc. The dataset does
not provide any annotations for OD and OC segmentation.
Relatively balanced proportion of normal and glaucomatous
images in this dataset makes it particularly suitable for training
DL based classifiers.

B. Optic Disc and Optic Cup Segmentation

Almazroa et al. [21] devised an image processing based
heuristic algorithm for optic disc segmentation using RIGA

dataset, which was later made public [18]. Their algorithm
achieved an accuracy of 83.9% for marking the OD area
and centroid. Al-Bander et al. [22] used a U-Net [23] like
dense fully connected Convolutional Neural Network (CNN)
for OD and OC segmentation and evaluated their method on
1129 RFIs from five public datasets. Their method was shown
to be invariant to population demography, camera models,
and other ocular diseases. They outperformed the state-of-
the-art on two datasets and gave competitive results on two
datasets without training on these four datasets. Fu et al. [24]
attempted to jointly segment OD and OC. They modified faster
R-CNN [25] by replacing its Region Proposal Network (RPN)
with two networks named Disc Proposal Network (DPN) and
Cup Proposal Network (CPN). They tested their proposed
network on publicly available ORIGA dataset and 1676 image
of a private dataset called SCES [26], and outperformed state-
of-the-art methods for joint segmentation of OD and OC.

C. Glaucoma Classification

Raghavendra et al. [27] used 1426 private RFIs to train and
test an 18-layer Deep Neural Network (DNN) and achieved
95.6% accuracy, 95.5% sensitivity and 95.7% specificity for
glaucoma classification. In a large and comprehensive study
using around 40,000 RFIs, Li et al. [15] evaluated the perfor-
mance of inception v3 for detecting referable Glaucomatous
OpticNeuropathy (GON). They defined GON as vertical CDR
greater than 0.7. They achieved 92.9% accuracy and 98.6%
Area Under the Curve (AUC) with 95.6% sensitivity and
92.0% specificity. They found that the leading reason for false
positive results was presence of other eye conditions in the
fundus images. Al-Bander et al. [28] used 455 images of RIM-
ONE v2 dataset and extracted discriminating features using
DNN before classifying them using Support Vector Machine
(SVM). They obtained 88.2% accuracy, 85% sensitivity and
90.8% specificity.

III. DATASET DESCRIPTION

The images in G1020 are collected at a private clinical prac-
tice in Kaiserslautern, Germany between year 2005 and 2017
with 45-degree field of view after using dilation drops. The
records were subsequently anonymised and random unique
patient identifiers were assigned to each record. Because the
images are collected retrospectively and are fully anonymised
the informed consent of the patients was not required. To
achieve a dataset that reflects routine clinical practice at
busy healthcare facilities, no specific imaging constraints, like
centring of OD or macula, were imposed. Fig. 1 shows density
map of OD in all images of G1020 as compared to corre-
sponding density map of ORIGA. It can be seen that images
in G1020 dataset have OD at a wider spatial area making
post-processing of any segmentation algorithm significantly
challenging. The images are stored in .JPG format. In the final
dataset released, black background is truncated and only the
fundus region is preserved resulting in images of size between
1944×2108 and 2426×3007 pixels.



(a) G1020 (b) ORIGA

Fig. 1: Density Map of optic disc in G1020 and ORIGA. Optic disc in G1020 is not centralised, making post-processing of
segmentation algorithms more challenging.

There are total of 1020 images from 432 patients. Each
patient has a minimum of 1 image and maximum of 12 images.
Out of 1020 images, 296 images from 110 patients were found
to have glaucoma and 724 images from 322 patients were
healthy. There was no patient with images belonging to both
healthy and glaucomatous class.

Clinical diagnosis is provided for each patient with regards
to presence or absence of glaucoma and any other ocular
disorder observed. To provide segmentation ground truth, an

expert marked OD and OC boundaries as well as bounding
box annotations using labelme [29], which is an open source
annotation tool developed by MIT. These manual annotations
are verified and corrected (if required) by a veteran ophthal-
mologist with more than 25 years of clinical experience. The
annotations are saved in JSON files corresponding to each
image. Based on the ground truth annotations for OD and
OC, vertical CDR is calculated and size of neuroretinal rim
in four quadrants is measured to see if ISNT rule is followed.

(a) Sample image with all three annotations
(b) Sample image without optic cup

Fig. 2: Sample images with optic cup (black polygon), optic disc (white polygon) and bounding box (red rectangle) annotations.



TABLE I: Segmentation performance of Mask R-CNN on G1020 dataset.

Train/Test Splits Object Criterion Average IOU Precision Recall F1-Score

Train: G1020
(random 80%)
Test: G1020
(random 20%)

Optic Disc
IOU>0.4 0.8852 0.9951 0.9951 0.9951
IOU>0.5 0.8852 0.9951 0.9951 0.9951
IOU>0.6 0.8852 0.9951 0.9951 0.9951

Optic Cup
IOU>0.4 0.7276 0.9810 0.9810 0.9810
IOU>0.5 0.7364 0.9494 0.9494 0.9494
IOU>0.6 0.7645 0.8228 0.8228 0.8228

Train: ORIGA
(all images)
Test: G1020
(all images)

Optic Disc
IOU>0.4 0.8641 0.9920 0.9774 0.9847
IOU>0.5 0.8665 0.9861 0.9716 0.9786
IOU>0.6 0.8719 0.9692 0.9549 0.962

Optic Cup
IOU>0.4 0.6496 0.9071 0.9014 0.9042
IOU>0.5 0.6809 0.7812 0.7762 0.7787
IOU>0.6 0.7256 0.5489 0.5752 0.5770

In 60 glaucomatous images, OC was not visible whereas 170
healthy images also do not show any visible OC. Fig. 2 shows
sample images with OD, OC, and bounding box annotations.

IV. EXPERIMENTS AND EVALUATION RESULTS

We evaluated state-of-the-art segmentation algorithms and
image classification networks on our G1020 dataset. For
automated segmentation of OD and OC we used Mask R-
CNN [30] with ResNet-50 [31] as convolutional backbone
pre-trained on ImageNet [32]. We trained separate models
for segmentation of OD and OC. We first trained using 80%
random images from G1020 and tested on remaining 20%
images. The names of images in both training and testing splits
are given with the dataset. Secondly we trained Mask-RCNN
using all images of ORIGA and evaluated their performance on
all images of G1020. Table I summarises segmentation results.
We employed multiple criteria to consider a detected OD and
OC as correct or incorrect. Table I shows results for three such

criteria, namely when Intersection Over Union (IOU) between
predicted object and ground truth object is > 40,50 or 60.

To refine our segmentation results, we employed Non-
Maximum Suppression (NMS) and got rid of all but one
contour with highest probability score. If the overlap (IOU)
between a predicted object (OD or OC) and it’s ground truth is
less than the criterion (IOU > 0.4, for example), it’s considered
as both a False Negative (FN), since the actual object is not
detected, and a False Positive (FP), since an object other than
actual object is predicted. For training and testing on G1020
the network was able to predict OC and OD for each image. In
this experiment there was only one image with IOU = 0.2689
below three criteria given in Table I. Second minimum IOU
was found to be 0.6429. Therefore, precision, recall, and F-1
score for all three criteria are the same. Furthermore, since the
only misclassified image resulted in 1 FP and 1 FN, therefore,
the values of precision and recall are also the same. For
experiment with training using ORIGA and testing on G1020,
the network was able to detect 786 cups out of 791 actual

(a) Image with least IOU (= 0.2689) between prediction and
GT of OD

(b) Image with least IOU (= 0.308) between prediction and
GT of OC

Fig. 3: Example images with incorrect OD and OC detection. Dotted annotations correspond to GT, whereas solid annotations
represent prediction.



TABLE II: Mean Absolute Percentage Error (MAPE) of
various parameters for correctly detected optic disc and optic
cup. STD stands for Standard Deviation.

Train/Test Split Parameters Mean STD

Train: G1020
(random 80%)
Test: G1020

(random 20%)

Cup Diameter 0.2242 0.1933
Disc Diameter 0.0502 0.0664
CDR 0.2304 0.1852

Neuroretinal
Rim

Inferior 0.1226 0.1002
Superior 0.0206 0.0314

Nasal 0.0880 0.0881
Temporal 0.0669 0.0688

Train: ORIGA
(all images)
Test: G1020
(all images)

Cup Diameter 0.1396 0.1031
Disc Diameter 0.0593 0.0692
CDR 0.1674 0.1181

Neuroretinal
Rim

Inferior 0.2102 0.2170
Superior 0.2066 0.1278

Nasal 0.2177 0.1933
Temporal 0.2150 0.1483

cups and 1005 discs out of 1020 discs. Therefore, precision
and recall are different in that experiment for each criterion.
Fig. 3 shows sample images with incorrectly detected OD and
OC.

Using correctly predicted OD and OC we then calculate
predicted CDR and size of neuroretinal rim in inferior, supe-
rior, nasal and temporal quadrants. Mean Absolute Percentage
Error (MAPE) between various predicted values and ground
truth values is given in Table II. All the values in this table
are calculated using IOU> 0.5.

A. Classification of Glaucoma

After localising and extracting ODs from the whole fundus
images, we used these extracted discs to train inception v3
for classification of healthy and glaucomatous images. We
employed 6-fold cross validation with respect to patients
to ensure that all images belonging to one patient are in
either training set or validation set. The inception model with
same experimentation setup was also used to classify ORIGA
dataset using 5-fold cross validation. We also evaluated the
performance of state-of-the-art method on ORIGA presented
by Bajwa et al. [9] for detection of glaucoma in G1020 dataset.
Table III shows performance metrics for both classifiers on
both datasets. It is evident from the Table that both network
were able to classify images from ORIGA with high preci-
sion and recall. However, the same networks struggled hard
against G1020. We believe that the difference between the
performance of inception network on these two datasets is
correlated with the way these datasets are collected. ORIGA,
and most other publicly available RFI datasets impose many
constraints on imaging techniques and selection of images
into final dataset that the resulting image set is no longer
representative of realistic image capturing practices. A DL
model trained on such carefully curated datasets could have
the ability to perform well in laboratory conditions but is likely
to be unsuccessful in the field.

B. Segmentation of OD and OC

To provide deeper insight into the complexity of G1020
dataset and compare it with ORIGA, we analysed image

(a) G1020 (b) ORIGA

Fig. 4: Visualisation of image embeddings on 2D plane after dimensionality reduction using PCA for G1020 and ORIGA.
Blue dots represent glaucoma images and red dots represent healthy images.



TABLE III: Performance metrics for glaucoma detection on G1020 and ORIGA.

Method Dateset Class Precision Recall F1-Score

inception v3

ORIGA
Healthy 0.8578±0.0383 0.9170±0.0208 0.8861±0.0252
Glaucoma 0.6947±0.0869 0.5581±0.1408 0.6157±0.1165
Total 0.8157±0.0486 0.8246±0.0419 0.8164±0.0476

G1020
Healthy 0.7150±0.1053 0.8183±0.0289 0.7587±0.0619
Glaucoma 0.2894±0.0834 0.1920±0.0637 0.2219±0.0513
Total 0.6055±0.094 0.6344±0.0722 0.6080±0.0988

Bajwa et al.
(2019) [9]

ORIGA
Healthy 0.8231±0.0288 0.9186±0.0229 0.8681±0.246
Glaucoma 0.6552±0.0665 0.4366±0.0495 0.5237±0.534
Total 0.7797±0.0378 0.7938±0.0342 0.7788±0.0366

G1020
Healthy 0.4735±0.3348 0.6667±0.4714 0.5537±0.3916
Glaucoma 0.0970±0.1373 0.3333±0.4714 0.1503±0.2126
Total 0.0.3646±0.1979 0.0.5706±0.1976 0.4371±0.2162

embeddings of both datasets from the final convolutional
layer of inception model. We applied Principal Component
Analysis (PCA) to obtain two of the most significant principal
components and visualised them on 2D plane. Fig. 4 illustrates
the results of PCA. We can see that glaucoma images (blue
dots) and healthy images (red dots) are fairly separable in
ORIGA dataset. However, both classes have huge overlap in
latent representation of classifier trained on G1020 images.

Fig. 5 shows Area under Receiver Operator Characteristic
(ROC) curve for each individual fold and their mean for
both datasets. The network was able to achieve competitive
AUC compared to state-of-the-art AUC results on ORIGA
classification by Bajwa et al. [9] (AUC = 0.874) and Fu et
al. [24] (AUC = 0.851), but suffered from serious performance
degradation on G1020.

V. CONCLUSION

Most of existing RFI datasets for glaucoma detection are
very small in size (a few hundred images) and almost all of
them are collected in a very controlled environment. These
datasets do not consider practical limitations in imaging and

usually exclude images that have other retinal artefacts [14].
It has been reported in the literature that presence of multiple
eye diseases degrades the performance of DL algorithms
trained on such datasets [22]. Due to these reasons, most of
publicly available datasets for glaucoma detection are unable
to train a robust CAD system that can perform equally well
in real clinical environment. In this paper, we have presented
a new large publicly available dataset of RFIs that closely
represents fundus imaging in practical clinical routine and
does not enforce strict inclusion criteria on the captured
images. Our initial evaluation of various DL methods for OD
and OC segmentation and glaucoma classification highlights
challenges that need to be addresses to develop a practical
CAD system for swift and reliable glaucoma screening. Our
results set a baseline for comparison by future works in this
domain. We invite research community to utilise this dataset
and evaluate their segmentation and classification algorithms
on it.

(a) G1020 (b) ORIGA

Fig. 5: ROC and AUC for 6-fold G1020 and 5-fold ORIGA datasets.
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