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José Antônio F. de Macêdo
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Abstract—The task of detecting anomalous data patterns is
as important in practical applications as challenging. In the
context of spatial data, recognition of unexpected trajectories
brings additional difficulties, such as high dimensionality and
varying pattern lengths. We aim to tackle such a problem
from a probability density estimation point of view, since it
provides an unsupervised procedure to identify out of distribution
samples. More specifically, we pursue an approach based on
normalizing flows, a recent framework that enables complex
density estimation from data with neural networks. Our proposal
computes exact model likelihood values, an important feature
of normalizing flows, for each segment of the trajectory. Then,
we aggregate the segments’ likelihoods into a single coherent
trajectory anomaly score. Such a strategy enables handling
possibly large sequences with different lengths. We evaluate our
methodology, named aggregated anomaly detection with normal-
izing flows (GRADINGS), using real world trajectory data and
compare it with more traditional anomaly detection techniques.
The promising results obtained in the performed computational
experiments indicate the feasibility of the GRADINGS, specially
the variant that considers autoregressive normalizing flows.

Index Terms—trajectory data, anomaly detection, density es-
timation, normalizing flows

I. INTRODUCTION

The wide availability of spatial data acquisition devices,
from specialized remote sensors to standard GPS equipped
smartphones, has resulted in the creation of several location-
based applications. Although the object to be localized can
vary (a vehicle, an animal, a person, etc.), in general, such
trajectory data can be understood as a series of ordered points
that characterize the object motion [1].

In the context of trajectory data, anomaly detection is a
task critical to monitor spatial events and enable recognition
of unexpected behaviors [2]. One could define an anomaly,
or outlier1, as a data point which significantly differs from
the overall observed data [3]. It is worth emphasizing that, as

1In this work we use the terms outlier and anomaly interchangeably.

opposed to single point standard regression, in such a scenario
a data example is a full trajectory or at least a segment of it.

Meng et al. [2] propose a traditional anomaly detection
taxonomy that includes methods based on classification, clus-
tering, distance, density and statistics. We pursue the lat-
ter, which consists in a model-based procedure that aims
to explain the available data, mostly within a probabilistic
density estimation framework. Anomalies are then detected by
measuring how much the model fits a given new data point.
Such an approach does not require labeled data, as it is a
form of unsupervised learning. However, probabilistic density
estimation approaches for trajectory anomaly detection usually
consider simple distributions, such as a multivariate Gaussian
[4]. Even if a more flexible Gaussian mixture model (GMM) is
used, such as in [5], [6], it is not straightforward to determine
the number of components in the mixture.

In this work we tackle the task of trajectory data analysis by
pursuing an approach based on normalizing flows (NFs, [7]),
a general framework for estimating complex probabilistic den-
sities. In summary, a NF transforms an initial simple density
by a sequence of invertible transformations to better explain
the observed data. Following recent works, such as [7], each
transformation, i.e. a flow, is parametrized by (possibly deep)
neural networks. One of the main advantages of such flow-
based approach is the available exact model log-likelihood,
which is used as an objective function to jointly optimize all
the model parameters. Furthermore, we can compute exact
log-likelihood values for new data points, which we will then
apply as a coherent anomaly score.

NF-based anomaly detection approaches have been recently
proposed [8], [9]. In contrast to those works, we aim to
evaluate NF models with trajectory data, which is inherently
sequential. Thus, we include in our evaluations the so-called
masked autoregressive flow (MAF), an autoregressive flow
framework that directly models the conditional distributions
of the input variables [10].
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Trajectory data can be high dimensional due to the presence
of several measured points within a single trajectory. Besides,
distinct data examples can have different lengths, which cannot
be straightforwardly compared. We propose a methodology
that tackles both issues by considering fixed-size segments
of the available trajectories. A NF generative model is than
used to estimate the probability density of such segments. It is
expected that segments which belong to trajectories considered
normal correspond to higher model likelihoods than segments
that belong to trajectories considered anomalous. In the test
step, a single anomaly score for a new trajectory is computed
from its segments using an aggregation function. Moreover,
since we choose a trajectory data representation that incorpo-
rates timestamps, the time domain is considered in the mod-
eling. We name our approach aggregated anomaly detection
with normalizing flows (GRADINGS). We emphasize that, to
the best of our knowledge, our work is the first evaluation of
NF-based models in the task of anomaly detection in trajectory
data.

We evaluate the proposed GRADINGS approach using real-
world trajectories available in the Microsoft GeoLife data
set [11]–[13]. The obtained experimental results indicate the
feasibility of our solution. Our framework, specially the vari-
ant that considers the MAF model, achieves better anomaly
detection results in comparison to standard techniques, such
as the GMM and the local outlier factor (LOF, [14]) method.

II. PROBLEM STATEMENT AND DATA REPRESENTATION

The problem of anomaly detection can be vaguely described
as the task of finding data patterns that differ from what
is expected and is considered normal [15]. In this work,
such unexpected patterns are related to trajectories sufficiently
different from the previously seen data, which is assumed to
be mostly normal. We consider that trajectories can differ in
terms of spatial segments that comprise them and/or the time
period they occur.

As follows we establish the adopted data representation
and the main theoretical aspects of the unsupervised anomaly
detection task.

A. Trajectory representation

Broadly speaking, a trajectory consists of a sequence of GPS
points (i.e., latitude, longitude and timestamp) generated by a
moving object on a monitoring system. Below we formally
define it.

Definition 2.1 (Trajectory): A trajectory Tm ∈ T with size
Lm is defined as a finite ordered sequence

Tm ,
(
q
(m)
1 , q

(m)
2 , · · · , q(m)

l , · · · , q(m)
Lm

)
, (1)

where q(m)
l =

(
q
(m)
l,1 , q

(m)
l,2 , q

(m)
l,3

)
is a location point, such

that q(m)
l,1 , q

(m)
l,2 , q

(m)
l,3 are respectively the l-th latitude, l-th lon-

gitude, and l-th timestamp of the trajectory Tm. Furthermore,
we have ql0,3 < ql1,3, for all l0 < l1, which ensures a temporal
ordered sequence of points.

B. Problem statement

Given a set of trajectories, the goal of a trajectory anomaly
detection model is to find trajectories that are significantly
different from the majority, considered to be normal. In other
words, let T = {Tn}Nn=1 be a set of trajectories of moving
objects in a GPS monitoring system. The task of trajectory
anomaly detection is to create a model from the available
trajectories to evaluate the anomaly degree of any given
trajectory T.

In this work, we follow an unsupervised anomaly detection
procedure, which does not require the trajectories to be pre-
viously labeled as normal or anomalous. We detail such an
approach as follows.

C. Unsupervised anomaly detection

Unsupervised anomaly detection approaches (or anomaly
detection over noisy data [16]) makes two assumptions over
the data. The first one is that the dataset contains a large
number of normal elements and relatively few anomalies. The
second assumption is that the abnormal data is generated by
a different probability distribution [17].

After the training step, the determination if a sample x is
normal or abnormal can be made by a decision system H as
follows:

H(x, φ) =

{
0 (normal) if A(x) < φ,

1 (abnormal) if A(x) ≥ φ,
(2)

where φ is a predefined threshold and A(·) is an anomaly
score. The threshold φ is a value that separates abnormal from
normal data samples. In the context of supervised and semi-
supervised anomaly detection, this value is usually chosen
by using a validation set that contains known anomalous
samples [18], [19]. After that, metrics such as accuracy and
F1-score are computed to judge the quality of the models.

Alternatively, and more common to the unsupervised learn-
ing setup, we can judge the model quality without the choice
of a single value for the threshold φ. This can be done
by finding the receiver operating characteristic (ROC) curve,
which indicates the relation between the false positive rate and
the true positive rate as the threshold is changed. A practical
metric to summarize the information provided by the ROC
curve is the area under the curve (AUC or AUROC) [20].

III. CLASSICAL ANOMALY DETECTION TECHNIQUES

Anomaly detection algorithms can be classified in several
groups based on distance, probability, reconstruction, and
information theory [21]. In this section, we describe two of
most know techniques used in anomaly detection problems.

A. Anomaly detection using the LOF algorithm

Local outlier factor (LOF, [14]) is an unsupervised distance-
based anomaly detection algorithm. The anomaly score in LOF
is computed by comparing the local density of a sample to
the surrounding neighborhood. The local density is inversely
correlated with the average distance from the point to its
neighborhood.



Let X be a set of data points. The set of K-nearest
neighbors of x ∈ X is denoted by N k

x and defined as
NK

x , kNN(K,x,X \ {x}), where kNN(·, ·, ·) is the result
of a K-nearest neighbor query [22], [23].

Then, we define the K-distance neighborhood KD(x) of a
sample x ∈ X as KD(x) , maxu∈NK

x
‖x− u‖, where ‖ · ‖

is the Euclidean distance.
We use the above to define the reachability distance

RD(x,u) of x with respect to another sample u ∈ X as
RD(x,u) , max {KD(x), ‖x− u‖}.

The local reachability density of x with respect to u is then
denoted by LRD(x,u) and defined as

LRD(x) ,
K∑

u∈NK
x
RD(x,u)

.

Using all the previous definitions, the LOF anomaly score
can be finally formalized as the average ratio of local reacha-
bility densities with respect to x and its K-neighborhood:

A(x) =
1

K

∑
u∈NK

x

LRD(x)

LRD(u)
. (3)

Note that the above score measures the local density deviation
of a given data point with respect to its neighbors.

B. Gaussian mixture model for anomaly detection

One way of computing an anomaly score A in Eq. (2)
is to use a probability density estimator. This approach first
trains the density estimator p(·) and then uses the negative
log-likelihood of each testing data as an anomaly score, i.e.,

A(x) = − ln p(x). (4)

In such a context, the Gaussian mixture model (GMM) is a
common choice. A GMM uses a linear combination of Gaus-
sian density functions to approximate an unknown probability
distribution. The parameters of each the component are usu-
ally adjusted using the Expectation Maximization (EM, [24])
algorithm.

Consider a data set D = {xn}Nn=1, where xn ∈ RD. We
assume that the points from D are generated in an i.i.d. fashion
from an underlying density p(x). Furthermore, suppose that
p(x) is defined as a finite mixture model with K components:

p(x) =

K∑
k=1

πkN (x|µk,Σk) (5)

where N (x|µk,Σk) is a multivariate Gaussian density with
mean vector µk and covariance matrix Σk; {πk}Kk=1 are the
mixture weights, which are restricted to be non-negative and
sum up to 1, i.e.,

∑K
k=1 πk = 1. The mixture weights represent

the probability that a randomly selected data point x was
generated by the component k. After the optimization of the
GMM parameters via the EM algorithm, Eq. (5) can be directly
applied as an anomaly score for new data points.

It is worth noting that flow-based generative models consti-
tute a flexible alternative to density estimation with standard
techniques such as the GMM. In the next section we detail
the flow-based models used in this work.

IV. PROBABILITY DENSITY ESTIMATION VIA
NORMALIZING FLOWS

NF models are powerful tools for estimating complicated
probability densities [25], [26]. Two merits of these models
are the exact inference and log-likelihood evaluation [26]. The
latter is specially valuable in the context of anomaly detection.

Let x ∈ RD be a random vector with unknown distribution
p(x). In the most general flow-based model, the generative
process is defined as [27]

h ∼ p(h), (6)
x = g(h), (7)

where h is a latent (unobserved) variable and p(h) is a
simple and known distribution, e.g., a multivariate Gaussian.
The function g(·), called bijective, is an invertible function
such that g−1(x) = f(x) = h. If the transformation f(·) is
considered to be a composition of K successive mappings and
we apply the change of variables rule, the log-likelihood of
the random variable x can be written as [27]

ln pK(zK) = ln p0(z0)−
K∑

k=1

ln

∣∣∣∣det ∂zk
∂zk−1

∣∣∣∣ , (8)

where x , zK ∼ pK(zK), h , z0 ∼ p0(z0) and zk =
fk(zk−1),∀k = 1, 2, . . . ,K.

The usual training criterion of flow-based generative models
is simply the negative log-likelyhood over the training set X :

L(X ) = − 1

|X |
∑
x∈X

ln p(x). (9)

We summarize the evaluated NF models as follows.

A. Real NVP

Real-valued non-volume preserving (Real-NVP, [28]) is a
type of NF that uses a bijection called coupling layer that
transforms only some input dimensions via functions that
depend on the untransformed dimensions. If 1 : d denotes
the sequential indexes of the d untransformed dimensions, the
components of the layer output y are given by

y1:d = x1:d, (10)
yd+1:D = xd+1:D � exp (σ(x1:d)) + µ(x1:d), (11)

where σ, µ : Rd → RD−d respectively represent scale and
translation functions parametrized by neural networks, and �
is the element-wise product operator. The elements in each
flow are permuted to different orders, allowing all of the inputs
to have a chance to be altered.

The Jacobian matrix of the above described transformations
can be calculated using

∂y

∂x
=

[
Id 0d×(D−d)

∂yd+1:D

∂x1:d
diag (exp (σ(x1:d)))

]
, (12)

where Id ∈ Rd×d is the d-order identity matrix, 0d×(D−d) ∈
Rd×(D−d) is a zero matrix and diag (exp (σ(x1:d))) ∈
R(D−d)×(D−d) is a diagonal matrix whose elements are equal



to the vector exp (σ(x1:d)). The Jacobian matrix in Eq. (12)
is triangular, thus, its determinant is a simple product of the
diagonal terms:

det
∂y

∂x
=

D−d∏
j=1

exp (σ(x1:d))j = exp

(
D−d∑
j=1

σ(x1:d)j

)
. (13)

Since the computation of the Jacobian determinant of the
mentioned transformations does not involve calculating the
inverse of the functions σ(·) and µ(·), such functions can
be arbitrarily complex, usually a deep neural network [28].
All the model parameters (i.e., the networks’ weights) are
jointly optimized via maximization of the Eq. (9) via stochastic
gradient descent methods.

B. Masked autoregressive flow (MAF)

We can decompose any joint density p(x) of high-
dimensional data into a product of one-dimensional condition-
als using the chain rule of probabilities:

p(x) =
D∏

d=1

p(xd|x1, x2, · · · , xd−1) =

D∏
d=1

p(xd|x1:d−1). (14)

The Masked Autoregressive Flow (MAF, [10], [29]) uses
the above autoregressive constraint to model the probability
density whose conditionals are parameterized as single Gaus-
sians. Thus, the d-th conditional probability is given by

p(xd|x1:d−1) = N
(
xd|µd(x1:d−1), (exp (αd(x1:d−1)))

2) , (15)

where µd, αd : Rd−1 7→ R are two unconstrained scalar
functions that compute the mean and log-standard deviation of
the d-th conditional given all previous variables. The bijective
transformation of MAF generates each yd conditioned on the
past dimensions y1:d−1,

yd = xd exp (αd(y1:d−1)) + µd(y1:d−1). (16)

As a consequence of the autoregressive nature of this transfor-
mation, the dimension d of the resulting variable y depends
only on the 1 : d dimensions of the input variable x. Thus, the
Jacobian matrix of this transformation is triangular [30] and
its determinant is equal to the product of its diagonal terms:

det
∂y

∂x
=

D∏
d=1

exp (αd(y1:d−1)) = exp

(
D∑

d=1

αd(y1:d−1)

)
. (17)

As in the RealNVP, the functions µd(·) and αd(·) can be
arbitrarily complex. In the MAF model, these functions are im-
plemented by an efficient feedforward network called Masked
Autoencoder for Distribution Estimation (MADE, [29]) that
takes x as input and outputs the means and log-standard
deviations for all dimensions in a single network pass.

The nature of MAF transformations allows more flexible
generalizations when compared to the RealNVP model. As
one can see, if for the first j ≤ d dimensions we fix µj =
αj = 0 and apply the MAF transformations into the other
j > d dimensions, the MAF structure becomes equivalent to
the RealNVP. Besides, we can see the coupling layer of the
RealNVP as a special case of the MAF transformation [10].

V. PROPOSED METHODOLOGY

We can compute an anomaly score for a sequential data type
sample either directly or by first computing scores for local
subsections and then aggregating them. These subsections are
called pattern fragments, segments, sliding windows, motifs, or
n-grams [31]. In Definition 5.1 we present a formal description
of these objects.

Definition 5.1 (trajectory segment): Given a trajectory Tm

with length Lm, the segment Si of Tm with a user-defined
length W is a finite ordered sequence of location points,
denoted by

S
(m)
i ,

(
q
(m)
i , q

(m)
i+1 , · · · , q

(m)
i+W

)
. (18)

where W 6 Lm and 1 6 i 6 Lm −W + 1.
Segment-based techniques usually perform better when

compared to direct detection methods [31]. Furthermore, they
enable handling large sequences with different lengths. As
follows we detail our proposal, named aggregated anomaly
detection with normalizing flows (GRADINGS), which con-
sists in three main steps.

In the first step, GRADINGS transforms the set of trajec-
tories into a set of trajectory segments. Thus, given a set of
trajectories T = {Tm}Mm=1, the transformed set is defined by

X =

M⋃
m=1

{
xn = δ

(
S
(m)
i

)∣∣∣Lm−W+1
i=1

}
, (19)

where xn ∈ RD, 1 6 n 6 N =
∑N

n=1(Lm −W ), and δ(·) is
a function that flattens a W ×3-segment into a D-dimensional
row vector, where D = 3W , i.e.,

δ
(
S
(m)
i

)
=
(
q
(m)
i,1 , q

(m)
i,2 , q

(m)
i,3 , · · · , q

(m)
i+W,1, q

(m)
i+W,2, q

(m)
i+W,3

)
.

The second step consists in estimating the distribution p(·)
from the available trajectory segments. This step is performed
by using one of the NF generative models described in
Section IV. At this point, the GRADINGS is able to compute
the anomaly degree for any trajectory segment, denoted by
α
(
S
(m)
i

)
:

α
(
S
(m)
i

)
= − ln p

(
δ
(
S
(m)
i

))
. (20)

In the last step, we aggregate the anomaly scores of the
segments to compute a single anomaly score for the trajectory.
More specifically, given a trajectory Tm, its anomaly score,
denoted by A (Tm), can be computed using an aggregation
function ϕ that combines the anomaly degree of each segment
S
(n)
i in the trajectory Tm, i.e.,

A (Tm) = ϕ

({
α
(
S
(m)
i

)}Lm−W+1

i=1

)
. (21)

Possible choices for the aggregation function ϕ includes the
median or the average.

VI. EXPERIMENTS

To assess the performance of the proposed methodology,
we conduct experiments comparing GRADINGS when using
either Real NVP or MAF estimators against standard LOF and
GMM anomaly detectors with real world data.



A. Data set description

We consider the version 1.3 of the Microsoft GeoLife data
set [11]–[13], comprised of real trajectory data measured from
182 users over a period of five years (from April 2007 to
August 2012), which is equivalent to 17621 trajectories. For
73 users, the transportation mode is labeled, such as driving,
taking a bus, riding a bike and walking. Each trajectory
represents a complete trip from departure to arrival location.

In our experimental setting, we use a subset of the data
that consists of the trajectories located in Beijing, China,
made using car (126 trajectories) or bus (365 trajectories). We
define two different scenarios. In the first one, called CAR
× BUS, we use the car trajectories as in-distribution data
(i.e., as “normal” patterns) and the bus trajectories as out-
of-distribution data (i.e., as “anomalies”). In the second one,
called BUS × CAR scenario we switch the roles: the bus
trajectories act as in-distribution data and the car trajectories
are seen as out-of-distribution samples. For each scenarios we
use segments with length correspondent to 10, 20, and 30
location points, accounting a total of 6 data sets. All of these
data sets have 230632 segments of car trajectories and 850082
segments of bus trajectories.

The timestamp information of the trajectory data is firstly
converted to the hour of the week (e.g. Tuesday, 12:30,
is equal to 36.5 if we consider the Monday as the start
of the week) and then encoded into two variables using(
sin
(
2π hour

168

)
, cos

(
2π hour

168

))
. This encoding ensures that

similar periodic times are close in the input space, even in
different weeks (e.g. Sunday, 23:59 is close to Monday, 00:00).

B. Results and discussion

We report results for individual segments scores and full
trajectories scores. In the latter, we consider both the average
and the median as score aggregation functions ϕ (see Eq. (21)).

We train all the models on the normal data and then apply
them to unseen normal samples as well as abnormal data
samples. The normal data have been partitioned into two folds,
the first one with 80% of the data for the training, and the
other 20% is grouped with the abnormal data to compute the
evaluation metrics.

For the MAF and RealNVP models we use 10 flows
of neural networks as bijective functions, with the MADE
structure in the case of the MAF model. Each network has
two hidden hidden layers, each one with 32 neurons. Both
models were trained for 300 epochs. A grid search with 5-
fold cross-validation is used to perform the hyper-parameter
tuning using the training data for the GMM model. The K
value of the LOF algorithm was determined using the heuristic
presented in [14].

The ROC curves and the correspondent AUROC values are
presented in Figs. 1 and 2. In addition, we present in Table I
the the false positive rate obtained when we fix a true positive
rate of 80%, named the FPR80 metric.

In all evaluated pair scenario-variant the NF-based solutions
performed better in terms of AUCROC. In most of them, the
GRADINGS framework with the MAF model was the best.

TABLE I
FALSE POSITIVE RATES OBTAINED WHEN WE FIX A TRUE POSITIVE RATE

OF 80% (FPR80) FOR ALL EXPERIMENTAL SCENARIOS.

Model

Scenario Variant Length MAF RealNVP GMM LOF

C
A

R
×

B
U

S

segment 10 0.423 0.643 0.698 0.719
20 0.498 0.640 0.653 0.688
30 0.608 0.652 0.699 0.727

average 10 0.342 0.335 0.376 0.465
20 0.272 0.435 0.500 0.550
30 0.361 0.577 0.556 0.622

median 10 0.245 0.375 0.308 0.481
20 0.247 0.335 0.353 0.419
30 0.201 0.361 0.315 0.462

B
U

S
×

C
A

R

segment 10 0.603 0.592 0.597 0.684
20 0.510 0.633 0.682 0.692
30 0.489 0.517 0.631 0.689

average 10 0.252 0.310 0.482 0.712
20 0.529 0.601 0.635 0.704
30 0.311 0.555 0.622 0.732

median 10 0.226 0.330 0.761 0.771
20 0.190 0.294 0.744 0.819
30 0.055 0.328 0.564 0.747

In terms of FPR80, the MAF also achieved better results in
16 out of 18 evaluations, with the RealNVP being slightly
better in the others. It is important to highlight that the use
of a segment aggregation strategy considerably increased the
performance concerning the AUROC in all experiments. Par-
ticularly, models with the median as the aggregation function
achieved the best results in terms of AUROC and FPR80.

In terms of the segment length, when using the median as
the aggregation function, we can see that the performance
is inversely proportional to the size of the segment. On the
other hand, using the average as the aggregation function, the
performance decreases as the segment size increases. Since the
average score is more sensitive to outliers, we hypothesize that
the increase of the segment size may cause more outliers to
appear in the same pattern. The results that consider only the
individual segments do not show any specific behavior with
respect to the segment length.

In summary, the obtained results indicate the importance
of both main ingredients of the proposed GRADINGS frame-
work: (i) the NF-based density estimation; and (ii) the aggrega-
tion of the individual segments degrees into a single trajectory
anomaly score. Furthermore, we have also verified that, in
general, the combination of the autoregressive MAF model,
the median aggregation function and a larger (e.g. 30) segment
length representation offers the best performance.

VII. CONCLUSION AND FURTHER WORK

Anomaly detection is a challenging task with important
practical applications. In the context of trajectory data, GPS
measurements are usually widely available. However, the high
dimensional patterns and the lack of labeled data hinder the
application of standard techniques.

In this work we have proposed GRADINGS, an unsuper-
vised density estimation methodology that includes flexible
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Fig. 1. Anomaly detection results for CAR × BUS scenario. ROC curves and respective AUROC values for segments (left column) and for trajectories, using
average (middle column), and median (right column). The rows represent the segment lengths – 10 (a, b, c), 20 (d, e, f), and 30 (g, h, i). The dashed line
indicates a completely random detector.
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Fig. 2. Anomaly detection results for BUS × CAR scenario. ROC curves and respective AUROC values for segments (left column) and for trajectories, using
average (middle column), and median (right column). The rows represent the segment lengths – 10 (a, b, c), 20 (d, e, f), and 30 (g, h, i). The dashed line
indicates a completely random detector.



normalizing flows, more specifically the Real NVP and the
MAF structures. GRADINGS aggregates the analytical log-
likelihood values of trajectory segments into a single robust
anomaly score, which enables the use of trajectories with
distinct lengths. The empirical results obtained using real
world data showed promising performance compared to the
LOF and GMM baselines, specially when considering the
autoregressive MAF-based version.

The present research outcome encourages us to pursue
additional NF approaches for trajectory anomaly detection. For
instance, future work shall evaluate the use of convolution-
based flows, such as the so-called Glow [26], which can
handle data with multiple channel representation. Models
with more complex invertible transformations, such as the
recently proposed [32]–[34], are also worthy subjects of future
investigations.
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