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Abstract—Embedding spaces are one of the mainstream ap-
proaches when dealing with structured data. Granular Comput-
ing, in the last decade, emerged as a powerful paradigm for the
automatic synthesis of embedding spaces that, at the same time,
yield an interpretable model on the top of meaningful entities
known as “information granules”. Usually, in these contexts, one
aims at finding the smallest set of information granules in order
to boost the model interpretability while keeping satisfactory
performances. In this paper, we add a third objective, namely
the structural complexity of the resulting model and we exploit
three biology-related case studies related to metabolic networks
and protein networks in order to investigate the link between
classification performances, embedding space dimensionality and
structural complexity of the resulting model.

Index Terms—Granular Computing, Embedding Spaces, Sup-
port Vector Machine, Systems Biology, Topological Data Analysis,
Computational Biology.

I. INTRODUCTION

Many interesting, yet challenging, problems in pattern
recognition deal with structured data such as images, videos,
graphs and sequences. These examples of structured data are
commonly used for modelling several real-world systems:
think about sequence matching in computational biology,
where RNA, DNA and proteins are commonly described by
sequences of nucleotides or amino-acids; (cyber)security tasks
likely involve images and/or videos captured by CCTVs; in
social networks and systems biology, graphs are able to model
relationships between users (the former) or interacting atomic
elements (the latter).

Pattern recognition problems defined in structured domains
are usually featured by complex decision functions and tra-
ditional techniques are likely to fail. A common approach
consists in mapping the structured domain X towards Rn: that
is because the umbrella of soft computing techniques are well-
established when it comes to process input patterns lying in
a geometric input space such as the Euclidean one. However,
designing the mapping function is not trivial. A naı̈ve approach
consists in extracting numerical features to be concatenated
in a vector form [1]–[3]. Despite its straightforwardness, this
approach can easily destroy valuable information useful for
the pattern recognition problem at hand due to the intrinsic
high compression in feature generation. For this approach to be
successful, a deep knowledge on both the data and the problem
at hand (i.e., on the underlying process to be modelled) is

required for selecting a suitable subset of numerical features.
Otherwise, trial-and-error steps are mandatory in order to find
a suitable pattern representation which can, however, be time
consuming and computationally expensive.

Given the underlying complexity in pattern analysis in
structured domains, it is safe to say that (for a thought-
ful modelling) one needs to consider different strategies for
representing and processing data by means of techniques
operating at a level closer to the semantics of the data itself.
To this aim, we consider processing procedures able to a)
automatically find a suitable embedding towards a vector space
and b) accommodate the observation above, which rely on the
information granulation paradigm and the Granular Computing
(GrC) framework [4]–[6]. GrC is an information processing
approach that has rapidly expanded in the last decade and
has also been successfully employed to synthesise advanced
pattern recognition systems suitable for dealing in structured
domains such as graphs [7]–[10], sequences [11], [12] and
images [13], [14]. One of the most intriguing peculiarities
of GrC-based structural pattern recognition systems lies on
the model interpretability: in fact, the information granules
(i.e., atomic entities endowed with high discriminative power)
can be analysed by field-experts to gather further insights on
the underlying process. In order to limit the human efforts in
analysing information granules, one typically aims at selecting
the smallest subset of symbols (granules) that, at the same
time, maximise the pattern recognition system performances.
Besides its usefulness as knowledge discovery is concerned,
this modus operandi can be boosted by considering also
the structural complexity of the synthesised model, whose
investigation is the aim of this paper.

In order to investigate how the structural complexity impacts
the overall classification model synthesis, three case studies
are considered. For the sake of brevity, we will only consider
binary classification problems, yet the analysis can easily be
performed on any pattern recognition problem (e.g., multi-
class classification, function approximation and regression,
clustering), as will be stressed in Section VI. The three
problems have been considered for being the core of recent
works in GrC-based pattern recognition and regard the analysis
of real-world biological systems, namely metabolic networks
[8] and protein contact networks [9]. Furthermore, the choice
stems on them being quite challenging and their relevance
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within the biology community. In particular, the metabolic
networks experiments have the final goal of discriminating
different organisms on the sole basis of their metabolic net-
work wiring and, as further stressed in [15], leaded to the
promotion of metabolic pathways as ’universal phenotype’. In
fact, whilst genotype (in brief, the DNA genome sequence) is
a universal feature in every living organism, the same does not
hold for phenotypes: indeed, it is pointless to make a universal
phenetic classification based on features such as ’the size of
the brain’ (which is only present in animals) or ’the shape of
leaves’ (animals have no leaves). Conversely, metabolism can
be found in all living organisms, regardless of their position
in the biological organisation and biological taxonomy. The
two other experiments regard the discrimination of enzymatic
proteins vs. non-enzymatic ones and the discrimination of sol-
uble proteins vs. non-soluble ones starting from their residue
contact network, a minimalistic representation of the 3D folded
state of a protein [16]. These two problems are very hard to
solve because no biochemical predictive theory is currently
available. In the first problem, the difficulty resides in the
fact that the functional classification of enzymes is inherently
sloppy: the chemical reactions defining the classes are largely
superimposable and in any case they mainly influence a minor
part of the protein structure (active site). The second problem
is very hard as well because the solubility of a protein in
vivo is largely determined by the concurrent presence of other
proteins that influence the folding of the target protein, while
the specific reference database [17] is based on ’isolated
proteins’ in vitro (intrinsic solubility) and has to do with the
folding prediction problem that is still out of reach in protein
science [18].

II. CASE STUDIES

A. Eukaryotes vs. Prokaryotes Metabolic Pathways

The first case study, originally investigated in [8], aims at
classifying different organisms at different taxonomical scales
thanks to their respective metabolic pathways. Amongst the
four problems discussed in [8], we focus on the discrimination
between metabolic pathways belonging to either eukaryotes
or prokaryotes organisms. Metabolic pathways can be con-
veniently described by networks, where nodes correspond to
metabolites (product/substrate of a chemical reaction) and
edges exist between any two nodes whether there exist a
chemical reaction transforming the two metabolites into one
another [8], [19]. The information granulation procedure relies
on a unified index called INDVAL which accounts for the
specificity and the sensitivity of each single chemical reaction
with respect to the problem-related classes. The INDVAL score
has been originally proposed in [20] for spotting representative
species in different environmental condition and its philosophy
is straightforward: a given species s is representative, hence
useful for the recognition of a given environmental condition
ec if it satisfies both of the following properties

1) s must be present in only (or almost only) in the ec-
positive objects

2) s must be present in all (or the great majority of) the
ec-positive objects.

We re-adapted this idea in order to spot signature substructures
in structured data (i.e., chemical reactions in a metabolic
network). To this end, the INDVAL score I can be formally
defined as:

Ai,j =
# graphs having edge i in group j

# graphs having edge i
(1)

Bi,j =
# graphs having edge i in group j

# graphs in group j
(2)

Ii,j = Ai,j ·Bi,j · 100 (3)

where ‘edges’ are ‘chemical reactions’, ‘graphs’ are ‘metabolic
networks’ and ‘groups’ can be deduced by the problem-related
class labels. By definition, since Ai,j ∈ [0, 1] and Bi,j ∈ [0, 1],
then Ii,j ∈ [0, 100]. The two supporting scores A and B have
a straightforward interpretation: the maximum value of A is
obtained when the ith edge can be found only in patterns
(graphs) belonging to class j, whereas the maximum value for
B is obtained if all patterns of class j have edge i. Finally, the
maximum INDVAL I corresponds to the maximum sensitivity
and specificity for the ith edge within group j: all patterns of
class j have edge i and no patterns belonging to other classes
have edge i.

Given these preliminary definitions, the granulation pro-
cedure can be summarised as follows: let D be the dataset,
properly split into three disjoint and non-overlapping training,
validation and test set (DTR, DVL, DTS). Since classification
problems are of interest, let l be the vector containing the
corresponding class label for each of the patterns in D and con-
sider l to be split accordingly (lTR, lVL, lTS). Let E be the set
of unique edges in DTR∪DVL and let L be the set of problem-
related classes, then one can figure A,B, I ∈ R|E|×|L| as a
compact matrix representation of Eqs. (1)–(3).

The next step is to filter (preserve) edges relevant for
characterising the different problem-related classes in order
to properly build an embedding space: to this end, the end-
user defines a threshold T ∈ (0, 100) and only edges in
E having INDVAL score greater than (or equal to) T are
included in the alphabet A. In other words, edges are selected
if their corresponding row from I has scores greater than (or
equal to) T for at least one of the problem-related classes
(columns). After the filtering procedure (i.e., alphabet defi-
nition), the embedding procedure can take place by building
the symbolic histograms: that is, each pattern is individually
transformed in an |A|-length integer-valued vector which, in
position i, counts the number of occurrences of the ith symbol
in A within the pattern itself. This embedding procedure
moves the problem from the structured domain towards a
Euclidean space or, in other words, the three sets DTR, DVL
and DTS are individually cast into three instance matrices
DTR ∈ R|DTR|×|A|, DVL ∈ R|DVL|×|A| and DTS ∈ R|DTS|×|A|.
In the embedding (Euclidean) space, the classifier synthesis
can take place. Synthesising the model should address two
important aspects:



1) find a suitable set of hyperparametersH for the classifier
2) find a suitable subset of meaningful features

in order to maximise the classifier performances. A genetic
algorithm can be employed in this regard [21], where the
genetic code has the form [

H w
]

(4)

where w ∈ {0, 1}|A| is the boolean feature selection vector in
charge of discarding unpromising features (i.e., symbols from
A). The fitness function driving the genetic optimisation shall
therefore take into account both the classifier performances
π (on the validation set) and the sparsity σ of the feature
selection vector:

F = α · π + (1− α) · σ (5)

At the end of the optimisation procedure, the final perfor-
mances are evaluated on the test set.

As the dataset is concerned, from the KEGG database
[22] we dumped the 5299 organisms for which the metabolic
network is known and marked each network with a ground-
truth class label according to the cellular architecture of the
organism itself: ‘eukaryote’ (439 organisms) or ‘prokaryote’
(4860 organisms). For building the alphabet, a threshold value
of T = 50 has been used.

B. Enzymatic vs. Non-Enzymatic Proteins

The second case study tackles another real-world biological
system conveniently modelled by a network: proteins. Indeed,
the folded state of a protein can be conveniently described
by its residue contact network [16], where nodes correspond
to amino-acids and edges exist whether they are in spatial
proximity (i.e., the Euclidean distance between α-carbon atom
locations is within [4, 8]Å [3], [9], [23]–[25]). This case study
stems from a previous work [9] where the embedding space
has been build thanks to the simplicial decomposition of the 3-
dimensional contact network with the final goal of predicting
whether the protein is an enzyme or not (i.e., it has been
assigned an Enzyme Commission (EC) number or not [26]).
As for the previous case study, let DTR, DVL and DTS be
three non-overlapping splits of the dataset D composed by
3-dimensional networks. Now let each network belonging to
each of the three sets be individually decomposed into its
clique complex [27]–[29], which encodes the same informa-
tion as the underlying graph, but additionally completes the
skeletal network to its fullest possible simplicial structure. The
clique complex is formally defined as the simplicial complex
formed by the set of cliques of the underlying graph or, in other
words, as the topological space in which each k-vertex clique
is represented by a (k − 1)-simplex. Finally, let each vertex
belonging to each simplex forming each simplicial complex
to be identified by a categorical attribute: in this case, the
amino-acid type. It is straightforward then to evaluate the set
of unique simplices belonging to the simplicial complexes of
DTR∪DVL: this set composes the alphabetA. GivenA, the em-
bedding procedure may take place: instead of counting edges

in a graph (Section II-A), building the symbolic histogram
now reads as counting simplices in simplicial complexes.

As per the metabolic networks case, a genetic optimisation
can be employed to fully automatise the model synthesis (cf.
Eqs. (4)–(5)).

As the dataset is concerned, from UniProt [30] we dumped
the entire Escherichia coli str. K12 proteome and cross-
checked the list with Protein Data Bank [31] in order to
consider only resolved proteins (namely, proteins whose folded
structure is known). Then, we performed the following data
filtration:

1) proteins with multiple EC numbers have been discarded
2) in PDB files having multiple models, only the first has

been considered
3) for atoms having multiple locations, only the first has

been considered
4) in order to consider only good quality structures, pro-

teins having PDB files with no information about mea-
surement resolution have been discarded and, similarly,
proteins having measurement resolution greater than 3Å
have been discarded as well.

A suitable set of 5583 proteins is returned, which have been
marked as ‘enzymes’ (3702 proteins) if they have been pro-
vided with an EC numbers or ‘not-enzymes’ (1181 proteins)
otherwise.

C. Soluble vs. Non-Soluble Proteins
This third case study is methodologically equivalent to the

one presented in Section II-B and still regards protein networks
and their simplicial structure. However, target of the learning
system is to classify whether proteins are soluble or not (i.e.,
they tend to fold by themselves or not). Whilst the EC number
is categorical by definition, the solubility degree is a real-
valued scalar which, after straightforward normalisation, can
be considered spanning the range [0, 1].

The data retrieval process consisted in a cross-check be-
tween the eSol database1 containing the solubility degree (in
percentage) for the E. coli proteins using the chaperone-free
PURE system [32] and the Protein Data Bank in order to
retrieve the structure files. All proteins having solubility degree
greater than 100% have been thresholded as 100%2 and, after
straightforward normalisation, the solubility degree can be
considered as a real-valued scalar in range [0, 1]. The four
filtering steps as per the EC number case have been performed
as well, leading to a total number of 4781 proteins. Finally, the
solubility degrees have been thresholded using 0.6 as cutoff
value (according to [9]) in order to mark ‘soluble’ (2421
proteins) vs. ‘non-soluble’ (2360 proteins).

III. TAKING THE MODEL STRUCTURAL COMPLEXITY
INTO ACCOUNT

In all of the three case studies we considered the following
two quality factors for the automatic model synthesis: sparsity

1http://tp-esol.genes.nig.ac.jp/ developed in the Targeted Proteins Research
Project.

2The (small) deviations from 100% can be ascribed to minor experimental
errors.



of the feature selection vector and classifier performances.
Whilst the latter is straightforward, a major emphasis has
been put towards a further refinement (filtering) of the relevant
symbols due to the following practical issues:
• the interpretability of the model greatly improves (e.g.,

less symbols to be analysed by field-experts)
• testing new patterns is faster (i.e., less symbols to match

with in order to build its symbolic histogram).
In the reference works (see [8] for metabolic networks and [9]
for protein networks), a standard tradeoff value of α = 0.5 has
been used in order to give the same importance to both quality
actors in the fitness function (see Eq. (5)). Undoubtedly, this
leaded to a smaller number of surviving information granules
(yet, with a minor performance decay) with respect to the
common scenario in which one aims at maximising the clas-
sifier performances (i.e., α = 1). This observation somewhat
links to the first practical issue above: the workload for field-
experts (biologists, in this case) in analysing the resulting
symbols (either be chemical reactions or simplices) was way
lower. Nonetheless, there is a third player that somehow goes
unnoticed when it comes to design GrC-based classification
systems (and still is unexplored in the literature) because one
certainly wants to enhance the human-interpretable peculiarity
of GrC: the model structural complexity. In fact, there is
no a-priori correlation between a low-dimensional space (i.e.,
few selected symbols) and the smoothness of the decision
boundary. In this analysis, we want to consider this third
player into account by slightly revisiting the fitness function
in the model synthesis phase. In fact, whilst the former (see
Eq. (5)) considered only the model performances π and the
dimensionality of the embedding space σ, it can be generalised
as follows

F = α · π + β · σ + δ · κ (6)

where κ considers the structural complexity of the model and
the triad 〈α, β, δ〉 is in charge of weighting each term. By
assuming that π, σ, κ ∈ [0, 1], we further let α, β, δ ∈ [0, 1] in
order to ensure a fair contribution amongst π, σ and κ.

IV. A MANUAL INVESTIGATION

A first investigation considers in manually setting the values
for α, β and δ in the genetic optimisation phase.

Let us define the three objective in the fitness first. Accord-
ing to previous works [8], [9] the informedness J has been
selected as a suitable performance index [33] being one of
the very few unbiased indices in case of heavily unbalanced
classification problems [34]. The informedness is defined as

J = Specificity + Sensitivity− 1, J ∈ [−1, 1] (7)

For consistency with later objectives, a normalised version is
adopted

J =
1

2
(Specificity + Sensitivity), J ∈ [0, 1] (8)

Since we seek to minimise the fitness function, the perfor-
mance term π reads as:

π = 1− J, π ∈ [0, 1] (9)

The sparsity term σ is trivially given by the ratio of selected
symbols, hence:

σ =
|{i : wi = 1}|

|w|
, σ ∈ [0, 1] (10)

The structural complexity term κ, alike the set of hyperpa-
rameters H to be optimised by the genetic algorithm (cf. Eq.
(4)), is strictly classifier-dependent. For our tests, we chose
Support Vector Machines (SVMs) and, specifically, the ν-
SVM formulation [35] equipped with a radial basis function
kernel of the form3

K(a,b;w) = exp{−γd(a,b;w)2} (11)

where d(a,b;w) reads as the weighted Euclidean distance
between the two generic patterns a and b, with w acting as
weighting vector. Formally,

d(a,b;w) =

√∑n

i=1
wi(ai − bi)2 (12)

being n the size of the considered vectors (i.e., n = |A|). For
SVM, the number of support vectors (SVs) computed during
the training phase indicates its structural complexity and is also
strictly related to the testing phase computational complexity.
The latter is indeed linear with the number of SVs, since the
SVM decision for a previously-unseen pattern x is computed
as the sign of

f(x) =
∑#SVs

i=1
µiyiK(s(i),x) + b (13)

where s(i) is the ith SV, yi and µi are its class label and the
Lagrange multiplier associated to it and b depicts the intercept
of the separating hyperplane. In conclusion, the structural
complexity term κ reads as:

κ =
number of SVs
|DTR|

, κ ∈ [0, 1]. (14)

Given the definitions of π, σ and κ, for each of the three
case studies, three weighting setups have been considered:
• α = β = δ = 1/3, in order to give the same importance

to the three targets
• α = β = 1/2 and δ = 0, in order to neglect the structural

complexity
• α = δ = 1/2 and β = 0, in order to neglect the sparsity.

Obviously the possibility of having α = 0 has not been con-
sidered, as this would neglect the classifier performances. The
genetic algorithm has been configured to host 100 individuals
per 100 generations with a strict early-stop criterion if the
average fitness function over 1/3rd of the total number of
generations is less than or equal to 10−6, the elitism is set to
10% of the population, the selection follows the roulette wheel
heuristic, the crossover operator generates new offsprings in
a scattered fashion and the mutation acts in a flip-the-bit
fashion for boolean genes (w) and adds to real-valued genes
(H = {ν, γ}) a random number extracted from a zero-mean

3Despite the weighting vector w, the kernel satisfies Mercer’s condition:
since w is a boolean vector, the proof is trivial.



TABLE I
STARTING EMBEDDING SPACE CARDINALITY

Case Study Alphabet Size (avg) Alphabet Size (std)

Metabolic Pathways 622.8 6.9785
Protein Contact Networks (EC number) 12012.2 33.8112
Protein Contact Networks (Solubility) 11576.6 33.8718

TABLE II
CASE STUDY 1: METABOLIC PATHWAYS

Weights Informedness Sparsity Complexity

α = 1/3, β = 1/3, δ = 1/3 0.9987± 0.0020 29.9073± 5.4064 0.2717± 0.0940
α = 1/2, β = 1/2, δ = 0 0.9973± 0.0041 24.3153± 3.9548 4.6113± 2.4806
α = 1/2, β = 0, δ = 1/2 0.9981± 0.0040 49.6321± 2.9112 0.1660± 0.0338

TABLE III
CASE STUDY 2: PROTEIN CONTACT NETWORKS (EC NUMBER)

Weights Informedness Sparsity Complexity

α = 1/3, β = 1/3, δ = 1/3 0.7704± 0.0346 9.7153± 4.0119 16.7037± 4.4044
α = 1/2, β = 1/2, δ = 0 0.8588± 0.0185 8.0401± 1.5319 44.6578± 3.4921
α = 1/2, β = 0, δ = 1/2 0.7751± 0.0344 24.7765± 20.4177 17.1408± 4.1058

TABLE IV
CASE STUDY 3: PROTEIN CONTACT NETWORKS (SOLUBILITY)

Weights Informedness Sparsity Complexity

α = 1/3, β = 1/3, δ = 1/3 0.8361± 0.0120 8.7649± 3.0631 16.0586± 1.9406
α = 1/2, β = 1/2, δ = 0 0.9082± 0.0144 6.9236± 1.0333 46.2008± 6.1070
α = 1/2, β = 0, δ = 1/2 0.8376± 0.0303 29.1630± 12.4602 14.3013± 2.0193

Gaussian distribution whose variance shrinks as generations go
by. For the three case studies, five stratified training-validation-
test splits have been performed and, in order to ensure a
comparison as fair as possible, the same splits have been fed
for each weights setup. Table I shows the alphabet size, in
terms of number of symbols (average and standard deviation
across the five splits). Tables II, III and IV show the results on
the test set for the three case studies from Section II. Results
are presented in terms of average and standard deviation across
the five training-validation-test splits and regard informedness,
sparsity (i.e., percentage of selected symbols) and complexity
(i.e., percentage of patterns elected as SVs). Case Study 1
(Table II) seems to be the easiest to solve amongst the three:
regardless of α, β and δ, performances are always greater than
99% and, when sparsity is weighted (β 6= 0), approximately
24-25% of the symbols are selected, against a 49% of symbols
when sparsity is neglected. The shift for structural complexity
is much lower: less than 1% of the training patterns are
elected as SVs when δ 6= 0 against a 4% when complexity
is neglected. Case Studies 2 and 3 are much harder to solve.
There is a non-negligible performance drop when δ 6= 0
(approx. 7%); however, when β 6= 0 there is a clear-cut
improvement (approx. 20%) in terms of sparsity and when
δ 6= 0 the complexity improves of approx. 30%. Obviously,
there is no clear winner here and the choice of 〈α, β, δ〉 is

strictly scenario- and application- related.

V. AN AUTOMATIC INVESTIGATION

The ‘no-winner dilemma’ of the previous Section high-
lights the peculiar non-dominant multiobjective nature of the
problem at hand. Given this viewpoint, a second investigation
relies on tracking the Pareto front in the 3D space spanned
by the three objective functions π, σ and κ. To this end, a
controlled-elitist genetic algorithm [36] has been employed.
Conversely to standard elitist genetic algorithms, which aim at
promoting individuals with better fitness function, controlled-
elitist genetic algorithms favour individuals which help in
promoting the diversity of the population. The multi-objective
genetic algorithm has been configured to host 200 individuals
in each generation with a maximum number of 200·(|H|+|A|)
generations. The early-stop criterion must consider the be-
haviour of the population on the Pareto front: the algorithm
stops when the geometric average of the relative change in
value of the spread (i.e., the movement of the Pareto set) over
100 generations is less than 0.0001, and the final spread is
less than the mean spread over the past 100 generations. Fig.
1–3 show the Pareto front and the pairwise 2D projections for
the three case studies, respectively. Case Study 1 shows a very
compact Pareto front with very few surviving individuals very
close to the origin (recall that the three objective functions
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Fig. 1. Case Study 1: Metabolic Pathways.
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Fig. 2. Case Study 2: Protein Contact Networks (EC number).

must be minimised). Conversely, the Pareto front for Case
Studies 2 and 3 (Fig. 2a–3a) show a peculiar front with two
very smooth sections and a noisy section in-between: for Case
Study 3, the noisy part is observed for π ∈ [0.23, 0.13],

whereas for Case Study 2 we have π ∈ [0.3, 0.17]. For all
case studies, the sparsity-vs-performances projection (Fig. 1b,
2b, 3b) shows a very neat elbow-shaped front with straightfor-
ward interpretation: performance degrades if too few features
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Fig. 3. Case Study 3: Protein Contact Networks (Solubility).

are selected. Indeed, very few features might not properly
characterise the decision boundary, with the extreme case
where σ → 0, yielding π → 0.5, namely the behaviour
of a random classifier (π = J = 0 in the un-normalised
case). If we leave the noisy blob aside, Fig. 2d and 3d show
a somewhat linearly decreasing behaviour when it comes to
relate complexity and performance, whereas Fig. 2c and 3c
show a somehow increasing trend (complexity-vs-sparsity).
Nonetheless, the part where the noisy blob appears is indeed
the interesting part of the 3D Pareto front, being the part
where the three objective functions tend to have overall lower
values. Specifically, for Case Study 2 the noisy part of the
front lies in π × σ × κ ' [0.15, 0.25] × [0.2, 2] × [45, 70],
whereas for Case Study 3 the noisy part of the front lies in
π × σ × κ ' [0.1, 0.2]× [0.3, 1.5]× [40, 75].

VI. CONCLUSIONS

In this paper, we focused on embedding spaces optimisation
for structured pattern recognition, following a GrC approach
based on symbolic histograms. Alongside the well-known
joint optimisation of performances and number of relevant
information granules, a third player has been included: the
structural complexity of the trained model. Such a measure,
in fact, is closely related to the smoothness of decision
surface synthesised during training. As suggested by reg-
ularisation theory, minimising the structural complexity of
the model can avoid the overfitting phenomenon, boosting
the generalisation capability of the final classification model.
Clearly, minimising at the same time the embedding space

dimensionality, the structural complexity of the model and
the performance (in our case, defined as the complement
of informedness) means facing a proper multi-objective op-
timisation problem, since they are conflicting functions. In
order to study the relationships between these three objective
functions, three graph-based problems have been considered
for their biological significance, their increasing levels of
difficulty and for representing different ways of synthesising
pivotal information granules. In a first step of our analysis,
we have defined a weighted convex linear combination as the
overall fitness, fixing in advance the relative importance of
each objective function in the optimisation procedure, showing
that introducing complexity allows better performances on
test set, at the expense of an increase of the embedding
dimension (Case Study 1). However, when classes are much
more overlapped a different behaviour can be observed (Case
Studies 2 and 3). For a deeper analysis, we have adopted a
tailored stochastic multi-objective optimisation procedure in
order to evolve solutions towards the definition of a Pareto
front. This automated analysis confirms that Case Studies 2
and 3 are much more challenging than the first one, showing
that in these cases solutions close to the origin in the three-
dimensional objective function space does not show a clear
trend, spreading chaotically in a cluster of best candidates.
This is a clear hint that in such difficult classification problems
the existence of multiple solutions for the optimal embedding
musk and the wide superposition of decision regions can give
rise to clusters of solutions close to the origin characterised
by large entropy values, due to strong non-linear correlation



effects between conflicting objective functions. As concerns
future works, in this paper, for the sake of simplicity, we
have faced only binary classification problems, yet extension
towards multi-class problems is straightforward. Even more,
π can be personalised also in order to accommodate other
machine learning problems, as clustering (considering relative
validation indices such as Davies-Bouldin or the Silhouette
[37]) or function approximation problems (mean squared error,
coefficient of determination), following a similar optimisation
approach based on information granulation. Moreover, we
plan to investigate suitable entropy-based measures to study
possible correlations between the chaotic spreading of best
candidate solutions (closed to the origin) and the degree of
difficulty of the classification problem at hand, in terms of
both the embedding mapping complexity and roughness of
decision surfaces.
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