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Abstract—Two challenges remain in video action recognition:
(1) long-range spatial-temporal dependencies play important
roles in action recognition, but they are difficult to be captured in
a light-weight way; (2) frames that are irrelevant or redundant
for action recognition exist in videos, especially in untrimmed
videos. In this paper, we introduce a novel network architecture
augmented with a frame attention module before feature extrac-
tion and a cascaded self-attention module after feature extraction.
It can evaluate the importance of each sampled frame and at the
same time, capture long-range spatio-temporal dependencies of
feature maps in a light-weight way. In the task of 3D feature
processing, the proposed cascaded self-attention module costs
much less FLOPs than the non-local block. By using efficient
networks, we obtain an inference speed up to 400 frames per
second. Furthermore, competitive performance with respect to
the state-of-the-art methods on datasets UCF101, HMDB51 and
Kinetics is demonstrated.

Index Terms—Action recognition, Attention mechanism, 3D
convolution

I. INTRODUCTION

Noise greatly degrades the accuracy of action recognition. A
popular framework for performing human action recognition
in videos is applying the pooling operation to aggregate the
features extracted from RGB streams or optical flows into a
summary vector. Mean and max pooling are typical choices.
However, these pooling methods consider all frames equally
and as a result, they are not robust to noise [1]–[4].

Noise mentioned above mainly refers to the redundant and
irrelevant frames, i.e. the video frames that are uncorrelated
with the target action [6], [7]. These frames not only in-
crease the computational cost but also deteriorate the accuracy
of model. In addition, videos in popular datasets, such as
UCF101 [8], HMDB51 [9] and Kinetics [10], are mostly
trimmed. For untrimmed videos, the interference from noise is
more prominent. Temporal segment network (TSN) [5] adopts
a sparse and global temporal sampling strategy to sample
frames from the entire video evenly. It divides every input
video into K segments and selects a frame randomly from each
segment in order that it can avoid sampling redundant frames
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up to a point. Unavoidably, irrelevant frames still could be
sampled and fed to the subsequent networks.

Long-range dependencies along spatial and temporal dimen-
sions remain a central problem because classical convolutional
neural networks (CNNs) , owing to their structures, are limited
to local receptive fields and short-range contextual informa-
tion. For example, although 3D-CNNs are popular frameworks
for capturing temporal relationships between sampled frames
and show good performance, it can only realize small windows
because of the size of convolution kernel, i.e. only short-term
relationships are captured in convolution operations. Existing
methods also use some post-hoc integration of window-based
scores, but this is suboptimal for exploiting the temporal
relationships between windows [11].

Non-local neural networks [12] employ a self-attention
operation, which computes the response at a position as a
weighted sum of the features at all positions in the input
feature maps, leading to more powerful pixel-wise represen-
tations. Here, each pixel in the feature maps is influenced by
all other pixels through self-attention maps, thus enabling the
exploration of long-range contextual information. However,
despite the outstanding performance, the requirement for tun-
ing a large number of parameters and high FLOPs make this
method difficult to be used in real-time action recognition.

In this paper, we make the following contributions. (1) We
propose an end-to-end trainable architecture augmented with a
frame attention module based on frame difference to eliminate
some of the non-discriminative frames sparsely sampled from
the entire video. After the frame attention operation, the
effectiveness of frames is enhanced, fewer frames need to be
processed as well. (2) We propose a lightweight self-attention
module for capturing long-range spatio-temporal relationships
of 3D feature maps. Compared to the non-local block, it
replaces 3D self-attention block with 3 cascaded 2D self-
attention blocks and therefore it consumes much less FLOPs
than non-local block. (3) We carry out ablation studies to
verify the effectiveness of two proposed attention modules and
validate the proposed network on video benchmark datasets
UCF101, HMDB51 and Kinetics. Compared to state-of-the-art
approaches, competitive performance in terms of classification
accuracy is obtained when only RGB information is used,
meanwhile the advantage of inference speed is prominent.
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Fig. 1. Visualizations of frame attention. We sampled 8 frames from an Internet video and ran through our network trained on Kinetics. The frames that are
remarked with red masks are discarded because they are considered to have low importance according to their attention. Avoiding these frames being input
to the subsequent module reduces the computational cost substantially.

II. RELATED WORKS

Action classification architectures. For action recogni-
tion, many works utilized 2D architectures. [2] proposed
the two-stream convolutional network with one stream for
capturing spatial features (using RGB infomation) and another
for temporal context (using optical flow). [13] highlighted a
drawback in the two-stream network that uses a standard image
CNN instead of a specialized network for processoing videos.
The two-stream networks are not able to capture long-term
temporal information [14]. Recurrent neural networks (RNNs)
are also a popular method. [15] used a LSTM to integrate
features extracted by CNNs. However, the performance of
RNN on action recognition currently is inferior to recent CNN-
based methods, which indicate that they may fail to model
long-term dynamics well [11] .

3D convolutional network is a preferred choice. C3D (Con-
volutional 3D) [16] introduced a 3D architecture with 3D
kernels to learn the spatial-temporal features from a sequence
of frames. In a more recent work, they studied the use of
the ResNet architecture with 3D convolutions and showed
the improvements over their earlier C3D architecture [17].
Several works also utilized 3D architectures [18], [19]. But
these approaches can only capture the short-term temporal
context of the input video based on a sliding window [11],
[20], [21]. The presence of Kinetics changed the prospect of
action classification. [22] proposed that the Kinetics dataset
has sufficient data for training deep 3D CNNs, and enables
training up to 152 ResNet layers. Meanwhile, they showed that
Kinetics pretrained simple 3D architectures outperform com-
plex 2D architectures. In terms of inference speed, however,
these methods are quite slow because they have to compute

the average score over multiple windows, which is quite time
consuming.

Different from 3D-Net approaches, TSN [5] divided the
whole video into several segments and utilized a segmental
consensus strategy to capture long-range relationships. In each
segment, a sparse and global sampling method is used to
choose frames from the entire video. However, as in its
aggregation methods, frames are processed independently for
inference and their class scores are aggregated only at the
end. Consequently, the performance in their experiments stays
the same when they change the number of samples, which
indicates that their model does not really benefit from the
long-term information. Similar to TSN, efficient convolutional
network (ECO) [11] also sparsely samples frames from the
entire video to capture long-range temporal features. In this
way, the sampled frames span the entire video independent
of the video length. In contrast to TSN, 3D-networks are
used to learn the relationship between frames. The network is
trained in an end-to-end manner to learn this relationship and
directly provides video-level scores without post-hoc feature
aggregation so that this model is computationally inexpensive.

Noise processing. Adaptive scan pooling (Adascan) [14]
proposed a method to pool discriminative and informative
frames, while discarding redundent and irrelevent frames in a
single temporal scan of the video. Different from original pool-
ing methods considering all frames equally, Adascan learns
to dynamically pool video frames for action classification by
producing interpretable intermediate state of each frame. In
Adascan, the video is input to the network frame by frame, so
the state of each frame is obtained by comparing the current
pooled features and features from the incoming frame.



Attention mechanism. Attention mechanism is widely
used for capturing long-range dependencies. Non-local neu-
ral networks [12] was proposed to generate attention maps
by calculating the correlation matrix between each spatio-
temporal pixel in the stacked feature maps. Interaction-aware
spatio-temporal pyramid attention networks [23] used feature
maps with different scales to construct a spatial pyramid and
then utilized multi-scale information to obtain more accu-
rate attention scores. Convolutional block attention module
(CBAM) [24] proposed a lightweight approach to infer at-
tention maps along channel and spatial dimensions separately.
For channel attention, they first aggregated spatial information
of a feature map by using both average pooling and max
pooling operations as two different spatial context descriptors
and then input them to a multi-layer perceptron to obtain
channel attention. For spatial attention, they applied average-
pooling and max-pooling operations along the channel axis
and concatenate them to generate a feature descriptor.

III. APPROACH

In this section, we present the details of our networks and
the specifications of the frame attention module and cascaded
self-attention module for action recognition.

A. Network Architecture

We choose Efficient Convolutional Network (ECO) and its
lite version ECO-Lite [11] as our baseline networks. The
structures of them are shown in Table 1. The first part of
BN-Inception (from con1 x to inception3c) [25] is used as
2D feature extractor, several layers of 3D-Resnet-18 (from
conv3 x to the end) [17] are used as 3D feature extractor. We
add a frame attention module and a cascaded self-attention
module into ECO and ECO-Lite so that we can validate the
performance of them. The whole networks are named BAnet
(Before-and-after Attention net) and BAnet-Lite.

BAnet adopts part of the BN-Inception architecture (from
the inception-4a layer to the last pooling layer) in parallel with

TABLE I
ARCHITECTURE OF ECO-LITE. IN ECO, BN-INCEPTION ARCHITECTURE
FROM THE INCEPTION-4A LAYER TO THE LAST POOLING LAYER IS USED

IN PARALLEL WITH 3D-NETS, IN THE END, THE FEATURES EXTRACTED BY
TWO BRANCHES ARE CONCATED.

layer name output size kernel size / stride
conv1 x 112× 112× 64 2Dconv 7× 7 / 2
pool1 56× 56× 64 maxpool 3× 3/2
conv2 x 56× 56× 192 2Dconv 3× 3 / 1
pool2 28× 28× 192 maxpool 3× 3 / 2
inception(3a) 28× 28× 256
inception(3b) 28× 28× 320
inception(3c) 28× 28× 96

conv3 x 28× 28× C
[3Dconv 3× 3× 3, 128

3Dconv 3× 3× 3, 128

]
×2

conv4 x 14× 14× C/2
[3Dconv 3× 3× 3, 256

3Dconv 3× 3× 3, 256

]
×2

conv5 x 7× 7× C/4
[3Dconv 3× 3× 3, 512

3Dconv 3× 3× 3, 512

]
×2

1× 1× 1 pooling, fc, softmax

3D-nets as another branch for capturing features compared
to BAnet-Lite. The structure of BAnet-Lite is shown in Fig.
2. First, each video is split into N segments of equal length
as the input to the network. From each segment a single
frame is randomly sampled. In this way, frames which are
non-discriminative may still be sampled, e.g. sports videos
contain some shots about audience and sports fields distractive
to action recognition.

Then, sampled frames are input to subsequent networks
which consist of four main modules: (i) frame attention
module, (ii) 2D feature extractor, (iii) cascaded self-attention
module and (iv) 3D feature extractor. The purpose of the frame
attention module is to measure the importance of each sampled
frame and proportionally eliminate low-importance frames.
The 2D feature extractor (the first part of the BN-Inception
architecture, from con1 x to inception-3c) is responsible for
extracting 2D features from the remaining sampled frames.
The cascaded self-attention module is in charge of capturing
long-range spatiotemporal dependencies by computing self-
correlation of the stacked feature maps. The 3D feature
extractor (several layers of 3D-Resnet-18, from conv3 x to the
end) is responsible for capturing deep spatiotemporal features.

The output of 2D feature extractor is stacked respectively
according to the channels and fed as a single tensor M =
[M1,M2, · · · ,MC ], M ∈ RT×H×W×C to the cascaded self-
attention module, where C = 96 is the output channels of the
2D feature extractor, T is the number of sampled frames, and
H = W = 28 is the size of 2D feature maps.

We use only one cascaded self-attention block after feature
map stacking because the scale of each feature map is already
small (28 × 28) in this stage. The self-attention operation
is better applied in shallow layers because much long-range
information losed in deep layers. It is also justified in [12]. We
conduct no experiment about adding 2D self-attention block on
former layers because the main purpose of the cascaded self-
attention module is to reduce the huge FLOPs of computing
3D attention maps. Whether the 2D self-attention module
provides significant improvements to our baseline model could
be a future research direction.

B. Frame Attention Module

As shown in Fig. 2, the frame attention module is applied
after frame random sampling. This module is designed to
eliminate non-discriminative frames. It achieves this purpose
by computing a score that quantifies the discriminative impor-
tance of each sampled frame based on the difference maps
obtained from each pair of adjacent frames. After importance
evaluation, we discard part of the low-score frames while
keeping the frame elimination percentage fixed.

1) Preprocessing: To reduce the complexity of the frame
attention module, two preprocessing operations are employed.

First, we transform the raw RGB images to gray-scale
images. Through this operation, three channels are compressed
into one because it is unnecessary to use the whole informa-
tion from the RGB channels to evaluate the importance of
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Fig. 2. Architecture of BAnet-Lite. First, We split each video into N segments averagely, from each segment a single frame is randomly sampled. Next, the
sampled frames are input to the frame attention module, through this module we obtain the frame attention info which contains the score of each frame. Then,
we select T high-score frames from N (T ≤ N ) as the input to the subsequent module. The 2D feature extractor extracts C feature maps from each frame
and these feature-maps are stacked respectively according to the channel. After that, stacked feature maps are processed by cascaded self-attention module.
Finally, they are fed into 3D feature extractor for capturing deep spatiotemporal features.

frames. We produce frame difference images from each pair
of adjacent gray-scale frames.

Second, we use a max-pooling layer to downsample frame
difference images. Irrelevant frames mostly come from dif-
ferent cameras or fast-moving lens, in other words, there
are obvious differences existing in terms of views between
irrelevant and normal frames. Thus, low-resolution images are
sufficient to differentiate whether a frame is discriminative or
not.

We illustrate these preprocessing procedures with an exam-
ple. A video is uniformly divided into N segments, then we
randomly sample a frame from each segment and compose
them as the original input X ∈ RN×3×224×224. Compress-
ing them into gray-scale images reduces the tensor into
Xg ∈ RN×224×224. Next, we compute the difference be-
tween adjacent frames to obtain a frame difference tensor
Xd ∈ R(N−1)×224×224. Finally, Xd is downsampled to X ′d ∈
R(N−1)×56×56 and taken as input of the multilayer perceptron
with three layers for the task of frame attention. If we need
to reduce more parameters, Xd could be downsampled to a
smaller size.

2) Multilayer Perceptron: The frame attention module
adopts a Multilayer Perceptron (MLP) with three layers. Each
layer applies the ReLU function. The attention of difference
maps is computed using:

Ydiff = [d1, d2, · · · , dN−1] = MLP (X ′d) (1)

As mentioned above, X ′d ∈ R(N−1)×56×56 is the input
of the frame attention module. The output of the MLP is
Ydiff ∈ R(N−1)×1×1, of which each element di, i ∈ [1, N−1],
represents the attention of each frame difference map. After-

wards, the frame difference attention is converted to frame
attention so that we can directly select the k most important
frames. Specifically, the conversion is performed according to
Eq. (2).

yi =

 F (clamp(di))× 2, i = 1,
F (clamp(di)) + F (clamp(di+1)), 1 < i < N,
F (clamp(di−1))× 2, i = N.

(2)
where yi, i ∈ [1, N ], denotes the attention of frame i, clamp
represents the function for clamping di into [0, 7] in order to
reduce computational cost. F is the right-translated derivative
of the sigmoid function (see Fig. 3 for an illustration) used
to further suppress the attention of redundant and irrelevant
frames.

Compared with directly converting difference attention to
frame attention (without using clamping and nonlinear pro-
cessing via applying function F), the method shown in Eq. (2)
has better performance owing to the following aspects:

First, for the task of eliminating the frames which differ
either greatly or little from their adjacent frames (they are
considered as irrelevent frames and redundant frames respec-
tively), we need a function to further suppress di when it is
close to 0 or 7 (the meaning underlying the value 0 and 7
will be explained later). We choose the derivation of sigmoid
function and translate it to the right by 3, as Fig. 3(b) shows,
roughly speaking, this function increases the nonlinearity of
the MLP. The selected offset of 3 represents the most appropri-
ate frame difference level for capturing temporal dependency.
We select 3 as the offset rather than 3.5 (average value of
0 and 7) for the reason that we consider it is desirable to
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Fig. 3. The derivative of the sigmoid function and its right-translated version.
By this processing, the scores of frame difference images close to 0 or 7 are
further suppressed.

retain redundant frames rather than irrelevant frames because
redundant frames would not introduce interference into the
model. Thus, scores close to 7 are suppressed more heavily
than scores close to 0, as Fig. 3(b) shows.

Second, for the purpose of avoiding large score disparity
and reducing computational cost, we use the clamp function
to restrain the output range of MLP into [0,7] because the
output of derivative of the sigmoid changes only marginally
when the input value falls out of [0,7], as Fig. 3(a) shows.

At last, we retain partial discriminative frames according to
the frame attention as the input of subsequent networks, the
retention rate is adjustable.

C. Cascaded Self-Attention Module

As shown in Fig. 4, for capturing long-range dependencies
over local feature representations using a lightweight structure,
the main part of the cascaded self-attention module consists of
3 cascaded 2D blocks. Here, we use an example to illustrate
the cascaded self-attention module in details. We denote the
features extracted by former network as Zori ∈ RT×H×W×C ,
an 1× 1× 1 convolution layer is applied to it for dimension
reduction. By this operation, we obtain Z ∈ RT×H×W×C′

,
where C ′ represents the channels of 3D feature maps, which
is less than C. Then, Z is input to the HW block, the structure
of HW block is illustrated in Fig. 6. In HW block, 3D feature
maps are first split by dimension T into T sets. The FLOPs of
correlation matrix computation of each set (excluding softmax)
can be computed as:

F2D = Cin(HW )2 × 2 (3)

The FLOPs of HW block is therefore:

FHW = CinT (HW )2 × 2 (4)

where Cin denotes the input channels, H,W are the size of
2D feature maps. After processing by the HW block, we can
consider that the output features ZHW ∈ RT×H×W×C′

obtain
the self-attention of HW view. Then ZHW is input to TW and
TH blocks sequentially. As shown in Fig. 5, owing to the
cascaded structure, each voxel of feature map is influenced by
any other voxel. It is worth mentioning that the performance of
cascaded self-attention module is not sensitive to the sequence
of 2D blocks, as shown by the experiment results in Table 5.

We can easily compare the FLOPs between cascaded self-
attention module and non-local block. The FLOPs of cor-
relation matrix computation using non-local block can be
computed as:

F3D = Cin(THW )2 × 2 (5)

where T,H,W are the size of 3D feature maps.
The total FLOPs of correlation matrix computation using

cascaded self-attention module can be computed as:

FCS = Cin(T (HW )2 +H(TW )2 +W (TH)2)× 2 (6)

Thus the ratio of FCS to F3D is:

R =
FCS

F3D
=

1

T
+

1

H
+

1

W
(7)

According to Eq. (7), it is obvious that cascaded self-
attention module costs much less FLOPs than the non-local
block. In our experiments, T = 16, H = W = 28, therefore
R = 13.4%. With the raise of T, H, W, more computational
cost is saved.

IV. EXPERIMENTS

We evaluated the BAnet on three popular human action
classification datasets UCF101, HMDB51 and Kinetics in
order to compare its performance against the state-of-the-art
methods. The comparison is restricted to approaches that only
take the raw RGB information of videos as input without
further pre-processing, e.g. by providing optical flow or human
skeleton. The term BAnet(MF) in tables represents a network
that selects M frames from N sampled frames as input to the
feature extractor. The term BAnet-Lite denotes the lite version
of BAnet. The ratio of M to N is 50% in our experiments.

A. Training

We train our model using mini-batch gradient descent with
Nesterov accelerated gradient and employ dropout in every FC
layer. In addition, we apply the data augmentation methods
introduced by wang et al. [5]: we resize each sampled frames
to 240 × 320 and adopt fixed-corner cropping and scale
jittering with horizontal flipping (temporal jittering provided
by sampling). Then, we run per-pixel mean subtraction and
resize the cropped regions to 224× 224.

We also apply the learning rate dropping strategy introduced
in [5] : the initial learning rate is set to 0.001 and decreases
to its 1/10 every 30 training epochs. The whole training
procedure is about 90 epochs. We train the network with a
momentum of 0.9, a weight decay of 0.0005, and batchsize of
16.

The weights of 2D feature extractor are initialized with
the BN-Inception architecture [25] pretrained on Kinetics-
400, as provided by [5]. The weights of 3D feature extractor
are initialized with model of 3D-Resnet-18 pretrained on
Kinetics-400, as provided by [19]. Other weights are randomly
initialized. Afterwards, we train BAnet and BAnet-Lite on
Kinetics.

For UCF101 and HMDB51, we finetune the BAnet and
BAnet-Lite models on each one after training on Kinetics. We
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adjust the dropout rate and the epochs according to the size
of datasets.

B. Accuracy Comparison

The accuracy performance obtained with BAnet and BAnet-
Lite on UCF101 and HMDB51 are shown in Table 2. Com-
pared to the state-of-the-art methods including both 2D and
3D, BAnet outperforms most existing methods except I3D,
however, our network is much more lightweight with slight
accuracy disadvantages. As shown in Table 3, BAnet outper-
forms the other methods including I3D on larger dataset Kinet-
ics, which shows the strong performance of our architecture.

We can also see the influence on the number of sampled
frames to our model, with more frames sampled, the accuracy
rises. However, this trend slows down when more than 20
frames sampled because too dense sampling leads to converse
effect for simple short-term actions.

C. Inference Speed Comparison

Previous works typically measure the speed of an approach
in Frames Per Second (FPS). BAnet runs at 400 FPS on a GTX
1080Ti GPU without considering I/O. But FPS can hardly
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reflect the inference speed of videos because of different
sampling density, e.g. for the same video, sampling 8 frames
costs less time than sampling 16 frames. Thus, we adopt the
evaluation standard VPS (Videos Per Second) proposed by
ECO, which can reflect the efficiency of our model exactly.

Benefited from comparatively shallow architecture, BAnet
obtains high inference speed. Table 3 shows the inference
speed comparison between BAnet and state-of-the-arts on



TABLE II
TOP-1 ACCURACIES(%) ON UCF101 AND HMDB51. ALL ACCURACIES
ARE AVERAGED OVER THREE SPLITS. DIM INDICATE THE DIMENSION OF

CONVOLUTION KERNEL (IF 3D KERNEL IS USED IN A NETWORK, WE
REGARD ITS DIM AS 3D).

Method Dim UCF101 (%) HMDB51 (%)
2-Stream CNN [2] 2D 88.0 59.4
TSN(RGB) [5] 2D 87.7 51.0
AdaScan [14] 2D 89.4 54.9
Res3D [17] 3D 85.8 54.9
ResNeXt-101 [22] 3D 90.7 63.8
I3D(RGB) [21] 3D 95.1 74.3
ECO-Lite(16F) [11] 3D 91.6 68.2
ECO(16F) [11] 3D 92.8 68.5
BAnet-Lite(4F) 3D 89.9 62.1
BAnet-Lite(8F) 3D 92.3 66.2
BAnet-Lite(16F) 3D 93.4 70.3
BAnet-Lite(20F) 3D 94.0 70.9
BAnet(8F) 3D 93.1 67.4
BAnet(16F) 3D 94.7 71.1

TABLE III
INFERENCE SPEED COMPARISON WITH STATE-OF-THE-ART APPROACHES

USING GTX 1080TI GPU ON UCF101 DATASETS (SPLIT1). FOR
INFERENCE SPEED, WE DO NOT TAKE TIME CONSUMPTION OF I/O INTO

CONSIDERATION.

Method Inference Speed (VPS) Top-1 (%)
I3D(RGB) [21] 0.5 95.1
Res3D [17] 1.1 85.8
ARTNet [19] 2.9 93.5
TSN(RGB) [5] 11.8 87.7
ECO(16F) [11] 23.2 92.8
ECO-Lite(16F) [11] 33.1 91.6
BAnet-Lite(4F) 113.7 89.9
BAnet-Lite(8F) 57.0 92.3
BAnet-Lite(16F) 28.1 93.4
BAnet-Lite(20F) 21.9 94.0
BAnet(16F) 19.9 94.7

UCF101. BAnet and BAnet-Lite architecture yield competitive
accuracy as other approaches at much faster inference speed.

D. Ablation Studies

To further prove the effectiveness of the frame attention
module and cascaded self-attention module, we show ablation
studys on the test set of Kinetics. In this section, we sampled
16 frames per video as input in all ablation studies. Obvious

TABLE IV
PERFORMANCE OF ACCURACIES COMPARED WITH SOTA METHODS ON

KINETICS-400 TEST SET. FOR FAIR COMPARISON, EACH ARCHITECTURE
WITHOUT IMAGENET PRETRAINING.

Method Top-1 (%)
C3D [16] 56.1
CNN+LSTM [10] 57.0
TSN(RGB) [5] 57.1
2-stream CNN [10] 61.0
I3D(RGB) [21] 68.4
ECO-Lite(16F) [11] 64.4
ECO(16F) [11] 67.8
BAnet-Lite(16F) 65.4
BAnet(16F) 69.7

TABLE V
ABLATION STUDY 1, COMPARISON ON DIFFERENT 2D-BLOCK SEQUENCES
OF CASCADED SELF-ATTENTION MODULE (WITHOUT FRAME ATTENTION).

Method Top-1 (%)
ECO [11] 67.8
BAnet(HW-TW-TH) 69.0
BAnet(TW-HW-TH) 68.9
BAnet(TH-TW-HW) 68.9

TABLE VI
ABLATION STUDY 2, COMPARISON BETWEEN CASCADED

SELF-ATTENTION MODULE (CS) AND NON-LOCAL BLOCK (NL). FRAME
ATTENTION MODULE IS NOT ADDED.

Method Top-1 (%) speed (VPS)
ECO(baseline) [11] 67.8 23.2
ECO(with 1 NL) 69.0 8.1
ECO(with 1 CS) 69.0 19.9

improvements are shown in Table 7, as the performance of the
frame attention module and cascaded self-attention module.
Meanwhile, we can discover that cascaded self-attention mod-
ule makes more contribution. Table 5 shows that the sequence
of 2D blocks has small impact on the classification accuracy.
As shown in Table 6, compared with non-local block, the
proposed cascaded self-attention module obtains higher VPS
than the non-local block, which shows that the CS module is
a more efficient way to capture long-range dependencies.

V. CONCLUSION

We proposed a novel Before-and-After Attention Network
(BAnet) for human action recognition augmented with frame
attention module and cascaded self-attention module. The
frame attention module works by evaluating the importance
of each sampled frame based on frame diffference maps
before feature extraction. The cascaded self-attention module
employs 3 cascaded 2D self-attention blocks to capture long-
range spatiotemporal dependencies after feature extraction.
Compared to 3D self-attention computation of non-local block,
cascaded self-attention module is much more efficient.

We validated our method on three popular datasets of
human actions UCF101, HMDB51 and Kinetics. The results
showed that the method has advantages both in the fields of
classification accuracy and inference speed.

TABLE VII
ABLATION STUDY 3, THE EFFECTIVENESS OF FRAME ATTENTION MODULE

AND CASCADED SELF-ATTENTION MODULE.

Method Top-1 (%)
ECO-Lite [11] 64.4
ECO [11] 67.8
BAnet-Lite(frame attention only) 64.8
BAnet-Lite(cascaded self-attention only) 65.2
BAnet-Lite(both) 65.4
BAnet(frame attention only) 68.1
BAnet(cascaded self-attention only) 69.0
BAnet(both) 69.7
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