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Abstract—For low dimensional classification problems we pro-
pose the novel DIOPT approach which considers the construction
of a discretized feature space. Predictions for all cells in this space
are obtained by means of a reference classifier and the class
labels are stored in a lookup table generated by enumerating the
complete space. This then leads to extremely high classification
throughput as inference consists only of discretizing the relevant
features and reading the class label from the lookup table index
corresponding to the concatenation of the discretized feature bin
indices. Since the size of the lookup table is limited due to memory
constraints, the selection of optimal features and their respective
discretization levels is paramount. We propose a particular
supervised discretization approach striving to achieve maximal
class separation of the discretized features, and further employ a
purpose-built memetic algorithm to search towards the optimal
selection of features and discretization levels. The inference
run time and classification accuracy of DIOPT is compared to
benchmark random forest and decision tree classifiers in several
publicly available data sets. Orders of magnitude improvements
are recorded in classification runtime with insignificant or modest
degradation in classification accuracy for many of the evaluated
binary classification tasks.

I. INTRODUCTION
Machine learning is utilized to address a wide range of

problems across a very wide range of scales. This work
focuses on problem settings where the classification throughput
in terms of classifications per second for the trained model
is of major importance. Traffic classification in computer
networks is one such setting where, as stated by [32], the
maximum possible packet rate can be up to 14.2 million
packets per second over common 10 Gbps links and the rate is
correspondingly higher for the faster operator backbone links.
Current machine learning techniques vary considerably in their
computational demands for classification. While a Decision
Tree (DT) such as C4.5 [30] has very low computational
demands, it can be prone to overfitting and may not generalize
well. As an extension of DT, Random Forests (RF) [3] and
other similar ensemble-based classifiers have been proposed.
In [7] RF variations were considered the best out of 179
evaluated classifiers from 17 families. Compared to DT, RF
provides better classification performance, but also requires
more computational resources to perform the classification.
Here we study the prospect of using additional computational
resources during the classifier construction phase, in order to
instantiate a very high throughput classifier which also has
appropriate classification performance. Our proposed solution
entails performing a tailored supervised discretization and

a careful optimization to obtain the most salient features,
each represented with the ideal amount of discretization.
The resulting discretized feature space is then completely
enumerated by means of discretization bin index concatenation,
thus creating a single index, which is used to realize a lookup
table. This lookup table is filled by means of a reference
classifier. The resulting index-enumerated lookup-table based
classifier can perform classifications very rapidly as the only
online operations necessary are discretization of the salient
features, bin index concatenation, and lookup of the class label.

Based on the reliance of both discretization (DI) and
optimization (OPT), we introduce the acronym DIOPT for
the proposed approach. Key contributions of this work are:

1) the DIOPT structure of combining discretization, GA
optimization and lookup-table pre-filling,

2) the KSD-MI discretization algorithm which employs KS
distance to retain maximum discriminatory power,

3) an experimental evaluation comparing DIOPT with
existing classifiers over a range of data sets to understand
accuracy, computation time and memory trade-offs.

The results demonstrate that DIOPT can be competitive to
random forests in accuracy but orders of magnitude faster at
evaluation time. In the next section related work is discussed,
followed by Section III which describes the overall DIOPT
approach. Section IV covers the KSD-MI discretization al-
gorithm, while Section V describes the hGAm optimization
algorithm used for the crucial selection of features and their
discretization level. Section VI provides an evaluation over a
range of data sets, followed by discussion and conclusions in
Section VII.

II. RELATED WORK

The need for high-speed inference in a number of application
areas is illustrated by the research into using hardware such
as GPUs [36], field programmable gate arrays (FPGA) [1],
[26], [29], or clusters of FPGAs [25] to achieve very high
speed classification for decision trees, or ensembles of them.
In contrast, the our present work aims to achieve increased
classification throughput on the CPU, without employing any
specialized hardware.

At a conceptual level, the present work could be seen as
related to the model distillation approach originally proposed by
Hinton et al. [18]. Examples of model distillation include going
from a large neural net to a smaller neural net [18], and from a

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



neural net to a decision tree [9]. These approaches utilize a more
complex model to aid in the construction of a smaller and faster
model. The main benefit of the model distillation approach is
that the small model obtained by model distillation has better
classification performance than a model of the same size trained
directly on the training data. Similarly to model distillation, the
proposed DIOPT approach uses a more time-consuming model
(random forest) to obtain a faster model (DIOPT) which has
better classification performance than an almost similarly fast
model (decision tree). However, as the DIOPT simplification
is mainly a result of data discretization rather than model
simplification the approaches are not equivalent. A precursor
to DIOPT which utilizes a similar lookup-based approach but
with other discretization and simple random search instead of
a meta-heuristic is presented in [12].

Considering other fast prediction approaches, there have
been strong interest in approaches that minimize the error
while minimizing prediction time, and many of them focus
on building “top-down” decision functions where features
are included based on their utility [35], [40]. Many of those
approaches are focusing on utilizing the feature capture cost,
which however is not a consideration in our work. Pruning
of the base classifiers in an ensemble such as RF have also
been an area of active research [24], [39], [41]. In relation to
DIOPT this can be viewed as implicitly reducing the number
of bin boundaries created by the set of all split decisions in
the ensemble. Approaching the issue of feature discretization
from the perspective of model simplification, [17] proposes
a method to ’defrag’ the small subspaces created by the tree
ensemble through means of Bayesian model selection. This
allows the construction of simpler, and thus faster, models
which retain much of the classification performance. Results
are only provided for a few data sets, but a their reported
results for the spambase data set indicate a classification
performance likely worse, but more interpretable than DIOPT.
High throughput classification has also been considered in [19],
which uses various approaches including unsupervised equal-
frequency binning in their FastBDT variation of Gradient
Boosted Decision Trees. (GBDT). They report order of magni-
tude improvements in execution time relative to other GBDT
implementations. However, their reported classification times
are still orders of magnitude worse than DIOPT.

In addition to methods that essentially strive to simplify a
complex ensemble model, an alternative approach is to create
a relatively simple DT which has a close to optimal structure.
This is the approach proposed by [2], which strives to locate
the optimal splits. However, such approach have a worst-case
exponential cost, and is limited in the number of training
instances (10K instances give prohibitive cost, [2, sec. 6]. Some
improvements of [2] in terms of scalability have been provided
in [38]. Other approaches related to tree optimization have been
reported in [4] which strive to optimize the misclassification
error, jointly and iteratively, over all nodes. An alternate DT
improvement approach is proposed by [31], which discusses
an efficient approach to enumerate all unique DT as a way of
building the optimal feature set. This approach does not have a
limitation in the number of instances, but appears to give less
of an improvement over the base DT. In the evaluation section

the reported performance of several of the above works are
compared to DIOPT for a subset of data sets. However, we
note that few of the works ([19] is an exception) report results
for large scale data sets which are of primary interest here.

III. THE DIOPT APPROACH

The proposed DIOPT approach employs discretization of
feature values in a novel way, and utilizes optimization to
strive towards using the most descriptive features at their most
appropriate discretization level. This enables the construction
of a classifier (CLU) comprised of a lookup table populated
with pre-predicted class labels, and the subsequent achievement
of very high classification throughput.

A DIOPT classifier is created with a target maximum
memory size, Smax, which is typically related to the target
computing environment. Further, as CLU is populated using
predictions from a reference classifier (CR), a suitable CR

needs to be chosen. While any arbitrary classifier such as
Random Forest (RF), GBM [8], SVM [5], or one of their
many derivatives could be employed as CR, for larger Smax

the computational requirements of CR become important.
For the work presented here we are using RF for CR as it
has been shown to provide excellent all-round classification
performance [7], and can achieve low classification run-
times [13].

Now consider a classification task T with data X[N×M ],
where N is the number of instances and M is the number
of features. Further, there are observed data instances xi =
row[X]i, feature values of the j:th feature fj = col[X]j =
[f1,j , . . . , fN,j ]

T , and class labels y = [y1, . . . , yN ]T .
To begin constructing CLU all numerical features need to

be discretized. A per feature ’bit budget’ Aj is introduced,
signifying that a discretized feature f̂j is allocated Aj bits for
representation. For example, if feature fj should be discretized
into 128 bins, that requires Aj = log2(128) = 7 bits so that the
bin index value f̂j of the discretized feature can be represented.
Further, there is a bit allocation vector A = [A1, . . . , AM ]
denoting the number of bits allocated to each of the M features.
The total total number of bits, L, allocated for some allocation
A is simply LA =

∑
A. The amount of memory, SA, required

to hold the CLU for some A is computed as SA = 2LA−3

bytes for a 2-class classifier (where one byte can be viewed as
holding 8 = 23 binary label slots). In a multi class scenario,
SA is adjusted by a factor of dlog2 nce where nc is the number
of classes for T . In the remainder, we focus the presentation
on the 2-class case.

The process of generating A is denoted as ’bit allocation’
and is of essential importance, simultaneously selecting features
and their discretization levels within a limited bit budget. The
memory constraint SA ≤ Smax results in a total bit budget
L ≤ log2(Smax/ dlog2 nce) + 3 when Smax is provided in
bytes. For a 2-class example, when Smax = 4 GiB then L ≤
log2(22 · 230/1) + 3 =⇒ L ≤ 35. Thus, DIOPT classifiers
are restricted to relatively few features with somewhat modest
discretization levels as in practice L is expected to be less than
40 in order to avoid very large lookup tables. However, it turns
out that in many cases even small lookup tables are able to



Algorithm 1 DIOPT overview
Learning phase:

1: B ← learnBinBoundaries(f tr
j ,y

tr, t) ∀j
2: F̂ ← buildDiscretizedFeatureset(B, fj) ∀j
3: A← doBitAllocation(F̂ ,y, L)
4: f̂A ← extractDiscretizedFeatures(F̂ ,A)
5: CR ← trainReferenceClassifier(̂fA,y)
6: CLU← fillLookUpTable(CR)

Inference:
1: x̂← discretizeInstance(x,B,A)
2: i← generateLUindex(x̂)
3: c← readClassLabel(LU, i)

capture the necessary information of the underlying data set
and provide strong classification performance.

Now turning to the major steps in building a DIOPT classifier,
Algorithm 1 provides an overview description. The first step is
to learn bin boundaries which can be employed to discretize the
features. This step can be seen as a supervised discretization
training process, denoted as B(), which is done using a
discretization training subset f tr

j of the overall training set values
for some feature j, by means of some specific discretization
method. Here, discretization is performed by the KSD-MI
method as described in the next section. From B() the bin
boundaries used to discretize a feature j into a number of
bins corresponding to its bit allocation Aj is obtained, i.e.
B(Aj , f

tr
j ) = [b1, j , . . . , b2Aj−1, j ] = bj . In line 1 a set of

sets, B, is constructed in which every feature has a set of
bin boundaries corresponding to all possible bit allocations
Aj ∈ {1, . . . , t}, i.e. starting from 1 bit and going up to some
maximum number of bits per feature t. With the learned bin
boundaries, a discretization function D() can now be applied
to all feature values, i.e. D(bj , fj) = f̂j thus mapping the
numerical values of feature fj to bin indexes f̂j using bin
boundaries bj so that, bkj ≤ fi,j < bk+1,j ⇒ f̂i,j = k. For
each feature fj the operation in line 2 creates a set of corre-
sponding discretized features, one for each Aj ∈ {1, . . . , t},
and all these features are held in F̂ .

With the set of all discretized features F̂ enabling all
possible allocation values {1, . . . , t} for all features, the optimal
allocation of bits to each feature is searched for in line 3. For
an allocation A, the corresponding discretized feature set can
be obtained as

∀j col[̂fA]j :=

{
D(B(Aj , f

tr
j ), fj) for Aj 6= 0

discard otherwise.
(1)

In our case the search is done with the hGAm optimizer as
detailed in a later section. When the search has terminated
and the best candidate bit allocation A for some task T and
memory constraint Smax has been obtained, the step in line 4
extracts the corresponding discretized feature values f̂A. Then,
in line 5 the reference classifier CR is trained on the extracted
discretized training data.

To create the CLU classifier its lookup table needs to be
populated. Thus, using CR, the instantiation of the enumer-
ated classification model CLU is performed. The complete

discretized feature space is transformed to a single index by
means of a function q. For ease of notation, let us denote
Aj := A1 + · · · + Aj . Then, a single overall index for
the enumerated classifier considering the M ′ non-discarded
features becomes q(x̂) := f̂120 + f̂22A1 + · · ·+ f̂M ′2

AM′−1 as
the value domain of f̂j is [0 . . . 2Aj − 1]. In practice, the single
index is constructed by bit shifting of the discretized values
of the considered features. For the inference, the necessary
steps are to discretize the features, do bit shifts to construct
the single index, and lookup the class label. To obtain high-
speed discretization during inference several variants of feature
value to bin-index mapping have been implemented. Different
variants are employed for different features as appropriate
for their data type and value domain. For example, integer
data types with limited value domains are discretized using a
feature value to bin index lookup table which is a very time
efficient operation. In summary, the simplicity of the necessary
classification operations result in very low classification times.

IV. KSD-MI SUPERVISED DISCRETIZATION
As the memory available to hold CLU is limited, discretizing

the feature values to a limited number of bins becomes a
central aspect. The feature discretization should preserve as
much as possible of the features discriminative power between
classes, thus striving to maximize classifier performance when
the discretized features are employed. Many discretization
approaches have been proposed in the literature, and surveys
are available in [14], [22]. In this work we propose KSD-MI
as an improvement over the KSD [11] approach for this usage
domain. KSD-MI uses mutual information [33] as bin boundary
selection mechanism, rather than the tightly integrated wrapper
approach proposed in KSD. KSD-MI is a top-down discretizer
utilizing the Kolmogorov statistic [20], which is also referred
to as the Kolmogorov-Smirnov statistic after the widely used
Kolmogorov-Smirnov statistical test [23]. Henceforth, it will
be referred to as the Kolmogorov-Smirnov (KS) distance as
the use here is not related to statistical testing, but rather to
work as an aid for deciding bin placement. We now provide
a succint description of KSD-MI and refer the reader to [11]
for a more elaborate illustration of the KSD approach, and a
comparison to other approaches.

Since KSD-MI considers only a single feature at a time, the
feature index j has been excluded in the following description.
The KS distance is used to iteratively place new candidate bin
boundary value between two already existing bin boundary
values. Two sets of values f c := {fi ∈ f |yi = c} are considered,
that is, values fi so that class yi = c, where c ∈ {0, 1}. The KS
distance is computed on the empirical cumulative probability
distribution function (eCDF) which for some value v in the
value domain of f is defined as Ec(v) = n−1

c

∑nc

i=1 I(f c
i < v).

Here, I(ω) is the indicator function attaining value 1 if ω
is true and 0 otherwise, f c

i is the i:th observation of set f c,
and nc = |f c|. The two eCDF’s are compared and the KS
distance computed as KS = |E0(v)−E1(v)|. A new candidate
bin boundary is then placed at the location v where the KS
distance is maximized

v = arg max
v
|E0(v)− E1(v)|. (2)



Algorithm 2 KSD discretization algorithm

1: b← [fmin, fmax]
2: while |b| < 2A + 1 do
3: v← []
4: for k in 1. . . |b| − 1 do
5: fk,c ← {f ∈ f c|bk ≤ f c < bk+1}, c ∈ {0, 1}
6: nk,c ← |fk,c|, c ∈ {0, 1}
7: Ek,c(v)← 1

nk,c

∑nk,c

i=1 I(fk,c
i < v), c ∈ {0, 1}

8: v[k]← arg max
v
|Ek,0(v)− Ek,1(v)|

9: end for
10: b← b ∪

(
arg max

v∈v
I(D(b ∪ v, f); y)

)
11: end while
12: return b \ {fmin, fmax}

Pseudocode for KSD-MI is provided in Algorithm 2 where
fk,c := {f ∈ f c|bk ≤ f c < bk+1} are the observed values
from f c that are within the interval [bk, bk+1), and nk,c :=
|fk,c| is the number of observations in the current interval. At
the start the ultimate boundaries fmin and fmax are readily
available and thus initially b becomes [fmin, fmax]. The inner
loop in lines 4 to 9 constructs the eCDF’s Ek,c within the
interval of the k:th of the current bins for both classes, and
assigns v the value giving the maximal KS distance, as stated
in Eq. (2). At each inner iteration a candidate boundary location
v is recorded into the vector v. After iterating over all current
bins, the v maximizing the mutual information given the current
boundaries is added to the existing boundaries, line 10. Which
candidate bin boundary value in v to keep is thus determined by
mutual information which for some discrete random variables
X and Y is defined as

I(X;Y ) =
∑
x,y

p(x, y) log2

p(x, y)

p(x)p(y)
(3)

Here, we consider I(D(b ∪ v, f); y) i.e the mutual infor-
mation between class labels y and the discretized variable
D(b ∪ v, f), where b ∪ v are the current established bin
boundaries b combined with an additional candidate bin
boundary v. The boundaries are always ordered. The outer
iteration is continued until the desired number of bins have
been found or it is not feasible to introduce new bins, i.e., the
number of bins has become equal to the number of unique
values in feature f . When finally returning the set of bin
boundaries the initial extreme value boundaries are discarded,
and when performing discretization the first and last bins extend
to negative and positive infinity thus also capturing previously
unseen extreme feature values. We note that DIOPT requires
a discretization approach where the desired number of bins
can be specified, a property not necessarily present for other
supervised discretization approaches.

V. SELECTING OPTIMAL FEATURES AND
DISCRETIZATION LEVELS

The initial discretization step in DIOPT produces multiple
discretized representations for all features, which are stored in
F̂ . DIOPT uses F̂ when it, in addition to traditional feature
selection [15], [21], also performs the selection of discretization

Algorithm 3 hGAm algorithm

1: P← initalizePop(popsize, L, t)
2: while nr non-improving generatns ≤ maxNonImprov do
3: for i in 1...|P| do
4: A← Pi

5: g[i]← G(Θd, f̂A,y)
6: end for
7: M← parentSelect(P, breedFrac,g)
8: C← recombine(M,moveFrac)
9: C← mutate(C,mut)

10: P← C + eliteSelect(P, survFrac,g)
11: if current generation number mod locIntvl = 0 then
12: Pworst ← localsearch(Pbest)
13: end if
14: end while
15: return Pbest

levels in order to efficiently manage the limited total number
of bits, L, that result from the Smax memory constraint. To
address this optimization problem we have designed a novel
custom hybrid genetic algorithm (GA) [34, pg. 50] named
hGAm which enforces the bit count preservation requirement
of DIOPT. It is imperative to seek for the most descriptive
combined discretized feature set f̂A while accounting for the
memory constraint. This process is called bit allocation and
is responsible for selection of the used features and their
discretization levels. Each candidate allocation is constructed
utilizing the set of discretized features, F̂ , in which each feature
j exists with all possible discretization levels Aj ∈ {1, . . . , t}.

The proposed bit allocation method is based on estimating
the utility of some allocation vector A by directly observing
the CR classification performance in an f̂A validation set. As
optimization target a metric G (here accuracy), is used so
that we directly seek for A = arg max

A
G(Θd, f̂A,y), where

Θd define the classifier parameters. An overall description of
hGAm is presented in Algorithm 3 and the various configuration
parameters are given in Table I. The selection of configuration
parameters was aided by meta-optimization on a multiple choice
quadratic knapsack (MCQKP) surrogate problem, as further
elaborated in [10] which also provide an extended presentation
of hGAm.

The algorithm starts with creating a population P of randomly

TABLE I: hGAm algorithm parameters

Parameter Short Value

Initial population size popsize 2000
Max nr of bits per feature t 10
Max generations w/o improvement maxNonImprov 5
Breeding fraction of the best
candidates in population

breedFrac 0.5

During recombination move fraction of
differing bits

moveFrac 0.15

Child mutation probability mut 0.25
Nr of mutation loops per allocation nMut 1
Elite survival fraction survFrac 0.1
Local search interval locIntvl 5
Number of the most important RFE
features provided to GA

nFeat 15
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Fig. 1: hGAm recombination

generated candidate bit allocations where each individual Pi =
rand(A)|0 ≤ Aj ≤ t ∀j,

∑
j Aj = L (line 1). The algorithm

then evolves by obtaining the classification performance metric
scores g for all individuals in P (lines 3 to 6), selecting parents
M (line 7), creating children C (lines 8 to 10), and performing
local search every loclntvl generations.

Selecting which parents to perform mating on is done by
randomly choosing from breedFrac of the most fit individuals
in P (line 7), that is, the ones having the largest scores
g. Traditionally, a binary representation is used by GAs as
this allows for a number of recombination operations and
straightforward mutation procedures. However, for the DIOPT
bit allocation task a bit-based GA representation is problematic
due to the need to convey both the selection of features and
the number of bits allocated to these features. To address
this, hGAm uses a tailored chromosome representation. This
specialized representation format also requires an adapted
recombination operation, both to handle the specifics of the
format as well as to ensure that feasible solutions are produced
by the recombination. The recombination procedure of hGAm
is illustrated in Figure 1. In this example M = 13 features,
t = 10 bits, and L = 24 bits. To perform the recombination
a chromosome difference vector ∆ = Ap1 −Ap2 represents
the difference in bit allocation between parents Ap1 and Ap2.
Children Ac1,Ac2 are initially copies of Ap1, Ap2 before a
fraction (moveFrac) of the

∑
0<∆j

∆j differing bits are moved.
Bits are moved from randomly selected genes j ∈ {j|0 < ∆j}
in Ac1 to the same genes in Ac2. The above is repeated for
∆j < 0 now moving bits from Ac2 to the same genes in Ac1.
This approach conserves bits, i.e., children have equal number
of bits to parents, and resembles merging of the bit allocation
characteristics of the parents. In the example in the figure, a
fraction of five out of the

∑
0<∆j

∆j = 16 differing bits are
moved in each direction.

After recombination a randomly selected fraction (mut)
of the children is further subjected to mutation. Mutation
repeatedly (nMut) removes a bit from randomly selected feature
j and adds it to another randomly selected feature k, i.e.,
Aj = Aj − 1 and Ak = Ak + 1 (line 9). Following mutation
a new generation is formed, however, a fraction survFrac of
the most fit individuals in the current generation are carried

over to the next generation unchanged (line 10).
At locIntvl intervals, hGAm incorporates local search on

the fittest individual Pbest. With the hGAm representation,
local search encompasses moving a single bit at a time from
all Aj 6= 0, to all {Ak|k 6= j, Ak < t} and observing the
effect on the metric G. If any such bit shift leads to an
increase in G this allocation is set in place of Pworst (line 12).
When the population stops evolving, i.e., max(g) remains the
same between maxNonImprov subsequent generations, the best
achieved bit allocation A = Pbestis returned. The convergence
speed of hGAm is improved by providing to it only a set of
nFeat most important features as given by Recursive Feature
Elimination (RFE) [16]. Although not further elaborated here
due to space constraints, we note that the metaheuristic hGAm
approach provided better results than alternate approaches
we also implemented and evaluated. These included convex
optimization of feature and discretization level importances, as
well as mutual information based bit allocation. In contrast to
these and others, the hGAm approach both inherently captures
complex feature and discretization level interactions, as well
as balances the bias-variance trade-off.

VI. PERFORMANCE EVALUATION

After having presented how discretization as well as feature
and discretization level optimization is performed, we now
turn to the evaluation of the resulting classifier. To perform
the evaluation DIOPT was implemented and scikit-learn [27]
version 0.20.0 was used to train the discretized RF reference
classifier, CR. The trained scikit model Cscikit

R was then ex-
ported to our custom-built RF/tree evaluator Cfast implemented
in C with compiler and other optimizations employed as further
described in [13]. The Cfast

R classification model was used for
the CR → CLU table filling. Timings for DIOPT are then
collected on the lookup based model CLU. For the RF and tree
classifiers used for comparisons, training was performed with
scikit using undiscretized data, and timings measured on the
Cfastimplementation using the exported scikit model.

Experiments were performed on a workstation with an i7-
6850K and 128Gb RAM running Ubuntu 16.04. To collect
the inference runtime values each dataset was timed using
100000 instances obtained by sampling with replacement from
the test set, and this was replicated ten times. Missing values
were imputed by feature means, and features with only a
single value were dropped. The comparison considers baseline
RF and RF with feature selection using RFE [16], as well
as Decision Trees (DT) and DT-RFE. For the RF variants,
using {5, 10, 20, 50, 100} trees were evaluated, and for DIOPT
memory configuration footprints from 2 MiB to 32 GiB were
considered. Ten-fold stratified cross validation is employed for
testing. At each cross validation split the training set is used
for the bin-boundary generation as well as deducing the RFE
feature order. The classifier hyperparameters, including the
feature selection, are optimized using 3-fold cross validation
in the training set. The hyperparameters for RF are grid search
optimized using ’max depth’: [10,20,30] and max features:
[.1, .4, .7, 1]. For the evaluations including a decision tree
classifier the settings are ’max depth’: [10,20,30,40,50] and



TABLE II: Error rate with standard deviation and classification time for the classifier configuration providing ’Best error rate’,
and a ’Manual configuration choice’ which selects an RF configuration providing an error rate close to the best DIOPT. DT:
Decision Tree, RF: Random Forest, -RFE: With Recursive Feature Elimination, DIOPT: The proposed approach.

Best error rate Manual configuration choice
Class Error rate(%) Classif. time (ns) DIOPT Error rate (%) Cl. time (ns)

Data set Dim Inst. fraction DT-RFE RF-RFE DIOPT DT-RFE RF-RFE DIOPT Config RF-RFE RF-RFE
Fried 10 40K 0.50 11.70±0.55 7.47±0.48 7.87±0.42 44 6927 29 32G 7.75±0.50 3247
Magic 11 19K 0.65 15.13±0.97 11.92±1.14 12.83±1.09 39 8323 54 32G 12.47±0.91 1237
EyeState 15 15K 0.45 15.39±0.93 6.72±0.72 9.37±0.53 68 7916 68 32G 9.52±0.58 539
Codrna 8 0.5M 0.33 4.57±0.13 1.48±0.14 2.01±0.17 37 6167 42 32G 1.91±0.12 486
Elevators 18 17K 0.69 14.85±0.92 12.39±0.76 12.78±0.57 47 7840 38 8G 12.65±0.66 3651
Ailerons 40 14K 0.42 14.20±0.79 11.47±0.85 11.57±1.02 56 3773 36 0.5G 11.47±0.85 3773
CellNet 26 3.2M 0.07 1.00±0.08 0.71±0.03 0.85±0.04 74 5096 40 32G 0.82±0.02 363

TABLE III: ’Fried’ data: Multiple metrics overview

Metric DT-RFE RF-RFE DIOPT-GA

Error rate (%) 11.70±0.55 7.47±0.48 7.87±0.42
EER (%) 11.67±0.58 7.61±0.57 7.85±0.45
Precision (%) 88.50±0.59 92.83±0.52 92.23±0.55
Recall (%) 87.98±0.69 92.15±0.63 91.98±0.56
F1-score (%) 88.24±0.55 92.48±0.49 92.10±0.42
Logloss 1.16±0.89 0.19±0.01 0.19±0.01
Classification time (ns) 44.47±7.88 6927.87±276.19 29.56±5.34

max features: [.1, .4, .7, 1]. All timing results are when running
on a single core. Public binary data sets from openML [37]
and the UCI repositories [6] were examined, as well as
one proprietary data set related to classification of traffic
inside high-speed computer networks. This proprietary data set
comprised of 2.2 billion packets, which after filtering, packet
aggregation, and data subsampling were reduced to 3.2 million
flow instances for this evaluation. This data set had 26 features,
all of which were integers with small value domains, which
allowed all features to be processed with the fastest possible
non-typeconverting, non-scaling discretization pipeline.

A. Single data set perspective
The first part of the evaluation focuses on the characteristics

and results for a single data set, ’Fried’, which is listed on the
top row of Table II. Table III additionally shows the results of
the top performing classifiers in terms of a range of metrics
computed as the mean of the ten replications, and also provides
a measure of dispersion in the form of the standard deviation
of the results from the replications. Most metrics are very close
between RF-RFE and DIOPT-GA but somewhat surprisingly
RF-RE and DIOPT-GA were equal for logloss, something
which was not observed for any of the other data sets.

In the following, the error rate metric will be discussed
which simply is 1-accuracy, although the accuracy metric has
several noted issues [28]. Yet, accuracy and error rate can be
intuitively understood and is in widespread use, and suffices
for the current purpose of evaluating the relative performance
between RF and DIOPT. To illustrate the dynamics of the
different classifiers, Figure 2a shows how the accuracy evolves
over the configurations. The lines in the figure follow the
progression of configuration values, and thus do not necessarily
represent the Pareto boundary of that variant.

It is clear from the graph that the DIOPT approaches have
orders of magnitude less classification time, and can come very
close in terms of accuracy to the best RF classifier.

B. Multiple data set perspective

The characteristics of DIOPT were also evaluated over a
wider range of data sets, as detailed in Table II. In Table II,
the Dim, Inst., and Class Fraction columns denote the number
of features, number of instances, and positive class fraction
in a given dataset. The table has two major result columns,
the leftmost ’best error rate’ column reports the best results
by any configuration of RF-RFE (over number of trees) and
DIOPT (over memory sizes). We note that while the RF-RFE
column always reports the lowest mean error rate, the DIOPT
mean is within one standard deviation for the majority of data
sets. DT-RFE is much behind in terms of error-rate, although
it achieves timings that are similar to DIOPT.

From a runtime perspective there is strong correlation
between the number of trees in an RF model and the resulting
classification time. For DIOPT there is no such correlation be-
tween model complexity and runtime. Thus, the two rightmost
’Manual choice’ columns report the error rate and runtime for
the RF-RFE classifier with the tree number chosen such that
the resulting RF-RFE error rate is as close as possible to the
error rate of the best DIOPT configuration. As can be observed,
RF-RFE classifiers with comparable classification performance
to DIOPT still have orders of magnitude larger classification
times.

Figure 2 further elaborate on the relationship between
runtime and model complexity for a subset of datasets from
Table II. It is clearly visible that while the runtime of the
RF classifier varies considerably over almost two orders of
magnitude when increasing the number of trees from 5 to
100, similar behavior is not observed for the DIOPT runtimes
when the memory footprint is increased from 8MB to 32GB.
This is expected as the inference runtime of DIOPT is mainly
due to the discretization of the selected features, that is, from
mapping the feature values of an instance to bin indices and
concatenating them.

While the largest DIOPT memory configuration is often
the best, in several cases the data set is such that all relevant
information can be captured well also with a smaller memory
size. Depending on the deployment target, the DIOPT memory
configuration with the best error rate might not always be
the most appropriate. The selection of the most appropriate
classifier configuration for a particular high classification
throughput scenario can thus be seen as a multi-objective
optimization (MOO) problem involving 1) classification run-
time, 2) classification performance in terms of a metric such
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(c) ’Codrna’ data set
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(d) ’EyeState’ data set
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(f) ’CellNet’ data set

Fig. 2: Time per classification versus model accuracy over a range of number of trees (for RF) or memory configurations (for
DIOPT). Note the logarithmic scale on the y-axis.

as error rate, and 3) memory requirements. How to weigh
these parameters is scenario-dependent, but DIOPT is clearly
superior when classification run-time is the major parameter.
Table II and Figure 2 shows that there is a between 8 to
112 fold increase in classification time when going from
DIOPT to a similarly performing RF classifier (note the
logarithmic y-axis scale). For the particular use case of network
traffic classification (CellNet), there is considerably more
throughput using DIOPT as compared to RF-RFE with only
minor degradation in classification performance. The best RF-
RFE configuration of 100 trees has 7 misclassifications per
1000 classifications, whereas DIOPT with a 2GiB memory
size has 8.6 misclassifications per 1000. To handle the same
peak classification load, such an RF-RFE classifier would
however need more than one hundred times the number of
CPU cores as DIOPT would. Considering the Fried data set,
the accuracy is also very close, while DIOPT here provides
a classification rate increase at 239x for ’best’ and 112x for
’manual’ configurations.

Examining the results from the perspective of data set
variability, on a high level it can be seen that the RF vs
DIOPT relative classification performance varies considerably
between the data sets. Notable differences can be observed
for two of the data sets, ’Fried’ and ’Elevators’, where the
classification performance of the different DIOPT memory
configurations are much more ’compressed’ in relation to the
RF classification performance. Clearly, these data sets are
less sensitive to heavy discretization, and the inherent class
separability can be captured almost fully also for small lookup
tables.

The DIOPT classification performance can also be contrasted
to results reported in the literature reviewed in Section 2. In
particular, we consider the DT-related works of [2], [31], [38],
and the RF simplification approach of [17]. We note that the
comparison is possibly handicapped by differences in hyper-
parameter optimization approaches, evaluation protocol, etc.
and that results for larger scale data sets typically are lacking.
This comparison is thus performed based on eight smaller,
public, openML/UCI data sets for which all the cited works
provide results. The data sets consider binary classification tasks
and have a dimensionality between 14 and 72, and and instance
count between 351 and 48842. Overall, we for these data sets
in general observe results in line with Table II, i.e. DIOPT
achieves error rates close to RF while having inference runtimes
similar to DT. Compared to the error rates reported in literature,
DIOPT shows better performance than the alternate approaches
for all data sets with one exception (credit-approval).

In summary, the results show the ability of the DIOPT
approach to considerably increase classification throughput with
minor impact on classification accuracy for many large scale
data sets. While there are numerous classification problems that
are not suited for DIOPT, a considerable fraction of practically
relevant problems can benefit from DIOPT and achieve very
high classification rates.

VII. CONCLUSIONS

In areas such as high-energy physics, management of
communication networks, and other areas there is a need for
very high-throughput classification. This work contributes the
novel DIOPT approach where the new KSD-MI supervised



discretization algorithm, as well as the hGAm feature selection
and discretization optimization algorithm is employed. With
these building blocks it is possible to create a DIOPT lookup-
based classifier capable of achieving very fast classification
times for problems of moderate dimensionality. Employing effi-
cient run-time discretization implementations, we demonstrated
that DIOPT can achieve orders of magnitude improvements in
classification throughput while showing insignificant or modest
classifications performance reductions as compared to Random
Forest over a range of data sets. While DIOPT is not suitable for
all classification problems, we have established that DIOPT can
provide considerable improvements in classification throughput
for appropriate problem domains, many of which also appear
in practice.
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