
Effects of Architecture and Training on Embedding
Geometry and Feature Discriminability in BERT

Maksim Podkorytov∗, Daniel Biś†, Jinglun Cai‡, Kobra Amirizirtol§, Xiuwen Liu¶
∗†§¶Department of Computer Science, ‡Department of Mathematics

Florida State University, Tallahassee, FL, USA
{∗maksim, †bis, §amirizir, ¶liux}@cs.fsu.edu ‡jcai@math.fsu.edu

Abstract—Natural language processing has improved substan-
tially in the last few years due to the increased computational
power and availability of text data. Bidirectional Encoder Repre-
sentations from Transformers (BERT) have further improved the
performance by using an auto-encoding model that incorporates
larger bidirectional contexts. However, the underlying mecha-
nisms of BERT for its effectiveness are not well understood. In
the paper we investigate how the BERT architecture and its pre-
training protocol affect the geometry of its embeddings and the
effectiveness of its features for classification tasks. As an auto-
encoding model, during pre-training, it produces representations
that are context dependent and at the same time must be
able to “reconstruct” the original input sentences. The complex
interactions of the two via transformers lead to interesting
geometric properties of the embeddings and subsequently affect
the inherent discriminability of the resulting representations. Our
experimental results illustrate that the BERT models do not
produce “effective” contextualized representations for words and
their improved performance may mainly be due to fine-tuning
or classifiers that model the dependencies explicitly by encoding
syntactic patterns in the training data.

I. INTRODUCTION

With the availability of parallel computation powered by
graphical processing units and massive amounts of data,
natural language processing techniques have improved the
performance of many challenging tasks significantly and sur-
passed human performance in a number of areas. As vast
human knowledge exists in texts and language is the most
effective human-to-human communication interface, machines
that could understand natural language and communicate with
humans naturally could transform many of the services in
modern societies. A fundamental problem in natural language
processing is to capture rich semantics of natural language
computationally. Clearly, the meaning of a sentence depends
on its constituents (such as words) and their relationships via
syntax rules. By capturing regular patterns in large corpora,
computational models can be used to help resolve a number
of problems. One such model is the language model (LM)
[1], which captures the probability distribution of the next
word given its context. The model can be used to predict
the next word(s) and resolve ambiguities (such as in speech
recognition).

A distinctive feature of language models is the ability to be
trained through self-supervision in that one can use the actual
next word as the target. This feature enables training models
using larger and larger datasets with better performance on

a number of benchmarks [2] [3] [4]. Traditional language
models are auto regressive; the context has consisted of either
the words before the target word or after the target word, but
not the entire sentence. However, representations based on the
entire sentence or even sentences are useful for at least some
NLP tasks [5]. For example, in order to predict the emotion
in a sentence accurately, one needs to read the entire sentence
as negation and implicit words (such as “not” and “but”) can
change its meaning completely.

To overcome the limitation, BERT [3] builds on an auto-
encoding model, rather than an auto regressive one. More
specifically, a BERT model is pre-trained by being able to
predict some of the masked words via transformers [6]. Since
it was introduced, BERT has set the new state of arts on a num-
ber of NLP benchmarks [3]. While there is ample empirical
evidence that BERT models work well on a number of NLP
tasks, it is not very well understood why they are effective.
A common explanation is that BERT computes contextualized
representations, where the representations of words depend on
their contexts. However, this is not supported by the underlying
auto-encoding model. For example, even though the word
“bank” may have multiple meanings, the objective function
of the pre-training task requires the same word embedding
index to be predicted under different contexts. In this paper,
we attempt to understand BERT by analyzing the geometry of
its word embeddings, and the intrinsic discriminability of
the context-dependent representations produced from the
embeddings via transformers. Such analyses provide new
insights that are necessary to further improve BERT models.

II. BERT ARCHITECTURE AND PRE-TRAINING

BERT is essentially an encoder from the encoder-decoder
architecture of Transformer [6]. By overcoming the limitations
imposed by unidirectional processing, BERT and its variations
are able to process a bidirectional context by masking the
target words with a special [MASK] token, thus adding noise
and making the prediction of the target word more difficult.
Consequently, the training objective is to predict the original
vocabulary id of the masked token based only on its noisy
context. The introduction of the [MASK] token causes a
mismatch between the pre-training and fine-tuning input. To
alleviate this, the training data generator chooses 15% of
the token positions at random for prediction; if the token t
is chosen for prediction, it is replaced with [MASK] 80%

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Fig. 1: Bert pre-training architecture

of the time, a random token 10% of the time and kept
unchanged 10% of the time. Effectively, the model does not
know which tokens it will be asked to predict and is forced
to keep a distributional contextual representation for every
token, although the cross-entropy loss is calculated only for the
chosen 15% of the tokens. The second pre-training objective is
the binary Next Sentence Prediction (NSP). An input sequence
of BERT consists of two segments A and B, 50% of time B
is the actual segment that follows A in the corpus and 50%
of time it is a random segment. BERT is asked to predict
whether A and B are indeed a consecutive segments. The pre-
training loss is the sum of the mean masked LM likelihood and
the mean next sentence prediction likelihood. For a detailed
description of the structure and the objective function, we refer
the reader to [6] and BERT [3].

By looking at BERT from its input and output relationship,
BERT is an auto-encoding model as shown in Fig. 1. Given
a sentence, consisting of tokenized word pieces [7], the word
pieces are first translated into embedding vectors which can be
modeled as matrix multiplications. The embedding vectors are
first transformed by a number of multi-head attention and feed-
forward neural network layers, producing transformed vectors
as the output from the BERT architecture. The matching
of query and key vectors performed by the attention heads
via inner product is inherently pair-wise; this resembles the
product of the input and output vectors used in the skip-gram
model [8], and may be a source of similarities between the
geometry of the representations produced by the two models.

During pre-training, the output vectors are used as “con-
textualized” representation of the word pieces and a softmax
function is applied to the result of multiplying each output
vector and the input embedding matrix to produce a probability
distribution over the word pieces in the BERT dictionary. Note
that while the transformers in BERT encourage contextualized
representations through query, key, and value matrices and
feed-forward neural networks, the use of cross entropy is
to “recover” the indices of the original word pieces, where
the optimal solution would be the average vector in different
positions and different contexts.

III. BERT EMBEDDING GEOMETRY AND EFFECTS OF
TRANSFORMERS

The goal of this section is to study how the BERT embed-
ding vectors are affected by its architecture and pre-training
protocol by probing them. The parameters of a BERT model
include the embedding vectors for word pieces along with
the parameters for self-attention and feed-forward transformer
layers. First, the embedding vectors were analyzed, then
different layers of transformers were probed using simplified
inputs. All of the experiments and analysis in this paper were
done using the uncased base BERT model, with 12 transformer
layers, 12 attention heads, and the hidden dimension equal
to 7681. When BERT is given an input sequence of tokens,
the embedding layer, as well as all 12 transformer layers
have a rank-2 tensor as their activations; with the shape of
(len sequence, hidden dim).

A. Embeddings Geometry Analysis

To study the distribution of the representations in the
embedding space, pairwise correlations of weights of BERT
embedding layer were computed. Since there are 30522
768-dimensional embedding vectors in the pre-trained BERT
model, the correlations are 30522 × 30522 values in [−1, 1]
range. The histogram of correlations in Fig. 2 shows that the
embeddings tend to have somewhat strong pairwise correla-
tions, implying that the representations occupy a narrow region
in the embedding space. This is one of the geometric effects
of pre-training, as vectors sampled from a normal distribution
would have correlation histogram centered around 0.

Fig. 2: Histogram of BERT embedding pairwise correlations.
Note that the peak near 1.0 is due to some vectors are similar
to each other.

Next, the magnitudes of the representations were analyzed.
The magnitude of an embedding is important since it directly
affects the result of the dot product of the BERT output and
the embedding matrix; this product is subsequently used as an

1Pre-trained models based on Transformers [9] are publicly available at
https://huggingface.co/transformers/

most freq token count magnitude
1 the 960941 0.821649
2 of 537171 0.843784
3 and 377328 0.898151
4 one 363157 1.014323
5 in 340397 0.866191
6 a 294527 0.870349
7 to 287473 0.907536
8 zero 234036 1.244975
9 nine 219649 0.967104

10 two 170537 0.938169

TABLE I: 10 most frequent tokens in Text8 dataset [10]. The
most frequent token (‘the’) has the smallest Euclidean norm.

input to the softmax function to produce a probability distri-
bution over the model’s vocabulary. In order to analyze the
magnitudes of the representations, the text8 dataset was used
[10], which is a concatenation of English Wikipedia articles
text truncated at 108 characters. The dataset was tokenized
and the word-part tokens were filtered out. The remaining
tokens were sorted by their frequency and the euclidean norm
was computed for each of the remaining tokens’ embedding.
The plot of embedding euclidean norm with respect to token
frequency is displayed in Figure 3. The norms of 10 most
frequent tokens are in the Table I. The more frequent words
tend to have smaller norms, with the most frequent word in
the dataset (“the”) having the smallest norm. Many of the
most frequent tokens are function words that appear in a large
variety of contexts; such a context diversity may be responsible
for pushing the tokens embeddings towards the coordinates
origin during pre-training.

Fig. 3: Euclidean embedding norms for tokens sorted by their
occurrence frequency in Text8 dataset [10]. The more frequent
tokens tend to have a smaller Euclidean norm.

B. BERT Transformer Analysis

We probed the BERT transformers layers using simplified
inputs. In the following experiment, a single token (“cat”) was
used as an input for BERT in order to compute all hidden
states; then, the pairwise correlations of the hidden states

were computed. The correlation matrix heatmap is displayed
in Fig. 4; we observed, that in the matrix there is an emergent
block structure with bottom layers and top layers having
high pairwise correlations within their group. The correlation
with the embedding layer with each of the following layers
decreases up to layer 7 and starts increasing after that. Being
an auto-encoder model, BERT encodes patterns in the data in
the first few layers and the upper layers try to “reconstruct”
the original masked words, by recovering information from
the patterns.

Fig. 4: The correlation coefficients between outputs of the
embedding layer (#0) and all the transformer layers (#1-
#12) of pre-trained BERT [3] for the input token sequence
consisting of a single token ‘cat’.

Fig. 5: Analogy query results: the number of dataset entries for
which the answer to analogy query (e.g. king - man + woman)
belongs to correct analogy’s (queen) K nearest neighbors. Dif-
ferent lines correspond to different BERT transformer layers
that are used to get embeddings from. Skip-gram is used as a
baseline.

In the next experiment, the analogy dataset [2] was used,
where each sample is a quadruple (A, B, C, D) organized
so that A is related to B in the same way as C is related
to D, e.g. (Paris France Helsinki Finland). The dataset was

filtered, so that each word corresponds to a single token.
BERT activations were computed when each of these tokens
was the only input to the model, and the activations were
used for the analogy query formulated in terms of vector
arithmetic as follows: with respect to (B - A + C), how many
tokens embeddings are closer in terms of cosine similarity
than the correct answer D? The results are shown in Fig. 5;
y-axis shows the percentage of samples for which the correct
answer D belongs to k neighbor embeddings to the analogy
expression, while x-axis stands for the number of neighbors
k. The results show that the activations in all transformer
layers are able to capture the notion of similarity formulated in
terms of analogy query. However, this ability is gradually lost
along with increasing depth. The rate of accuracy decrease
is steepest between the middle layers. [11] show that the
activations from higher layer occupy a smaller region in the
embedding space, this compressed distribution may negatively
impact the performance of the higher layers on this task. Also,
surprisingly, the first layer demonstrates a better accuracy
than the embedding one. Skip-gram (SG)2 [8] was used as
a baseline. The same set of filtered queries was used; for
a fair comparison the vocabulary of SG was limited to the
30,000 most frequent English words and the words needed
for the task, resulting in a dictionary of 30,378 words. While
SG performs better when only one nearest neighbor is used,
it is surpassed by BERT activations when more neighbors are
considered. One of the reasons for this may be the higher
dimensionality of BERT vectors (768) than the SG vectors
(300), resulting in a exponentially larger embedding space
and increased difficulty when only one neighbor is used. The
experiment was repeated by evaluating (A - B + D) against C.
The reformulated task results show the same patterns as the
original ones.

IV. DISCRIMINABILITY OF BERT FEATURES

As pointed in [3], BERT models can be used both with
feature-based approaches and fine-tuning approaches. In this
section, the inherent discriminability of representations pro-
duced by BERT models is evaluated by analyzing whether
words in semantic classes will cluster together first. This
forms the basis for such features to generalize well for tasks.
Our systematic analysis shows the features are not inherently
discriminant.

Then, we investigated whether the sequence using computed
embeddings still contains the information necessary for classi-
fication if we model the dependencies among the embeddings.

A. Discriminability analysis

We compute all transformers layer activations of pre-trained
BERT on a labeled dataset and compute two distinct metrics
that summarize how well the activations are clustered within
the same label and separated across different labels.

We borrow the idea for the first metric from [12]. For
activation x ∈ Rn with label y, let L designate the relation

2Pre-trained vectors used for this experiment are publicly available at
https://code.google.com/archive/p/word2vec/.

between x and y (L(x) = y), let ρ(x) be a ratio of the distance
to the nearest activation in another class y′ 6= y to the distance
to the nearest activation in the same class y incremented by a
small positive number ε for numerical stability:

ρ(x) =

min
L(x′)6=y

d(x, x′)

min
L(x)=y,x′ 6=x

d(x, x′) + ε
. (1)

Intuitively, if an activation x is within a cluster of activations
with the same label, its nearest neighbor has the same label;
the numerator is greater than the denominator and ρ(x) > 1.
In a converse case, the nearest neighbor has a different label
and ρ(x) < 1. Next, we compute the summary of ρ values for
the entire dataset; since ρ can range from 0 to +∞, we squash
it into a finite range using the following transformation:

f(x) =
1

1 + exp(1− x)
(2)

After that, we compute the arithmetic mean over the entire
dataset:

F =
1

|X|
∑
x∈X

f(ρ(x)) (3)

as well as the empirical distribution of f(ρ(x)) and its
statistics. Hence we are able to reason about discriminability of
the activations; for in-cluster activations, 1 > f(ρ(x)) > 0.5,
whereas for outliers 0 < f(ρ(x)) < 0.5.

The second metric is based on silhouette analysis [13]. Fol-
lowing the convention used during the first metric definition,
let a(x) be the mean of in-class distances:

a(x) =
1

|{x′ : L(x′) = y, x′ 6= x}|
∑

x′:L(x′)=y,x′ 6=x

d(x, x′)

(4)
Let b(x) be the smallest mean distance to a set of activations
having the same label distinct from y:

b(x) = min
y′:y′ 6=y

1

|{x′ : L(x′) = y′}|
∑

x′:L(x′)=y′

d(x, x′) (5)

The silhouette s(x) is defined as follows:

s(x) =
b(x)− a(x)

max(a(x), b(x))
(6)

If x is a sole sample in its class, s(x) is defined to be 0.
Values of s(x) close to 1 imply that a(x)� b(x), that is, the

mean distance between x and samples within its class is much
less than the minimal mean distance between x and samples in
other classes, contributing to a high discriminability of chosen
feature. Similarly, values of s(x) close to −1 mean that the
sample x is closer to some set of samples with a label distinct
from its own. Values of s(x) close to 0 imply that x is as
close to set of samples with its own label as to the samples
with another label. The latter two cases contribute to a low
discriminability of chosen feature.

Similarly to the first metric, we computed the empirical
distribution of the silhouette over the dataset and its statistics
to analyze the discriminability.

B. Two approaches for sentiment analysis using BERT

We have a labeled dataset of tweets, where each tweet is a
short text and the label is the sentiment expressed in the tweet.
For classification, instead of training a model from scratch,
we want to leverage knowledge from a pre-trained model.
We consider two ways of doing that: The first one is to use
BERT activations as input features for a simpler model that is
trained from scratch, while the second one is to augment the
pre-trained BERT model with a classifier subnetwork and fine-
tune the composite network. Each considered BERT activation
is a rank-2 tensor of shape (num tokens, bert hd), where
num tokens is the number of tokens in the input to BERT
and bert hd is the hidden dimension BERT hyperparameter.
We will refer to each activation as a length-num tokens
sequence of bert hd-dimensional vectors in this section. For
each model, a cross-entropy loss is computed based on final
linear layer outputs (logits) and true data labels; it is optimized
using a gradient-descent based optimizer.

1) Feature-based classification: For the feature-based ap-
proach, two different network architectures were used. The
first architecture is a shallow network that consists of 2 linear
layers with CELU nonlinearity between the layers. The input
vector is the first element of a BERT hidden state; for such
state we use the output of each transformer layer as well as
the embedding layer output.

The second architecture is a two-layer BiLSTM with a
classifier head on top; the classifier head is a single linear
layer that takes as input a concatenation of last forward and
backward outputs of the BiLSTM. The BiLSTM input is the
entire sequence of BERT hidden state elements (as opposed
to using only the first element of such sequence). We use
the same hidden states of BERT as input as for the first
architecture.

2) Fine-tuning: In this case, the model consists of a pre-
trained BERT model and a classifier head. The classifier head
is a linear layer; its input is the first element of a BERT hidden
state; the hidden states are again the embedding layer output
and each of the 12 transformer layer outputs.

V. EXPERIMENTS AND RESULTS

In this paper, we used two datasets: text8 and an emotion
dataset. The text8 was used to study the word frequency and
the emotion dataset was used for classification.

A. Emotion Classification

In each classification scenario, we perform stratified 10-fold
validation and report mean accuracy, balanced accuracy and
adjusted balanced accuracy [14] for classifiers based on each
BERT hidden state in its according figure.

For feature-based classification using shallow network, we
used the entire emotions dataset with 340540 tweets labeled
into 6 classes. We use Adam optimizer [15] with learning rate
of 2−8, constant learning rate schedule and no weight decay.
We set the batch size to 64 during training and to 1 during
validation. The dimension of middle hidden layer activation is
384; the classifier input is 768-dimensional and the network

output is 6-dimensional. The classifier is trained for 5 epochs.
We report the accuracy metrics in Figure 6. The worst accuracy
is at the embedding hidden state for the same reason as
we have observed in our fine-tuning experiment. In contrast
to fine-tuned and BiLSTM-based models, we observe worse
accuracy; it seems that this architecture has less capabilities
in capturing temporal patterns present in text.

Fig. 6: Accuracy metrics of feature-based classifier based on
a shallow network for each of the BERT hidden states as the
classifier input.

For feature-based classification using BiLSTM as well as
for fine-tuning based classification, we used a stratified sample
of 8964 tweets of the original emotion dataset as a trade-off
between training time and accuracy. We also pad/truncate the
input sequences to 32 tokens for enabling batch processing.
Having the same dataset size allows to perform a fairer com-
parison of these models’ accuracy scores. For feature-based
classification using BiLSTM, we use Adam optimizer [15]
with learning rate of 2−11, constant learning rate schedule and
no weight decay. We set the batch size to 64 during training
and to 1 during validation; the LSTM hidden dimension is 384,
input dimension is 768 and there are 2 bidirectional layers. The
dropout probability is 0.2 for dropout layers inside LSTM as
well as between LSTM and the linear classifier head. The
classifier is trained for 12 epochs. The accuracy metrics are
displayed in Figure 7.

For fine-tuning based classification, we use AdamW opti-
mizer [16] with learning rate of 2−17, constant learning rate
schedule and no weight decay. The batch size is 16 during
training and 1 during validation; the dropout layer between
BERT and linear layer is set to have probability 0.1. The
classifier is trained for 6 epochs. Figure 8 contains the accuracy
metrics. The lowest accuracy is at the embedding output. Since
the first element is always the ’[CLS]’ token embedding. the
model fails to generalize as it never sees other tokens from
the input sentence.

We aggregate the results in Table II. According to the
classification results, the performance of shallow network is
the worst among the models, while BiLSTM and fine-tuned

Fig. 7: Accuracy metrics of feature-based classifier with BiL-
STM processing the BERT hidden states. We observe that it
is possible to achieve a comparable performance to a fine-
tuned model using output of a pre-trained model and a simpler
architecture. In contrast to fine-tuned and shallow network
based models, here we achieve the best performance in the
embedding layer and a few bottom transformer layers.

Fig. 8: Accuracy metrics of fine-tuned model for each of the
BERT hidden states as the classifier head attachment point.

networks have comparable best performances among BERT
hidden states. The original BERT paper [3] also reported that
the accuracy of BiLSTM feature-based approach is comparable
to fine-tuning one; however, they did not provide accuracies
for all layers, while we do.

The fine-tuned and shallow networks have almost 0 adjusted
balanced accuracy on the embedding layer. In these cases,
a model does not take into account all tokens in the input
token sequence, as we have set up the model input as the first
element of the BERT hidden state; hence, the performance
is predictably random. BiLSTM-based network does not have
this property as its recurrent subnetwork processes all input
tokens before feeding into a linear classifier, and this is

reflected in its accuracy. The fine-tuned and shallow networks
using the first element of a deeper BERT state as input do
not have this property as well, as there is a connection to all
tokens in the input through attention [6] layers of BERT.

There is an interesting pattern that we cannot explain yet;
the graph of accuracy with respect to BERT hidden state is
not monotonous for each classifier architecture. Both feature-
based classifiers have the accuracy peak near 4th BERT hidden
state. The fine-tuning based classifiers have the accuracy peak
in the 4th to last BERT hidden state.

B. Embeddings Discriminability

We study the embeddings of a few selected emotion words
and their 10 nearest neighbors (in terms of Euclidean norm)
from text8 dataset. A 2-dimensional projection of BERT
activations are demonstrated via PCA [17]. The results in
Figures 9 and 10 show that the Bert embeddings do not display
well-formed semantic clustering. For instance, in Figure 9
“sadness” and “happiness” are very close to each other, while
both of them are far from “pleasure” and “joy”. In Figure 10,
“sadness” is somewhere between “pleasure” and “happiness”.
As we can see, intrinsic discriminability of BERT’s pre-trained
embeddings is limited for direct usage.

Fig. 9: PCA of emotion words, averaged through all layers

Fig. 10: PCA of emotion words in the 12th layer

Additionally, we used the emotion dataset to study the raw
BERT activations discriminability. We computed two discrim-
inability metrics for each sample in the dataset based on
sequence-wise average activation of each BERT transformer
layer as well as the embedding layer; the distributions of each
discriminability metric are in Figures 11 and 12. The results
show that both metrics values tend to be in the neighborhood
of the decision boundary (0.5 and 0, respective), hence, the
raw activations in any BERT layer are not clustered based on
the dataset labels.

VI. RELATED WORK AND DISCUSSION

Neural distributed representations of words were initially
introduced by [1], who proposed to learn these representation
using Neural Network based LM (NNLM). Later, Mikolov
et al. [18] introduced RNN based LM (RNNLM) to handle
variable length sequences and a better context modeling.
Distributed representations of words have gained immense
popularity after the introduction of an efficient way of estimat-
ing them, in the form of skip-gram and CBOW models by [2],
[8] as well as the Glove [19]. However, these approaches use
limited contexts. To model dependencies in larger contexts,
LSTM networks [20] were used to model the language [21].
The potential of LSTM’s memory cell was further utilized by
[5] who proposed deep contextualized word representations,
called ELMo. In contrast to having a fixed representation, in
ELMo words are assigned a representation that is a function
of the entire input sentence, where the function is modeled
using bi-directional LSTM.

Fine-tuning BiLSTM Shallow NN
L. Acc. Bal. acc. Acc. Bal. acc. Acc. Bal. acc.
E 0.3382 0.1667 0.8881 0.8511 0.3099 0.1667
1 0.8551 0.8020 0.8844 0.8412 0.5787 0.4812
2 0.8859 0.8371 0.8853 0.8434 0.6459 0.5662
3 0.8976 0.8531 0.8892 0.8448 0.6495 0.5687
4 0.9003 0.8608 0.8852 0.8464 0.6668 0.5937
5 0.8978 0.8606 0.8728 0.8292 0.6568 0.5734
6 0.8986 0.8538 0.8666 0.8245 0.6562 0.5793
7 0.8993 0.8535 0.8531 0.7969 0.6379 0.5491
8 0.9006 0.8513 0.8280 0.7740 0.6208 0.5170
9 0.9028 0.8626 0.8191 0.7515 0.6157 0.5070
10 0.9003 0.8513 0.7886 0.7080 0.6238 0.5107
11 0.9022 0.8508 0.7739 0.6858 0.6267 0.5127
12 0.9016 0.8488 0.7595 0.6819 0.6404 0.5247

TABLE II: Emotion classification accuracies.

Vaswani et al. [6] introduced Transformer, the first sequence
transduction model based entirely on attention (described in
detail in the architecture section). Transformer eliminates re-
cursion, allowing for modeling the long-distance dependencies
with a constant number of operations. First of the Transformer
based LM, GPT [22], is an auto-regressive model based on
Transformer decoder (without encoder-decoder attention). At
the time of its introduction GPT improved the state-of-the-
art result on multi-task NLP benchmark GLUE [23]. Finally,
Devlin et al. [3] introduced BERT, further improving the state-
of-the-art on GLUE.

Fig. 11: Discriminability distributions for each transformer
layer.

Fig. 12: Silhouette distributions for each transformer layer.

Due to BERT’s superior performance, a number of stud-
ies were performed in order to understand its underlying
mechanisms [24] [25]. For example, there are a number of
studies on analyzing attention heads in BERT and their roles
of capturing syntax and semantic patterns [26] [27] [28] [29]
[30]. In contrast, the focus of this paper is on the characteristics
of the learned representations, not the patterns captured by
the attention mechanisms. The closest to this work are the
papers of Voita et al. [31] and Ethayarajh [11]. Voita et al.
[31] analyzed the evolution of the word representations across
the layers of a masked language model. By using correlation
analysis, it reports patterns similar to the one in Figure 2, to
show that masked language models are auto-encoders which
create contextual representations in the early layers and try
to recover the tokens identities in the later layers in order
to predict the correct ids of the target tokens. The evolution
of the embeddings across the layers is not the focal point of
this study; rather, we performed a thorough analysis of key
geometric properties learned by masked language models and
their roots in the Transformer’s architecture, using BERT as

a case study. Ethayarajh [11] studied geometry of represen-
tations produced by BERT, GPT-2 and ELMo, focusing on
evaluating how much context is captured by the respective
models using self-similarity - the average cosine similarity
between the contextualized representations of the same word in
different context across the layers. The author reported that the
self-similarities in BERT are consistently higher than that in
GPT-2. This can be attributed to the different objectives of the
models; while representations in GPT-2 are used to predict the
next token in the sequence, those in BERT must predict their
own id. Similarly to [11], we found that the words in BERT
occupy a narrow cone in the embedding space, however we
used a different methodology. In this work we focused on the
discriminability of the representations produced by BERT and
their influence on sentence classification tasks; we conducted a
broader study of the geometry of the representations grounded
in the underlying model’s architecture.

While BERT is more powerful than the skip-gram [2]
model, there are inherent similarities between the two. Con-
sequently, studies on the skip-gram model have shown sim-
ilar observations to that of BERT embedding geometry. For
example, Schakel and Wilson [32] show a similar inverse re-
lationship between word frequency and the embedding vector
length of words using the skip-gram model.

There are also a number of studies which show that the
BERT models are capable of discovering features in com-
monly used NLP pipeline [33] [34]. However, as the BERT
models are inherently an auto-encoder model, the underlying
mechanisms of the observed features must be rooted in the
auto-encoder model and data. An effective multiple-layer
auto-encoder model would naturally lead to a hierarchical
representation, where more common features are discovered
first and then other less common features will be built on the
features. Generally, since more complex relationships such as
semantic relationships are less common, they are developed in
higher layers. This is fundamentally different from the patterns
in ELMo [5], where the local dependencies need to form first
before longer dependencies.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have analyzed how the BERT architecture
and its pre-training protocol affect its embedding vectors and
its induced feature vectors. Due to its similarity to the archi-
tecture of the skip-gram and CBOW models, the geometric
properties of BERT embeddings are similar in many ways to
the vectors given by Word2Vec [8]. Our systematic results
show the induced features do not lead to clusters for emotion
classification in the original embedding space. However, they
are effective for classification when temporal dependencies are
modeled explicitly (such as BiLSTM). More importantly, the
results show that the BERT models do not produce “effective”
contextualized representations for words and their improved
performance may mainly be due to fine-tuning or classifiers
that model the dependencies explicitly by encoding syntactic
patterns in the training data. This is being investigated further.

REFERENCES

[1] Y. Bengio, R. Ducharme et al., “A neural probabilistic language model,”
in J. Mach. Learn. Res., 2003.

[2] T. Mikolov, K. Chen et al., “Efficient estimation of word representations
in vector space,” in ICLR, 2013.

[3] J. Devlin, M.-W. Chang et al., “Bert: Pre-training of deep bidirectional
transformers for language understanding,” in NAACL-HLT, 2019.

[4] Y. Liu, M. Ott et al., “Roberta: A robustly optimized bert pretraining
approach,” in arXiv:1907.11692, 2019.

[5] M. Peters, M. Neumann et al., “Deep contextualized word representa-
tions,” in NAACL-HLT, 2018.

[6] A. Vaswani, N. Shazeer et al., “Attention is all you need,” in NIPS,
2017.

[7] Y. Wu, M. Schuster et al., “Google’s neural machine translation sys-
tem: Bridging the gap between human and machine translation,” in
arXiv:1609.08144, 2016.

[8] T. Mikolov, I. Sutskever et al., “Distributed representations of words
and phrases and their compositionality,” in NIPS, 2013.

[9] T. Wolf, L. Debut et al., “Huggingface’s transformers: State-of-the-art
natural language processing,” in ArXiv:1910.03771, 2019.

[10] M. Mahoney. (2006) Text8 dataset. [Online]. Available:
http://mattmahoney.net/dc/textdata.html

[11] K. Ethayarajh, “How contextual are contextualized word representa-
tions? comparing the geometry of bert, elmo, and gpt-2 embeddings,”
in EMNLP/IJCNLP, 2019.

[12] X. Liu, A. Srivastava, and K. A. Gallivan, “Optimal linear representa-
tions of images for object recognition,” in CVPR, 2003.

[13] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis,” in J. Comput. Appl. Math., 1987.

[14] K. H. Brodersen, C. S. Ong et al., “The balanced accuracy and its
posterior distribution,” in ICPR, 2010.

[15] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in arXiv:1412.6980, 2014.

[16] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
in arXiv:1711.05101, 2017.

[17] K. Pearson, “LIII. On lines and planes of closest fit to systems of points
in space,” in Philosophical Magazine, 1901.

[18] T. Mikolov, M. Karafiát et al., “Recurrent neural network based language
model,” in INTERSPEECH, 2010.

[19] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in EMNLP, 2014.

[20] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” in Neural
computation, 1997.

[21] M. Sundermeyer, R. Schlüter, and H. Ney, “Lstm neural networks for
language modeling,” in INTERSPEECH, 2012.

[22] A. Radford, “Improving language understanding by generative pre-
training,” in preprint, 2018.

[23] A. Wang, A. Singh et al., “GLUE: A multi-task benchmark and analysis
platform for natural language understanding,” in ICLR, 2019.

[24] E. Voita, D. Talbot et al., “Analyzing multi-head self-attention: Spe-
cialized heads do the heavy lifting, the rest can be pruned,” in
arXiv:1905.09418, 2019.

[25] A. Ettinger, “What bert is not: Lessons from a new suite of psycholin-
guistic diagnostics for language models,” in arXiv:1907.13528, 2019.

[26] Y. Goldberg, “Assessing bert’s syntactic abilities,” in arXiv:1901.05287,
2019.

[27] T. Niven and H.-Y. Kao, “Probing neural network comprehension of
natural language arguments,” in arXiv:1907.07355, 2019.

[28] J. Du, F. Qi, and M. Sun, “Using bert for word sense disambiguation,”
in arXiv:1909.08358, 2019.

[29] K. Huang, J. Altosaar, and R. Ranganath, “Clinicalbert: Modeling
clinical notes and predicting hospital readmission,” in arXiv:1904.05342.

[30] K. Clark, U. Khandelwal et al., “What does bert look at? an analysis of
bert’s attention,” in arXiv:1906.04341, 2019.

[31] E. Voita, R. Sennrich, and I. Titov, “The bottom-up evolution of
representations in the transformer: A study with machine translation
and language modeling objectives,” in arXiv:1909.01380, 2019.

[32] A. M. Schakel and B. J. Wilson, “Measuring word significance using
distributed representations of words,” in arXiv:1508.02297, 2015.

[33] E. Alsentzer, J. R. Murphy et al., “Publicly available clinical bert
embeddings,” in arXiv:1904.03323, 2019.

[34] I. Tenney, D. Das, and E. Pavlick, “Bert rediscovers the classical nlp
pipeline,” in arXiv:1905.05950, 2019.

