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Abstract—One of the most popular and widely used object 

detection algorithm today is the YOLOv3 due to its high 
performance and speed. However, YOLOv3 is not the best 
algorithm in terms of precision. This paper introduces a 
substantial change to the post-processing routine of the YOLOv3 
after the prediction to increase its final accuracy. Currently, 
YOLOv3 uses a Non-Max Suppression algorithm to eliminate 
multiple detections of the same object. This algorithm is picking 
the most confident overlaying box on any object to present it as the 
final prediction. This paper presents a new algorithm called 
Weighted Centers of Confidence Selection that increases the 
precision using a confidence-weighted average bounding box as a 
replacement to the existing bounding boxes without making any 
changes to the YOLOv3 convolutional neural network. We 
demonstrate how this algorithm works and compare its results to 
the results achieved by the YOLO’s Non-Max Suppression 
algorithm, focusing on precision and achieving almost the same 
frame-speed as the original YOLOv3. This new approach allowed 
us to improve the average accuracy on the COCO dataset in 
comparison to the original YOLO’s Non-Max Suppression.  

Keywords—YOLO, object detection, object localization, non-
max suppression, weighted centers of confidence selection. 

I. INTRODUCTION 
You Only Look Once (YOLO) is the object detection 

algorithm first introduced by J. Redmon at al. in 2015 [1]. It has 
been updated several times [2] and [3]. The recent version 
YOLOv3 [3] uses a specific deep convolutional neural network 
Darknet that typically outputs many bounding box predictions 
for every image according to the grid resolution and the number 
of the used anchors. So, we end up with many inaccurate and 
unwanted bounding boxes that are many times associated with 
the same objects. We need to winnow such predictions to get a 
single, most precise prediction for each object. The YOLO uses 
the Non-Max Suppression algorithm [4], which finds the highest 
confidence bounding box predictions and removes the other less 
confident partially overlapping bounding boxes on the same 
image. With the leftovers, the bounding boxes around detected 
objects can be drawn. 

In this paper, we propose a Weighted Centers of Confidence 
Selection algorithm that can replace the Non-Max Suppression 
algorithm for more precise predictions of the final bounding 

boxes. The presented algorithm takes the best overlapping 
bounding boxes on the same object based on their prediction 
confidences and calculates a new bounding box on top of the 
object. The proposed algorithm does not burden the whole 
process by extra time, leaving the algorithm to work still very 
fast. It only raises the precisions of the predicted bounding boxes 
in comparison to the YOLO’s original Non-Max Suppression 
algorithm. 

We present the comparisons of these two algorithms on the 
COCO dataset showing that the introduced algorithm does not 
require much more computations than a Non-Max Suppression 
algorithm and returns better predictions of bounding boxes on 
average. The introduced algorithm does not change anything in 
the YOLO convolutional neural network. It is focussed on the 
post-processing of the bounding boxes returned by the 
convolutional network. 

II. OBJECT DETECTION ALGORITHMS 
Object detection is one of the major visual tasks performed 

by a human visual system. It is a domain that has benefited 
immensely from the recent developments in deep learning. 
Object detection systems repurpose classifiers to perform 
detection using a sliding window approach and run at an evenly 
spaced location over the entire image like DPM [6]. Other one-
stage or two-state detection approaches like R-CNN, Fast and 
Faster R-CNN [7, 8, 12], SSD [9], or RetinaNet [10, 11] use 
methods for proposals of regions and bounding boxes, run a 
classifier to refine these boxes and eliminate duplicate detections 
and rescore the boxes based on other objects in the image. Such 
approaches are complex and hard to optimize because of many 
pipelines and components that must be trained separately. 
Object detection pipelines generally extract a set of robust 
features from input images to identify objects in the feature 
space by classifiers or localizers [5, 13], which run either in 
sliding window fashion over the whole image or on some subset 
of regions in the image. 

YOLO [1] introduced the object detection system that 
requires to solve a single regression problem predicting object 
classes, their location in the image, and bounding boxes. YOLO 
is a general-purpose detector that learns to detect a variety of 
objects of different classes simultaneously. Thanks to the single 
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pipeline, it can achieve the speed of tens of frames per second 
that allow processing streaming video in real-time with less than 
25 ms of latency. Nevertheless, the development of faster and 
more accurate YOLO versions [2, 3] it still lags behind state-of-
the-art detection system the precision of prediction of the 
bounding boxes. This paper introduces a Weighted Centers of 
Confidence Selection algorithm to help to fix this problem. 

This paper is focused on the YOLOv3 [3] (Fig. 1.) one-stage 
object detection and classification algorithm that is very fast and 
can predict bounding boxes and class probabilities directly from 
full images in one evaluation by a single neural network. 
YOLO’s detection process can be described in three stages. In 
the first stage, the convolutional neural network predicts many 
bounding boxes with different predicted confidences (Fig. 1.1). 
Next, the bounding boxes are filtered due to their confidences, 
so there are left only those with the confidences larger than a 
given threshold (Fig. 1.2). Finally, the Non-Max Suppression 
algorithm searches for the subset of the bounding boxes with the 
largest confidences which do not overlap too much. 

The YOLO network can be optimized end-to-end directly on 
detection performance. Thanks to its simplicity, it outperforms 
many other detection algorithms like DPM [6], R-CNN [7], 
Faster R-CNN [12] with ResNet, and SSD [9] taking into 
account the processing time or the number of frames per second 
and the number of the detected classes of objects. To raise 
YOLO’s v3 performance [3] on the objects of different sizes, it 
predicts three different scales, having strides 32, 16, 8, 
respectively. It makes detections on scales 13 x 13, 26 x 26, and 
52 x 52 with an input of 416 x 416. 

The substantial part of the YOLO is the definition of the 
bounding boxes (ܾ) (Fig. 2) which are predicted using their 
midpoints (ܾ௫, ܾ௬), their widths (ܾ௪), and heights (ܾ௛): 

 ܾ௫ = (௫ݐ)ߪ + ܿ௫ 

 ܾ௬ = ௬൯ݐ൫ߪ + ܿ௬ 

 ܾ௪ = ௪݌ ∙ ݁௧ೢ 

 ܾ௛ = ௛݌ ∙ ݁௧೓ 

 
Fig. 2. Bounding boxes with the dimension and location prediction. 

 
Fig. 1. Illustration of the YOLO process of prediction of bounding boxes. 



where ݐ௫, ݐ௬, ݐ௪, ݐ௛ is what the YOLO network outputs, ܿ௫  and 
ܿ௬  are the top-left coordinates of the grid cell, and ݌௪ and ݌௛  are 
the anchors' dimensions for the grid cell (box). 

 In YOLO, we use an objectness score ݌௢  which is the 
probability that the midpoint of an object ݋ is contained inside a 
grid cell. It is nearly 1 for the bounding boxes which well-bound 
an object, whereas almost 0 for the grid cells that do not contain 
any object of the defined classes. 

YOLO divides the input image into a grid consisting of cells 
that are responsible for detecting objects when the midpoint of 
an object falls into a grid cell. Each cell predicts bounding boxes 
and confidence scores for those boxes. The confidence of the 
prediction is defined after [1] as: 

 ܿ௢ = (݋)݌ ∙ ,ܾ)ܷܱܫ (݋ 

where the confidence should be zero when there is no object in 
that cell because of the probability (݋)݌ of the object is equal to 
zero in this case. Otherwise, the confidence is equal to the 
intersection over union (IOU) [1] between the predicted 
bounding box ܾ and the ground truth (the box of the object ݋). 

Each bounding box consists of 5 predictions representing the 
midpoint (ܾ௫, ܾ௬), width ܾ௪, and height ܾ௛ of the bounding box 
of the detected object, as well as the probability ݌(ܥ௜|݋) of the 
class ܥ௜ for this detected object ݋. The class-specific confidence 
scores for each box is computed as the product of the 
probabilities of ݌(ܥ௜|݋) and the object detection (݋)݌ and the 
intersection over union IOU that collapses to the following 
formula: 

 (݋)ݏ = (݋|௜ܥ)݌ ∙ (݋)݌ ∙ ,ܾ)ܷܱܫ (݋ = (௜ܥ)݌ ∙ ,ܾ)ܷܱܫ (݋ 

where ݌(ܥ௜|݋)  is the conditional class probability when 
detecting object ݋, and ݌(ܥ௜) is the class detection probability. 

III. NON-MAX SUPPRESSION 
The Non-Max Suppression algorithm (NMS) [1, 2] is one of 

the key elements of the YOLO algorithm. It avoids multiple 
bounding boxes for the detected objects, leaving only one with 

the highest IOU. The problem of multiple classifications comes 
from the grid in which cells might think that they found an object 
of a given class and represent its midpoint. As a result, every 
such cell produces a bounding box, and thus we usually get 
multiple bounding boxes for the same object (Figs. 3 and 4.).  

YOLO’s Non-Max Suppression is devoted to choose only 
one bounding box with the highest prediction confidence p௖ 
computed for each object detection by grid cells. This algorithm 
selects the bounding box with the highest confidence for each 
detected object (from a group of bounding boxes (Fig. 4) which 
substantially overlap) but does not use the less confident 
bounding boxes or their predicted confidences any more. The 

Non-Max Suppression Algorithm 
Input: 3D matrix B with estimated bounding boxes 
produced by the convolutional YOLOv3 network 
Parameters: Minimum accepted probability ݌௖௠௜௡, 
minimum IOUmin above which bounding boxes are 
removed. 
Output: Set L of bounding boxes for objects with the 
largest predictions. 
1: B = set of bounding boxes 
2: foreach b in B 
3:  if b. ݌௖ ≤  ௖௠௜௡ then B.Remove(b)݌
4: end foreach 
5: while B.IsNotEmpty do 
6:  b = GetBoundingBoxWithMax ݌௖ 
7:   L.Add(b) 
8:  foreach ܾ௜ in B 
9:   if ܷܱܫ(ܾ, ܾ௜) ≥ IOUmin then 
10:          B.Remove(ܾ௜) 
11:   end if 
12:  end foreach 
13: end while 
14: return L 

 
Fig. 3. Idea of Non-Max Suppression with the high-lighted grid cells (in 
red on the left) where the object was detected with high enough confidence 
and bounding boxes (on the right) which confidences were bigger than the 
minimum (threshold) confidence, from which the bounding box with the 
largest confidence is chosen by this algorithm as a final detection box. 

 
Fig. 4. Descriptive illustration of the grouping operation 



less confident bounding boxes also carry useful information that 
can be used to compute the final bounding box for each object 
instead of selecting the one with the highest confidence only. 

 We use ܷܱܫ(ܾ, ܾ௜) (Fig. 5) that stands for the intersection 
over the union of the selected bounding box ܾ with the largest 
confidence and other compared bounding boxes ܾ௜ which were 
not yet removed from the set of bounding boxes B. The 
,ܾ)ܷܱܫ ܾ௜) is computed as a ratio of the intersection size to the 
union size of two specified boxes. The result is always between 
0 and 1, where 1 corresponds to the perfect overlapping of the 
same sized boxes, and 0 means boxes with no overlapping area.  

From the theoretical point of view, the Non-Max 
Suppression algorithm removes possibly helpful but relatively 
less confident bounding boxes and loses their found predictions. 
These removed predictions may sometimes have only a tiny less 
confidence in comparison to the winning prediction bounding 
box. The general idea of our research was to use the less 
confident predictions instead of just removing them, and the 
results show that this approach helped to achieve generally 
better average precision of the detected objects. 

IV. WEIGHTED CENTERS OF CONFIDENCE SELECTION 
The Weighted Centers of Confidence Selection (WCCS) is 

an algorithm devoted to the post-processing part of the YOLOv3 
to achieve more accurate predictions, not losing its performance. 
It computes the final bounding box for each object instead of 
selecting the one with the maximum confidence. It can be used 
as an alternative to Non-Max Suppression. 

It starts from removing all bounding boxes with low prediction 
confidences (which are under a given threshold ݌௖ <  ௖ఏ) in a݌
similar way as the Non-Max Suppression. Thus, it leaves a 
group the most confident bounding boxes {ܾଵ, … , ܾ௡}  which 
௖݌ ≥ ௖ఏ݌ , e.g. ݌௖ఏ = 0.4. For the overlapping enough bounding 
boxes  ܾ௜ and ௝ܾ with the confidence bigger than the threshold 
௖ఏ݌  and for which ܷܱܫ൫ܾ௜ , ௝ܾ൯  ≥  IOUெ௜௡ఏ , e.g. IOUఏ = 0.5, 
we compute the weighted averages of their midpoints, widths, 
and heights (7) where weights are defined using the squared 
prediction confidences of the bounding boxes. ܷܱܫ൫ܾ௜ , ௝ܾ൯ 
stands for the Intersection Over Union between the two 
bounding boxes ܾ௜ and ௝ܾ.  In WCCS, the IOU is computed for 
every predicted bounding box which ݌௖ ≥ ௖ఏ݌ . During the 
grouping process, it also filters out the predicted classes 
,ଵܥ} … ,  ௅} of the object, so WCCS does not store boundingܥ
boxes of different classes in the same group. 

 

෠ܾ = ൫b୶ , b୷, b୵, b୦൯ =
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After grouping is finished, it calculates a new bounding box 
෠ܾ (7) using up to three most confident and overlapping bounding 
boxes from each group. The new bounding box is calculated 
based on the weighted averages where weights are the squared 
prediction confidences of those bounding boxes. Next, all of the 
bounding boxes in the group are removed, and only the 
calculated bounding box is kept. The following pseudo-code can 
provide more precise insight. 

 

 
Fig. 5. Intersection over union (IOU) with (b) the presentation of the union 
and (c) the intersection. 

Grouping Algorithm using ࢁࡻࡵ൫࢏࢈ ࢐൯࢈,  ≥  ࣂ࢔࢏ࡹ܃۽۷ 
Input: 3D matrix defining the set of bounding boxes B 
produced by the convolutional YOLOv3 network 
Parameters: Minimum threshold IOUெ௜௡ఏ of acceptance 
the overlapping bounding boxes. 
Output: 2D matrix designed to define the set of groups G. 
1: BNo = SizeOf(B)  # Number of bounding boxes in B 
2: G = MatrixOfZeros(size=( BNo x BNo)) 
3: foreach ܾଵ in B 
4:  foreach ܾଶ in B 
5:   if ܾଵ != ܾଶ then 
6:        if ܾଵ.class == ܾଶ.class then 
7:             if  ܷܱܫ(ܾଵ, ܾଶ) ≥ IOUெ௜௡ఏ  then  
8:                  G[ܾଵ, ܾଶ] = 1 
9:                  end if 
10:             end if 
11:        end if 
12:  end foreach 
13: end foreach 
14: G.RemoveDuplicates() 
15: return G 



In Fig. 6, there is depicted the difference between the 
proposed and Non-Max Suppression algorithms. The top image 
shows the result of the Non-Max Suppression and the prediction 
of the selected bounding box. The bottom image presents the 
result of the Weighted Centers of Confidence Selection that is 
more precise than the previous one. 

Due to not changing the YOLO’s network, the root 
prediction accuracy has not risen, and it does not damage the 
time-efficiency of the improved algorithm. We merely adjust the 
way it processes after the prediction. Due to that, using 
commonly used [3] mAP would not be fair for this. Instead, we 
approached another way of checking the precision of bounding 
box predictions using an absolute error e (9) [14] comparing the 
ground truth bounding boxes ݃௢ = ൫݃௫௢ ,݃௬௢, ݃௪௢ , ݃௛௢൯  with the 
predicted bounding boxes for each object o:  

݁ = |b௫ − ݃௫௢| + หb௬ − ݃௬௢ห + |b௪ − ݃௪௢ | + |b௛ − ݃௛௢| (9) 

 
Fig. 6. Illustration of the results got using (a) Non-Max Suppressio,  
(b) Weighted Centers of Confidence Selections. 

Weighted Centers of Confidence Selection 
Input: 3D matrix B with estimated bounding boxes 
produced by the convolutional YOLOv3 network and the 
group matrix G from the Grouping Algorithm 
Parameters: maxBBoxNo initialized to 3 defining the 
maximum number of bounding boxes of the largest 
prediction confidence that are used to compute the new 
bounding box by this algorithm. 
Output: Set L of the computed bounding boxes for the 
groups of bounding boxes stored in matrix G. 
1: B = set of bounding boxes 
2: G = set of groups of bounding boxes 
3:  maxBBoxNo = 3 
4: foreach g in G 
5:  if g.Count() == 1 then 
6:   L.Add(g.First()) 
7:  else if 
8:   bb = new Bounding Box 
9:   c2 = 0 
10:   foreach b in g 
11:        b2 = b.c * b.c 
12:        c2 += b2 
13:        bb.bx += b.bx * b2 
14:        bb.by += b.by * b2 
15:        bb.bw += b.bw * b2 
16:        bb.bh += b.bh * b2 
17:   end foreach 
18:   bb.bx /= c2 
19:   bb.by /= c2 
20:   bb.bw /= c2 
21:   bb.bh /= c2 
22:   L.Add(bb) 
23:  end if 
24:  g.RemoveAllBoundingBoxes() 
25: end foreach 
26: return L 



We tested this approach on the COCO dataset [5], comparing 
the Non-Max Suppression to the proposed algorithm using the 
ground truth bounding boxes provided by the COCO dataset. 
Below, the previously mentioned algorithm is presented with the 
following pseudo-code: 

The IOUఏ is a threshold that is for matching the exact boxes 
in order to compare precision, so usually IOUఏ >  IOUெ௜௡ఏ , 
where IOUெ௜௡ఏ was used in the Grouping Algorithm. 

After storing the absolute errors with respect to the number 
of predictions made, we divide the absolute errors due to the 

number of predictions to get an overall average absolute error 
score presented for many predictions in Fig. 7. 

V. COMPARISONS AND RESULTS 
We used the COCO dataset that is typically used in 

comparisons of various object detection methods. During our 
tests, we used the entire validation part of the current version of 
the COCO dataset.  We measured the average error on both 
approaches for all objects in all images. The results presented in 
Fig. 7 show that the improvement achieved by the use of WCCS 
is stable in comparison to the NMS; nevertheless, the number of 
predictions we made, so it proves that the replacement of NMS 
by WCCS has sense. As shown in Fig. 7, every bar represents 
the average absolute error for the growing number of 
predictions. For all presented averages, the presented approach 
using WCCS instead of NMS is winning in the precision of the 
predictions of the bounding boxes, and the improvement is 
stable so that we can use it without any doubt. 

Comparing to the Non-Max Suppression, when the 
Weighted Centers of Confidence Selections algorithm is applied 
to images with objects on the COCO dataset, the absolute error 
is reduced by 2% on average. To show that this 2% improvement 
makes sense, some examples of such improvements are 
presented in Fig. 8. 

We also measured the time efficiency of this new approach. 
It turned out that it did not burden the calculation time 
significantly. The comparison of the average YOLO prediction 
based on NMS to the average prediction made by YOLO with 
implemented WCCS showed that the time-efficiency decreased 
only about 0.27%. Hence, it is not meaningful from the frame 
per second processing speed of input images because we can 
lose at most one frame per second. 

 
Fig. 7. Comparison of Average Absolute Errors achieved for Non-Max Suppression and Weighted Centers of Confidence Selection. The difference show us 
the better peformance on the WCCS algorithm. 

Absolute Error Calculation 
Input: COCO dataset with the defined ground truth 
bounding boxes and classes for all objects of all images 
Parameters: Threshold IOUఏ of acceptance the 
overlapping bounding boxes 
Output: Absolute total error e. 
1: e = 0 
2: foreach image in COCO 
3:  foreach pred_box in all_predictions[image.id] 
4:   foreach coco_box in COCO[image.id].bbox 
5:        if IOU(pred_box, coco_box) ≥ IOUఏ  and 

          pred_box.class == coco_box.class      
     then 

6:             e +=sum(difference(pred_box,coco_box)) 
7:        end if 
8:   end foreach 
9:  end foreach 
10: end while 
11: return e 



Once we categorize detected objects by their relative sizes 
regarding the entire picture in which they belong, we see that the 
method we introduce is performing dramatically better on the 
larger objects. In Table I and Fig. 9, we compare the objects of 

three different groups based on their sizes: small (that cover less 
than 10% of the image), midsize (that cover between 10% and 
45% of the image) and large (that cover more than 45% of the 
image) objects. 

After the definition, the recall is the ratio of the number of 
the true object detections to the total number of objects in the 
data set. The average recall values and the average precision 
values with respect to the IOU threshold are presented in Figs. 
10. and 11. The mean average precision (mAP) score (Fig. 11) 
is increased by 1.3%, and the mean average recall score is 
increased by 2.6% on average through the different levels of 

 

 
Fig. 8. Comparison of Non-Max Suppression (on the left in pairs) to 
Weighted Centers of Confidence Selection (on the right in pairs). 

TABLE I.  COMPARISON OF MEAN ABSOLUTE ERROS OF THE 
OBJECTS OF DIFFERENT SIZE 

Mean Absolute 
Error 

Object Size 
Small Midsize Large 

NMS 21.5537 53.0042 78.0070 

WCCS 21.3142 51.8339 75.5162 

 
Fig. 9. Illustration of the sample results for (a) small, (b) midsize, and (c) 
large images using NMS (left column) and WCCS (right column). 

 
Fig. 10. The Average Recall Value with respect to the IOU threshold. 



IOU thresholds. The 1.3% increase on average in the traditional  
mAP per IOU score in Fig. 10. However, as we mentioned 
previously in this paper, comparing Non-Max Suppression with 
Weighted Centers of Confidence by using mAP should not be 
recognized as the most important comparison in the paper. As 
the researcher who wrote this paper, we believe the proposed 
absolute error (9) is a better approach for understanding our 
post-processing improvement.  

VI. CONCLUSION AND REMARKS 
In this paper, we presented the improved post-processing 

algorithm of final bounding boxes calculations for YOLOv3. It 
has increased the precision of these bounding boxes in 
comparison to the original Non-Max Suppression. The proposed 
algorithm improved the accuracy of the predicted bounding 
boxes about 2,0% on average on the COCO dataset. It might be 
especially important for self-driving cars or cancer detection on 
X-Ray images and in many other applications. Every 
improvement could set a life and death difference or decide 
about road safety.  

Moreover, the presented improvement does not change the 
famous YOLO’s high performance because the proposed 
mathematical operations at the post-processing phase of the 
prediction are quite simple and can be quickly computed in 
comparison to the evaluation of the input images by the YOLO 
convolutional network. The costliest operation from the entire 
process of object detection is the prediction part made by this 
network. Therefore, the difference (0.27%) in computational 
time introduced by the proposed algorithm is unnoticeable. 

The replacement of the Non-Max Suppression with the 
proposed Weighted Centers of Confidence Selection 
implemented to YOLOv3 allows for raising the average 
precision about 2% on the COCO dataset without changing the 
convolutional network of YOLOv3. 
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Fig. 11. The Average Precision Value with respect to the IOU threshold. 




