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Abstract—Multi-Agent Reinforcement Learning (MARL) en-
compasses a powerful class of methodologies that have been
applied in a wide range of fields. An effective way to further
empower these methodologies is to develop approaches and tools
that could expand their interpretability and explainability. In
this work, we introduce MARLeME: a MARL model extraction
library, designed to improve explainability of MARL systems
by approximating them with symbolic models. Symbolic models
offer a high degree of interpretability, well-defined properties,
and verifiable behaviour. Consequently, they can be used to
inspect and better understand the underlying MARL systems
and corresponding MARL agents, as well as to replace all/some
of the agents that are particularly safety and security critical.
In this work, we demonstrate how MARLeME can be applied
to two well-known case studies (Cooperative Navigation and
RoboCup Takeaway), using extracted models based on Abstract
Argumentation.

Index Terms—Multi-Agent Reinforcement Learning, Inter-
pretability, Abstract Argumentation, Explainability, Model Ex-
traction, Knowledge Extraction, Symbolic Reasoning, Library

I. INTRODUCTION

Multi-Agent Reinforcement Learning (MARL) has achieved
groundbreaking results in a wide range of fields, and is
currently a highly active research area of Machine Learning
(ML) [6], [38], [39]. MARL deals with teams of agents that
learn how to act optimally in stochastic environments through
trial-and-error, and has been successfully applied to tasks
requiring cooperative/competitive multi-agent behaviour, such
as large-scale fleet management [31], swarm systems [32], and
task allocation [30].

Unfortunately, a substantial amount of recent MARL ap-
proaches represent decision-making policies using very com-
plex models, such as Deep Neural Networks (DNNs) [28],
making it extremely challenging to directly understand an
agent’s action-selection strategy. A lack of interpretability of
such systems leads to a lack of confidence in the correctness of
their behaviour, which is crucial in safety-critical applications,
such as self-driving cars or healthcare. Furthermore, this lack
of interpretability implies that optimal strategies learned by the
MARL agents cannot be used to improve our understanding
of the corresponding domain. Approaches based on symbolic
reasoning, on the other hand, offer interpretable, verifiable
models with well-defined properties. As a result, there has

recently been increasing interest in approaches capable of
combining symbolic reasoning with ML [26], [27], [29].

One technique that allows reaping the benefits of both
ML-based and symbolic approaches is model extraction [36].
Model extraction refers to approaches that approximate a
complex model (e.g. a DNN) with a simpler, interpretable
one (e.g. a rule-based model), facilitating understanding of
the complex model. Intuitively, statistical properties of the
complex model should be reflected in the extracted model,
provided approximation quality of the extracted model (re-
ferred to as fidelity) is high enough.

This paper introduces MARLeME: a (M)ulti-(A)gent
(R)einforcement (Le)arning (M)odel (E)xtraction library, de-
signed to improve interpretability of MARL systems using
model extraction. MARLeME is an open-source 1, easy-to-
use, plug-and-play library, that can be seamlessly integrated
with a wide range of existing MARL tasks. To the best of our
knowledge, this is the first open-source MARL library focus-
ing on interpretable model extraction from MARL systems.

The extracted models introduced in this paper are based on
Abstract Argumentation (AA). To the best of our knowledge,
this is the first time AA-based models have been used for
MARL agent approximation, despite the advantages of AA-
based systems (discussed further in Section III-B).

The rest of this paper is structured as follows: Section II
reviews work related to RL model extraction. Section III dis-
cusses the relevant background. Section IV gives an overview
of the MARLeME library and the AA models. Section V and
Section VI present an evaluation of MARLeME using two
RL benchmarks (Cooperative Navigation and RoboCup Take-
away). Finally, Section VII gives some concluding remarks.

II. RELATED WORK

XAI: Explainable AI (XAI) is a field focusing on the
explainability/trustworthiness of ML systems, and has recently
seen a surge of interest, with a wide range of approaches
proposed in recent years (a comprehensive survey can be found
in [40]). As discussed in Section I, our work focuses on model
extraction, and can thus be categorised as a model-agnostic,

1https://github.com/dmitrykazhdan/MARLeME
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global interpretability-based approach (a discussion of alter-
native approaches to XAI and their relative merits/drawbacks
can be found in [40]). Furthermore, our work focuses on
explainability of multi-agent systems (a comprehensive survey
of XAI approaches in the context of multi-agent systems can
be found in [41]). Crucially, explainability of MARL systems
is seldom addressed in existing work on explainability, with
focus being predominantly on supervised learning approaches
instead.

SARL Model Extraction: A range of recent work has
focused on Single-Agent Reinforcement Learning (SARL)
model extraction [21], [24], [25], relying on different types of
extracted models. Unlike our work, which focuses on teams
of RL agents, all of the above approaches were designed for
and evaluated using the single RL agent case only. However,
extensions of these approaches to the multi-agent case could
in principle be incorporated into MARLeME as new extracted
model types.

Imitation Learning: Our work is also partially related to
imitation learning [22], [23]. Similarly to MARLeME, imita-
tion learning approaches derive action-selection policies from
input trajectories. However, imitation learning approaches
focus on the quality of the policy (i.e. its performance on
the corresponding task), without paying attention to its inter-
pretability. Achieving the latter while preserving performance
is a unique focus of MARLeME.

III. BACKGROUND

A. Reinforcement Learning

RL is applied to tasks that require automated decision
making, such as autonomous navigation [7], healthcare [8],
and many others [9]. This work only requires a high-level
understanding of key RL concepts, that are described below.
Further details can be found in [35].

1) Single-Agent Reinforcement Learning: SARL focuses
on a single autonomous agent that interacts with a given
environment over time, learning how to act optimally in this
(possibly stochastic) environment through trial-and-error. At
each time step t (over a sequence of timesteps), the agent
receives a representation of its environment in the form of a
state st, and selects an action at on the basis of that state.
In the next time step, the agent receives a numerical reward
from the environment rt, and transitions to the next state st+1,
according to the environment dynamics. This is repeated for a
sequence of time steps, until a terminal state is reached. The
goal of a RL agent is to find an optimal policy (a mapping
from input states to actions) that maximises its long-term
cumulative reward. A sequence of states and corresponding
selected actions [(s0, a0), ..., (sT , aT )] of an agent from a start
state to a terminal state is referred to as an episode sequence.
A set of such sequences collected from multiple episodes is
referred to as a trajectory. Further details regarding RL theory
may be found here [28], [35].

2) Multi-Agent Reinforcement Learning: MARL incorpo-
rates RL into Multi-Agent Systems (MASs), and consists of
teams of RL agents that must compete or cooperate in order

to solve complex tasks. MARL has been successfully applied
in a range of tasks that rely on automated decision making
in multi-agent systems, such as controlling power flow in an
electrical power-grid [3], making economic decisions [4], and
many others [5]. Further details regarding the challenges and
opportunities of MARL, as well as the mathematical details,
may be found in [6].

B. Abstract Argumentation

Extracted models presented in this paper rely on Abstract
Argumentation (AA) [19], due to the popularity of AA in
autonomous agent and multi-agent decision making [16]–[18].
Argumentation allows reasoning in presence of incomplete
and inconsistent knowledge, which is often the case in multi-
agent settings, where the agents are unlikely to have complete
knowledge of the environment and may have conflicting
objectives. In addition, AA-based decision-making models are
interpretable and thus highly suitable for model extraction.
Despite these advantages, to the best of our knowledge, this
is the first time that AA-based models have been used for
interpretable model extraction in RL.

In this work we make use of Value-based Argumentation
Frameworks (VAFs) which are based on Abstract Argumen-
tation Frameworks (AFs). Informally, an AF = (Arg,Att),
consists of a set of arguments Arg, which are defeasible rules
of inference, and a binary attack relation between arguments
Att ⊆ Arg × Arg that represent conflicts between argu-
ments. In a value-based argumentation framework VAF =
(Arg,Att, V, val ,Valpref ), there are values attached to ar-
guments that represent their relative utility and hence dictate
which argument is preferred to another in face of conflict:
V is a set of possible argument values , val : Arg → V
is a function that assigns values to arguments, and Valpref
is an ordering over these values. Naturally, argumentation
frameworks can be represented as directed graphs, where
nodes are arguments and an edge from node A to B represents
an attack from the former to the latter.

When representing knowledge using a VAF, it is possible
to determine which arguments in the VAF are ‘winning’ or
optimal, by defining suitable semantics (sets of well-defined
rules) that specify whether an argument should be accepted
(i.e. treated as optimal). The set of accepted arguments of a
VAF is referred to as its extension. In this work, we make use
of the grounded extension (GE) semantics when computing
acceptable arguments from a VAF, that will be described in
the remainder of this section. Details regarding other extension
types may be found in [19].

Given an AF (Arg,Att), suppose S ⊆ Arg, then:

• S attacks an argument A iff some member of S attacks
A

• S is conflict-free iff S attacks none of its members
• S defends an argument A iff S attacks all arguments

attacking A
• S is an admissible extension of an AF iff S is conflict-free

and defends all its elements



• S is a complete extension of an AF iff it is an admissible
extension and every argument defended by S belongs to
S

• S is the grounded extension of an AF iff it is the
smallest element (with respect to set inclusion) among
the complete extensions of the AF.

Intuitively, a GE represents a ‘sceptical’ solution, consisting
only of non-controversial arguments (those not attacking each
other).

IV. MARLEME

A diagrammatic summary of how MARLeME can be ap-
plied to MARL systems is given in Figure 1, where inter-
pretable models are extracted from MARL system agent data.
The three main components of the MARLeME library are
described below.

TrajectoryHandler: Agents’ trajectories are the agents’
data MARLeME operates on. In practice, there is a range of
ways in which trajectory data may be provided to MARLeME
by the user (referred to as ‘raw data’ in Figure 1), including
different data types (e.g. as text files, JSON objects, or
in databases), data loading behaviour (e.g. from a server,
or locally), and grouping (e.g. incremental, or batch). The
TRAJECTORYHANDLER module is designed to handle these
potential variations, before passing the formatted trajectory
data to the MODELEXTRACTOR component.

ModelExtractor: The MODELEXTRACTOR component is
designed to extract interpretable models from formatted tra-
jectory data provided by the TRAJECTORYHANDLER. This
component can utilise extraction algorithms for different types
of interpretable models, and provide various underlying im-
plementations for these algorithms (e.g. GPU-optimised). The
resulting models are represented using TEAM and AGENT
components, which are described below.

Team + Agent: Extracted agent models (shown by green
circles in Figure 1) are represented using the TEAMMODEL
and AGENTMODEL components. An AGENTMODEL repre-
sents a single agent, and a TEAMMODEL represents a group
of agents (e.g. teams or sub-teams), giving the user an oppor-
tunity to encapsulate agent interactions (e.g. state information
sharing). Together, these two classes capture the full spectrum
of possible agent interactions: from fully centralised, with
all agents represented by a single TEAMMODEL component,
to fully decentralised, with all agents running independently
(with every agent represented by an AGENTMODEL compo-
nent). These extracted models can be further analysed (e.g.
through manual inspection, formal verification, or statistical
analysis) to provide insight into the behaviour of the un-
derlying MARL systems at hand and extract new domain
knowledge. Moreover, the extracted models can replace the
original uninterpretable ones, providing more interpretable
systems with verifiable properties.

MARLeME can be applied to a vast range of existing
MARL systems, by simply logging trajectories of the cor-
responding MARL agents. Furthermore, MARLeME can be
used to extract a wide variety of model types, such as

decision trees, or fuzzy rule-based models [20], depending on
user preferences/needs. This allows successful integration of
RL approaches with the well-studied verification, knowledge
extraction, and reasoning approaches associated with symbolic
models.

A. Abstract Argumentation Agents

The interpretable agents presented in this work (referred to
as AA-based agents) rely on VAFs for knowledge representa-
tion, and GE semantics for action derivation. The arguments
used by these agents are action arguments, representing action-
based heuristics. An action argument A has the form ‘If
condition holds then agent should do action’. In this definition,
condition is a boolean function of agent state (specifying
whether or not argument A is applicable in that state), action
specifies the recommended action, and agent refers to an
agent in the team. In this work, all AA-based agents have Att
defined as follows: argument A attacks argument B iff they
recommend the same action to different agents, or different
actions to the same agent. For a given agent, arguments in
its argument set Arg that recommend actions to that agent are
referred to as its primary arguments in the rest of this work. In
our case, V is the integer set, Valpref is the standard integer
ordering, and val is a lookup table, mapping arguments to
their integer values.

When deriving an action from a state, an AA-based agent
computes all arguments in Arg that are applicable in that
state (all arguments for which the argument’s condition is
true). Then, the agent constructs a VAF from these arguments
(using attack construction rules Att, and argument values val ).
Finally, the agent uses GE semantics to compute the acceptable
primary arguments of the VAF. By definition, all arguments
acceptable under GE semantics are non-conflicting, thus, given
the agent’s definition of Att, all acceptable primary arguments
must recommend the same action, which is the action executed
by the agent.

It should be noted that AA-theory is vast, containing a
range of types of AA systems with differing assumptions and
flexibility. This work relies on one type of AA-based agent
model described above, which is suitable for the corresponding
evaluation tasks. Nevertheless, exploring other types of AA-
based agents that may give better performance on other types
of tasks is an important direction for future work.

B. Abstract Argumentation Agent Model Extraction

Extraction of AA-based agents is performed by the al-
gorithm shown in Algorithm 1. This algorithm assumes the
agent argument set (Args) is provided by the user, and uses
it to derive the argument value ordering (extractedOrdering)
from the input MARL trajectory data (Trajectories), and a
user-provided default input ordering (DefOrder). The agent
models are consequently generated using the user-specified
arguments and attack construction rules, together with the
derived argument values. The derived value ordering reflects
the relative utility of the agent arguments, and can thus serve
as an indication of which arguments the agent primarily relies



Fig. 1. (a) A MARL system consists of a set of RL agents (red circles) interacting with each other and their environment. (b) MARLeME uses agent
trajectory data obtained from the MARL system (raw data), in order to extract a set of interpretable models (green circles) from that data, which approximate
the behaviour of the original agents. (c) The interpretable models can replace the original ones (model deployment) or be investigated to better understand
the behaviour of the underlying MARL system (model inspection).

Algorithm 1 extractOrdering(Trajectories,Args,DefOrder)
1: prefGraph = newArgPreferenceGraph()
2: for (state, action) ∈ Trajectories do
3: applicableArgs = getApplicableArgs(Args, state)
4: relevantArgs =
5: {arg ∈ applicableArgs |
6: arg.RecAction == action}
7: irrelevantArgs = applicableArgs− relevantArgs
8: for relevantArg ∈ relevantArgs do
9: for irrelevantArg ∈ irrelevantArgs do

10: prefGraph.incrementEdge(relevantArg,
11: irrelevantArg)
12: end for
13: end for
14: end for
15: DAG = convertToAcyclic(prefGraph)
16: extractedOrdering = topologicalSort(DAG.nodes,
17: DAG.edges,
18: DefOrder)
19: return extractedOrdering

on during action selection, allowing interpretation of agent
strategy (as will be shown in Section VI-A2).

Algorithm 1 relies on topological sorting and operates on
a novel Argument Preference Graph (APG) structure (also
introduced in this work). The fundamental idea behind the
algorithm is that for a given pair of arguments (A,B) and a
RL agent trajectory, the argument that is ‘in closer agreement’
with the agent contains relatively more useful information, and
should thus have a relatively higher value. These pair-wise
argument preferences are stored in an APG. An APG is a
weighted directed graph (with non-negative weights) in which
the nodes represent arguments, and weighted edges represent
preferences between arguments.

The relative argument utility is computed by iterating over
all (state, action) pairs of input agent trajectories. For every

such (state, action) pair, the APG is updated by incrementing
the weights of directed edges between all pairs of arguments
(A,B), where both A and B are applicable in state, A was
in agreement with the agent (recommended the same action),
and B was not (recommended a different action). Thus, a
directed edge with weight w from argument A to argument
B in an APG implies that A was applicable and in agreement
with the agent, whilst argument B was applicable and was
not in agreement with the agent, for w different trajectory
states. A high value of weight w of a directed edge (A,B)
thus signifies that argument A frequently suggested more
relevant information than argument B, implying that argument
A should have a higher value.

Once the APG is constructed, an argument ordering is
extracted from it by first converting it into a Directed Acyclic
Graph (DAG) by calling the convertToAcyclic method, and
then topologically sorting the DAG (by calling the topological-
Sort method). Graph cycle removal is achieved by relying on a
pruning heuristic, which removes all edges of weight less than
a given pruning value p from the graph. Topological sorting
is achieved using a slight variation of Kahn’s algorithm [12],
where the node extraction order relies on the default argument
ordering given by the user (DefOrder), instead of relying on
stack or queue structures.

Our ordering extraction algorithm relies on both knowledge
derived from the trajectory data (in the form of an APG),
and on heuristics injected by the user (the default ordering).
Graph cycle removal from potentially-cyclic graphs is a highly
researched topic, with a wide range of proposed approaches
(such as those given in [1], [2]), many of which could poten-
tially be used as implementations of the convertToAcyclic
method. The utilised pruning approach is advantageous since
it provides a straightforward way of controlling the tradeoff
between the importance of prior knowledge and extracted
knowledge, by using the pruning parameter p. A higher p
value removes more edges and yields a sparser APG with
more possible argument orderings, leading to greater reliance



on the default ordering. A lower p value has the reverse effect.
Overall, the extraction algorithm relies on pre-defined attack

rules and arguments, focusing on deriving relative argument
values from the data. Relying on manually-provided arguments
enables expert knowledge to be injected directly into the
extracted models, which in turn is very useful when generating
the models (i.e. attempting to approximate agents by a set
of heuristics experts are familiar with). However, in certain
environments it may be desirable to perform argument/attack
derivation automatically (e.g. to ensure better scalability).
Thus, we intend to explore modifications to the extraction
algorithm, allowing automated derivation of arguments/attacks
(e.g. through automated rule extraction) in future work.

V. EXPERIMENTS

We evaluated the AA-based models extracted by MAR-
LeME using two well-known RL case studies: Cooperative
Navigation [37] and RoboCup Takeaway [15]. The remainder
of this section describes the two case studies, as well as the
corresponding AA-based agent setups.

A. Cooperative Navigation

In the Coop. Nav. task, N agents must cooperate through
physical actions to reach a set of L landmarks (in our case,
N = L = 2). Agents observe the relative positions of other
agents and landmarks, and are collectively rewarded based on
the proximity of any agent to each landmark. Thus, the agents
learn to infer the landmarks they must cover, and move there
while avoiding other agents. The agents were trained using
the multi-agent deep deterministic policy gradient (MADDPG)
method (further details can be found in [37]).

We defined the following argument set Arg for the two
agents (here i is the landmark index, and j is the agent index,
both ranging from 1 to 2):

• ClosestLandmarki,j : If Li is the closest landmark to
Aj , Aj should go towards Li.

• ClosestAgenti,j : If Aj is the closest agent to Li, Aj

should go towards Li.
• ClosestAgentLandmarki,j : If Aj is the closest agent

to Li, and Li is the closest landmark to Aj , Aj should
go towards Li.

• GoToLandmarki,j : Agent Aj should go towards Li

The above argument set is small, easy to work with, and
consists of intuitive heurisitcs likely to affect agent behaviour.

B. RoboCup Takeaway

RoboCup Takeaway was used to evaluate MARLeME on a
more challenging task, involving a large state space, competing
agents, and long, variable delays in action effects. RoboCup
Takeaway was proposed in [15] in order to facilitate RL
research in the context of RoboCup Soccer 2, and focuses on
two teams of simulated agents playing the Takeaway game
in a two-dimensional virtual soccer stadium. In Takeaway,
N+1 hand-coded keepers are competing with N independent

2https://rcsoccersim.github.io/

learning takers on a fixed-size field. Keepers attempt to keep
possession of the ball, whereas takers attempt to win posses-
sion of the ball. The game consists of a series of episodes,
and an episode ends when the ball goes off the field or any
taker gets the ball. A new episode starts immediately with all
the players reset. We focus here on the 4v3 Takeaway game,
consisting of 4 keepers and 3 takers. The MARL taker team
consisted of homogeneous, independent learning RL agents
relying on the SARSA(λ) algorithm with tile-coding function
approximation [35].

When defining arguments for AA-based taker agents, we
made use of the work in [14], which explored RL agent
convergence, and relied on Takeaway as the case study. The
mentioned works defined a set of arguments containing useful
domain heuristics relevant to the takeaway game. Every AA-
based taker uses the same argument set Arg, consisting of the
following arguments (here i is the taker index, ranging from
1 to 3, and p is the keeper index, ranging from 1 to 4):

• TackleBalli : If Ti is closest to the ball holder, Ti should
tackle the ball

• OpenKeeperi,p : If a keeper Kp is in a quite ‘open’
position, Ti should mark this keeper

• FarKeeperi,p: If a keeper Kp is ‘far’ from all takers,
Ti should mark this keeper

• MinAnglei,p: If the angle between Ti and a keeper Kp,
with vertex at the ball holder, is the smallest, Ti should
mark this keeper

• MinDisti,p : If Ti is closest to a keeper Kp, Ti should
mark this keeper

VI. RESULTS

This section presents the results obtained by evaluating the
extracted AA-based models on the chosen case studies. Section
VI-A and Section VI-B demonstrate how the extracted models
can be inspected (both qualitatively and formally), in order to
better understand the underlying RL models, and extract useful
knowledge from them. Section VI-C demonstrates how well
the extracted models perform on their original tasks, and how
closely they approximate their original models.

A. Qualitative Inspection

Given that extracted models serve as approximations of
original models, they may be used to identify and understand
the high-level strategies of the original agents, as well as to
explain individual action selection. This can be used to extract
knowledge about the domain, the nature of agent interactions,
and the types of roles agents can take in a team. Our qualitative
inspection of extracted models presented here is two-fold:
firstly (Section VI-A1), we inspect the extracted models at
the level of action-selection. Secondly (Section VI-A2), we
inspect the extracted models at the policy level.

1) Action Selection: The AA-based agents proposed here
make use of an interpretable action selection strategy when
deriving an action from a state, compared to their original
RL models (an example is shown in Figure 2). Any action
selected by an AA-based agent in a given state can be easily



Fig. 2. AA-based Taker Agent Model action selection sub-steps for taker
T1. (1) Determines the applicable agent arguments for all takers T1, T2, T3

(shown by yellow, green, and red circles, respectively), using the input state
attributes. (2) Constructs a VAF from the argument set by injecting attacks
between arguments (using attack construction rules and the argument value
ordering). (3) Derives an action from the VAF for T1, using GE semantics.

traced back to the original set of defined heuristics (Arg),
their interactions (Att), and their relative values (val ). As
described in Section IV-A, an agent’s argument set contains
arguments recommending actions to the agent itself, as well as
arguments recommending actions to its teammates (as shown
in Figure 2). Thus, action selection analysis can be used to
study the motivations of an individual agent, as well as inter-
agent interactions, that influence action selection.

2) Strategy Analysis: AA-based agent models offer an in-
tuitive way of analysing agent strategies as a whole, exploring
individual agent behaviour, and cooperative team behaviour,
by using their argument value orderings val. As described
in Section IV-A, an agent chooses an action recommended
by its primary arguments. Given that arguments with higher
values defeat arguments with lower values, high-valued pri-
mary arguments represent the main heuristics used by an agent
during decision-making. Thus, analysing the highest-valued
primary arguments can be used to explore individual agent
strategies, and their behaviour. We give an example using the
more complex Takeaway task in the remainder of this section.

TABLE I
HIGHEST-VALUED PRIMARY ARGUMENTS OF THE AA-BASED TAKER

AGENTS

Agent 1 Agent 2 Agent 3
TackleBall1 TackleBall2 TackleBall3
MinAngle1,3 MinAngle2,3 MinAngle3,4
MinAngle1,2 MinDist2,3 MinDist3,4
MinDist1,2 OpenKeeper2,3 OpenKeeper3,4
MinDist1,3 FarKeeper2,3 FarKeeper3,4

Table I gives the top 5 highest-valued primary arguments
for the Taker agents. For all three agents, their TackleBall
argument has the highest value, implying that tackling the
ball when closest to the keeper is of paramount importance
for every agent. For Agent 1, the four remaining arguments
show that this agent focuses on tackling K2, or K3, if it is
‘closest’ to them (closest by angle, or distance). For Agents 2
and 3, their four remaining arguments all recommend marking
K3 and K4 (respectively), implying that these agents focus
on tackling these keepers throughout the game, preventing the
ball-holder from passing to them.

The above analysis demonstrates the specialised roles taken

by the different agents (e.g. different agents in the above
example focus on tackling different keepers). As discussed
previously, this knowledge may be used to study the Takeaway
game in more detail, and attempt to synthesise winning agent
strategies. For instance, the above example demonstrates that
a possible strategy is for one taker to tackle the ball-holder,
and the other two to ‘spread out’ and tackle distant keepers,
in order to prevent them from receiving the ball.

B. Formal Inspection

In the previous section we focused on the qualitative aspect
of model inspection. A key utility of symbolic models is
that their properties can be proven using automated reasoning
and formal verification methods. Thus, we now turn our
attention to the formal aspect of model inspection, which is of
paramount importance in safety and security critical systems.

In Coop. Nav., an important property of agent strategy
ensuring good performance is for the agents to target distinct
landmarks. We show that our AA-based agents always spread
out to different landmarks under minimal assumptions.

Theorem 1. Assume that every argument in Arg has a unique
value. Then, for any state s, agents A1 and A2 will always
choose distinct landmarks.

Sketch. By definition, all four GoToLandmark arguments
will be applicable in any state s. Thus, there is at least
one argument recommending each landmark to either agent.
Consider the VAF derived from s. Denote the argument in
the VAF with the highest value by Argv (value is unique
by assumption). Argv is not attacked by any other argument,
and will therefore be in the derived GE. Denote the landmark
recommended by Argv as Lv , and the corresponding agent by
Agentv . By definition, Argv attacks all arguments that rec-
ommend the other landmark to Agentv , and that recommend
the same landmark to the other agent. Thus, it defends all
argument(s) that recommend the other landmark to the other
agent (of which there is at least one in the VAF), which will
thus also be in the GE. Hence, the GE will contain arguments
recommending distinct landmarks to both agents.

In Takeaway, an important property of taker strategy that
increases the chances of the takers intercepting the ball is
ensuring that the ball-holder is tackled. This property implies
that the ball-holder will be forced to pass the ball to another
keeper, giving the takers an opportunity to intercept it. We
show that in our team of AA-based takers there is always one
taker tackling the ball-holder.

Lemma 1. Taker T is guaranteed to take action A in state s if
the GE derived from this state includes A and A is a primary
argument for T.

Sketch. We know from Section IV-A, that for any taker T
and any state s, all acceptable primary arguments in the GE
derived from s recommend the same action, which is the action
executed by T .



Lemma 1 guarantees that the heuristics extracted from the
expert knowledge are followed faithfully by an agent. Using
this result, we can now proceed to proving the desired property.

Theorem 2. There is always exactly one taker tackling the
keeper in possession of the ball in any state, subject to the fact
that takers have different values for the TackleBall argument.

Sketch. Denote (w.l.o.g.) the taker closest to the ball-holder
by T . If there are multiple takers at the same distance to
the ball-holder, select the one with the largest TackleBall
argument value (which exists, by assumption). Denote the
state information T receives from the environment by s. By
definition, the TackleBallT argument is applicable in state s,
and will thus be included in the VAF derived from s.

By definition of the attack construction rules described in
Section IV-A, arguments in the VAF attacking TackleBallT
are: (1) Arguments recommending a different action to T .
(2) Arguments recommending the same action to other takers.
Firstly, TackleBall is the highest-valued primary argument for
every taker (as shown in Table I), including T . Secondly, the
only arguments recommending the same action (tackling the
ball-holder) to other takers are their respective TackleBall
arguments (as discussed in Section V-B), which all have a
lower value than TackleBallT (by assumption).

Hence, TackleBallT will defeat all arguments attacking it,
and will therefore be in the GE derived from the VAF. Thus,
by Lemma 1, T will tackle the ball-holder.

C. Deployment

Finally, the utility of the extracted models was evaluated
quantitatively, by replacing the original RL agents with their
corresponding AA-based agents, and comparing the task per-
formance of the two approaches. In case of Coop. Nav.,
where episodes timeout after a fixed number of timesteps, task
performance was measured by recording average reward per
episode, over a 1000 episodes (a higher reward signifies better
performance). In case of Takeaway, where episodes have a
defined termination criterion, task performance was measured
by recording average episode duration for 1000 episodes (a
shorter episode duration signifies better performance). The
above setup was run on a MacBook Pro computer with a
4-core 2.5GHz Intel Core i7 processor, and 16GB of main
memory. The performances of the different approaches are
shown in Table II.

TABLE II
TASK PERFORMANCE OF THE ORIGINAL AND EXTRACTED MODELS

Original Models Extracted Models
Coop. Nav. (avg. reward) -152.42 +/- 2.3 -141.80 +/- 0.2
Takeaway (ep. duration) 9.55 +/- 3.3 s 10.71 +/- 3.8 s

In case of simpler tasks, interpretable models may encap-
sulate and use domain-specific assumptions/heuristics directly,
achieving higher performance compared to the original mod-
els that have to learn these heuristics, as is the case with

TABLE III
FIDELITY OF EXTRACTED MODELS

Fidelity
Coop. Nav. 0.85 (Agent Team)
Takeaway 0.86 (Agent 1), 0.64 (Agent 2), 0.82 (Agent 3)

Coop. Nav. agents. In case of more complex tasks, increased
interpretability of extracted models often comes at a cost of
their reduced flexibility, implying that they may perform sub-
optimal decision making, compared to the original models,
and therefore incur a reduction in performance, as is the case
with AA-based taker agents.

In addition to evaluating task performance, we also com-
puted the fidelity of extracted models, shown in Table III.
Intuitively, closeness of approximation allows to assess the
degree to which we can rely on the extracted models for
studying/replacing the original ones. For the simpler Coop.
Nav. task, we computed fidelity by measuring the percentage
of episodes in which both the extracted and original models
chose the same landmark allocation for the agents (i.e. fidelity
is computed for the agent team). For Takeaway, we used
the well-known 0-1 loss (percentage of actions in which the
extracted model agreed with the original one, over a sequence
of episodes), which is often used in imitation learning [13]
(i.e. fidelity is computed separately for every agent). In case
of Coop. Nav., the extracted models achieved a fidelity score
of 0.85. In case of the more challenging Takeaway task, agent
1 and agent 3 achieved high fidelity scores, whilst agent 2
achieved a relatively lower fidelity score. These results indicate
that model extraction for agent 2 could be further improved
by using a more flexible extracted model (e.g. an AA-based
agent model with a larger argument set Arg), consequently
making extracted model interpretation even more meaningful.

VII. CONCLUSIONS

We introduce MARLeME, a Multi-Agent Reinforcement
Learning Model Extraction library, designed to improve inter-
pretability of MARL systems by approximating MARL agents
with symbolic models. We also introduce interpretable models
based on Abstract Argumentation, discussing how they can be
used to approximate MARL systems and used by MARLeME
as extracted models.

MARLeME can be applied to a vast range of existing
MARL systems, and can be used with a wide variety of sym-
bolic model types. Furthermore, MARLeME can be combined
with commonly-used statistical tools (such as scikit-learn [33],
or Pandas [34]), when empirically analysing the extracted
models, and with formal verification tools (e.g. [10], [11])
when formally inspecting them. Thus, MARLeME allows
successful integration of RL approaches with the well-studied
verification, knowledge extraction, and reasoning approaches
associated with symbolic models. In this work, we focus on
using well-known, accessible MARL benchmarks, demonstrat-
ing how to apply MARLeME to commonly-used tasks. In
order to further highlight the importance of catering for formal



verification methods, as well as statistical ones, we intend to
explore applications of MARLeME to safety/security critical
domains (e.g. the medical domain) in the future.

With the rapidly increasing interest in MARL systems and
the development of associated tools, we believe MARLeME
can play a fundamental role in enriching such MARL systems
with explainability and interpretability.
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