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Abstract—We have developed a hierarchical spike timing
neural network model in NEST simulator aimed to reproduce
human decision in simplified simulated visual navigation task.
The model consists of the following layers: retinal photorecep-
tors and ganglion cells (RGC); thalamic relay including lateral
geniculate nucleus (LGN), thalamic reticular nucleus (TRN) and
interneurons (IN); primary visual cortex (V1); middle temporal
(MT) area; medial superior temporal (MST) area and lateral
intraparietal cortex (LIP). All synaptic inter- and intra-layer
connections of the initial model were static and structured
according to the literature information. The present work extends
the model with spike timing dependent plastic (STDP) synapses
between MST and LIP layers. We investigated the possibility to
train synaptic weights via STDP rule to mimic decisions taken
by test subjects as well as to differentiate them according to their
age.

Index Terms—spike timing neuron model, spike timing depen-
dent plasticity, visual system, decision making, saccade generation

I. INTRODUCTION

In the process of evolution, in the mammalian brain have
emerged areas with a specific type of functionality that
can be regarded as a hierarchical structure processing the
visual information coming through our eyes. The sensory
area (retina) consisting of photo-receptive cells transforms
the incoming light into electrical signal via retina ganglion
cells (RGC). Next layer (lateral geniculate nucleus (LGN)
and thalamic reticular nucleus (TRN)) has a role of relay
transmitting the signal to the primary visual cortex (V1). The
motion information processing, that is of primary interest in
our investigation, is performed predominantly in the following
two structures called middle temporal area (MT) that encodes
the speed and direction of the moving objects and the medial
superior temporal area (MST) that extracts information about
the self-motion of the observer.

Project DN02-3-2016 ”Modeling of voluntary saccadic eye movements
during decision making” funded by the Bulgarian Science Fund.

Most of the existing motion information processing models
are restricted to the interactions between some of mentioned
areas like: V1 and MT in [1]–[4], V1, MT and MST in
[5]; MT and MST in [6], [7]. Many models consider only
the feedforward interactions (e.g. [4], [8]) disregarding the
feedback connectivity; others employ rate-based equations
(e.g. [9], [10]) considering an average number of spikes in a
population of neurons. Spiking neural network (SNN) models
that are spatially designed according to brain templates were
recently generalized in [11].

In our preliminary research [12], as an attempt to simulate
realistically the interactions between all described processing
stages of encoding dynamic visual information in the human
brain, we have developed a spike-timing neural network model
that includes all mentioned above structures as well as a
layer playing major role in the process of decision making
based on perceived visual information and the preparation of
a saccade (change of gaze direction) to the desired location
called lateral intraparietal area (LIP). The spatial organization
and connectivity of our model, although not fully anatomically
analogous to the considered brain structures, is designed using
available neuro-physiological knowledge about their spatial
structure and connectivity. The model was implemented using
NEST 2.12.0 simulator ( [13]).

All synaptic inter- and intra-layer connections in our previ-
ous work [12] were static. In the present work we have ex-
tended the model with spike timing dependent plastic (STDP)
synapses between MST and LIP layers in order to tune
these parameters to reflect observed human decisions during
experiment with visual stimuli simulating optic flow patterns
of forward self-motion on a linear trajectory to the left or to
the right of the center of the visual field with a gaze in the
direction of heading. The subjects had to indicate the perceived
direction of heading by saccade movement. The mean latency
of the eye movements obtained in the behavior experiments
was used as training signal fed into the output layer of the
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model. We investigated the possibility to train our model to
mimic decisions taken by different test subjects as well as
to differentiate the humans by age based on tuned model
parameters.

The paper is organized as follows: section II describes
briefly the overall model structure and parameters; next we
describe briefly experimental set-up and data processing; sec-
tion IV presents results from STDP training of the model and
obtained parameters typical for mean behaviour of each one of
the three tested age groups; the concluding section comments
obtained results and determines directions for our future work.

II. MODEL STRUCTURE

The hierarchical model structure from [12] is shown on
Fig. 1.

Fig. 1. Model structure.

The model connectivity is based on the available literature
information. Each layer consists of neurons positioned in
a regular two-dimensional grid. The receptive field of each
neuron depends on the function of the layer it belongs to,
on its spatial position within its layer and on the layers it is
connected to.

The reaction of RGC to light changes is simulated by a
convolution of a spatiotemporal filter with the images falling
on the retina, following models from [14], [15]. Its spatial
component has a circular shape modeled by a difference of

two Gaussians (DOG) while the temporal component has a
bi-phasic profile determined by the difference of two Gamma
functions. The model contains two layers of ON and OFF
RGC and their corresponding LGN and IN/TRN neurons,
having identical relative to visual scene positions and opposite
(“on-center off-surround” (ON) and “off-center on-surround”
(OFF)) receptive fields placed in reverse order like in [14].
Each layer consists of totally 400 neurons, positioned on
20 × 20 grid. The continuous current generated by RGC is
injected into LGN and IN via one-to-one connections. The
structure of direct excitatory synaptic feedforward connectiv-
ity between LGN and V1 is also adopted from [14]. LGN
also receives inhibitory feedback from V1 via IN and TRN
according to [16].

As in [14], the neurons in V1 are separated into four
groups – two excitatory and two inhibitory, having a ratio of
4/1 excitatory/inhibitory neurons (400/100 in our model) and
connected via corresponding excitatory and inhibitory lateral
connections. All excitatory neurons are positioned at 20× 20
grid while the 10×10 inhibitory neurons are dispersed among
them. Being orientation sensitive, V1 neurons have elongated
receptive fields defined by Gabor probability function as in
[17]. The “pinwheel structure” of the spatiotemporal maps
of the orientations and phases of V1 neurons receptive fields
was generated using a relatively new and easily implemented
model ( [18]). Lateral connections in V1 are determined
by Gabor correlations between the positions, phases, and
orientations of each pair of neurons. As in [14], neurons from
inhibitory populations connect preferentially to neurons having
a receptive field phase difference of around 180◦. In our model,
the frequencies and standard deviations of Gabor filters for
lateral connections were chosen so that all neurons in the layer
have approximately circular receptive fields.

MT has identical to V1 size and structure and its lateral con-
nections are designed in the same way while the connections
from V1 cells depend on the angle between the orientation
preferences of each two cells like in [19]. The orientation and
phase maps of this layer were generated in the same way as
those of V1.

The MST consist of two layers, each one containing
400 neurons positioned on 20 × 20 grid, sensitive to ex-
pansion (MSTe) and contraction (MSTc) movement patterns
respectively, like in [20]. Each MST cell from both layers
has randomly assigned an expansion/contraction connection
template having a circular shape with specific width and a
focal point having three possible positions - left, right or at
the visual scene center respectively that are shown as three
separate groups on Fig. 1. All MST neurons have on-center
receptive fields. Each MST neuron collects inputs from MT
cells corresponding to its pattern template. Both layers have
intra- and interlayer excitatory/inhibitory recurrent connections
between cells having similar/different sensitivity. The lateral
connections are determined based on neurons’ positions and
template similarities. All neurons have Gaussian receptive
fields. Connections within expansion/contraction layers are
excitatory or inhibitory in dependence on their focal points



similarity. Connections between expansion and contraction
layers are all inhibitory and depend both on similarities of
their positions and focal points.

Since our model aims to decide whether the expansion
center of a moving dot stimulus is left or right from the
stimulus center, we proposed a task-dependent design of exci-
tatory/inhibitory connections from MST expansion/contraction
layers to the two LIP sub-regions whose increased firing rate
corresponds to two taken decisions for two alternative motor
responses - eye movement to the left or to the right. Both
LIP areas are modeled by two neurons receiving excitatory
input from MST expansion layer neurons having focal points
corresponding to their decision responses (left or right) and
inhibitory input from all other MST neurons. There are also
lateral inhibitory connections between both LIP areas (see
Fig. 1).

More details about connectivity design can be found in our
previous work [12].

For the neurons in LGN conductance-based leaky integrate-
and-fire neuron model as in [21] (iaf chxk 2008 in NEST)
was adopted. For the rest of neurons, leaky integrate-and-fire
model with exponential shaped postsynaptic currents accord-
ing to [22] (iaf psc exp in NEST) was used. All connection
parameters are the same as in the cited literature sources.

III. EXPERIMENTAL SET-UP

A. Behavioral experiment and data collection

The stimuli used for the stimulations are taken from a
behavioral experiment with human subjects from three age
groups young (between 20 and 34 years old), elderly (from
57 to 84 years old) and middle aged group (between 36 and
52 years old).

A detailed description of the experiment can be found in
[23]. Here we used only the stimuli from the one of the
conditions. In it, out of 50 dots, 36 dots moved away from
a common center, while the rest 14 dots moved on random
trajectories. All dots have a limited life time of 100 ms after
which they were randomly displaced to a different position
preserving their previous trajectory. Only one-third of the dots
changed position on every frame. The speed of dot motion was
3.6deg/s. The virtual center of the patterns is defined by the
average position of the centers of all frames. The horizontal
position of this center could be located at one of 7 different
positions to the left or to the right of the pattern center. The
horizontal shifts were in the range from 0.67 cm to 4.67 cm
from the pattern center. For each position of the virtual center
we generated 10 different replicates. All dot patterns (with 14
different shifts and 10 replicates) were presented in random
order in a single experimental session i.e. 140 patterns in total.
The stimuli were shown on a gray background with mean
luminance of 50cd/m2.

Two screen shots for left and right expansion center stimuli
are shown on Fig. 2.

The tested subjects sat at 57 cm from a monitor screen.
Their task was to observe the patterns with steady fixation
and to determine whether the center was to the left or to the

Fig. 2. Example of stimuli screen shots. Blue and red arrows show positions
of imaginary expansion centers.

right from the middle of the screen. After making a decision
they have to make a saccade movement to its perceived center
and to press a mouse button corresponding to their decision.
If the subjects could not make a decision during stimulus
presentation (3.3 s for 100 frames) the screen turned gray until
the subjects made a response.

The stimulus presentation was controlled by a custom
program developed under Visual C++ and OpenGl. The stimuli
were presented as white dots on a NEC MultiSync LCD
monitor with Nvidia Quadro 900XGL graphic board at a
refresh rate of 60 Hz and screen resolution 1280×1024 pixels.
The stimulus presentation was preceded by a fixation point
with duration of 500 ms positioned at the center of the screen.

The eye movements of the participants in the experiment
were recorded by a Jazz novo eye tracking system (Ober
Consulting Sp. Z o.o.) with temporal precision of 1 kHz.

B. Data processing

The raw data was collected in a relational database [24]. It
allowed us to process all sensors data in order to extract only
the records from the presentation of a stimulus on the screen
to the mouse button press. The data between the stimulus
presentations were excluded since it is not relevant to the eye
movements during task performance.

Observations of the processed eye movement records were
refined by removing the outliers and a drift diffusion model
of mean response time of each one of the age groups for all
four experimental conditions was derived [23].

Based on the identified mean reaction times from [23] we’ve
created training signals as generating currents Ileft and Iright
for the left and right LIP neurons respectively as follows:

Ileft/right = A/(1 + exp(kleft/rightt)) (1)

Amplitude A = 200 defines maximal input current (in
pA) while kleft/right determines settling time of the exponent
that corresponds to the mean reaction time determined from
experiments for each age group and experimental condition.
Fig. 3 shows an example of generating currents for motion
experimental condition of three age groups.



Fig. 3. Training signal.

Parameters of training signal for the considered case (correct
response ”left”) are shown in Table I

TABLE I
TRAINING SIGNAL PARAMETERS

Age Group
I Young Middle Old

kleft −0.02 −0.01 −0.005
kright 0.02 0.01 0.005

IV. SIMULATIONS

The overall model was tested using visual stimulation
simulating an observer’s motion on a linear trajectory with
eyes fixed in the heading direction. Example stimuli used in
the behavioural study were used.

Spike trains generated by both LIP neurons (left and right)
having static connections from MST area in response to the
stimuli with center displacement to the left with 20 pixels
moving for a duration of 1670 ms are presented on Fig. 4.

Fig. 4. Initial model simulation. Blue arrow shows spikes from the left LIP
while red arrows - spikes from the right LIP neuron.

Next we have simulated the model with STDP synapses
between MST and LIP areas and without training signal. Al-

though the resulting weight connections were slightly changed,
the spike trains generated from both LIP neurons were almost
identical to the case with static synapses.

Simulations with training signal (1) however achieved be-
haviour with correct reaction (left in this case) with age-
specific delay as it is shown on figures 5, 6 and 7 respectively
for the three age groups. The results suggest differences
between the three age groups in the time needed to achieve
correct decision to respond similar to the behavioural data.

Fig. 5. Model reaction after training with signal for young age test group.
Blue arrow shows spikes from the left LIP while red arrows - spikes from
the right LIP neuron.

Fig. 6. Model reaction after training with signal for middle age test group.
Blue arrow shows spikes from the left LIP while red arrows - spikes from
the right LIP neuron.

Achieved after training STDP synaptic connections are
shown on figures 8, 9 and 10 respectively.

Since from these figures connection weight differences are
hardly visible, we also represent them on figures 11 - 14



Fig. 7. Model reaction after training with teaching signal for elderly test
group. Blue arrow shows spikes from the left LIP while red arrows - spikes
from the right LIP neuron.

for all three age groups together. It is clear that in the case
of connectivity matrices having positive as well as negative
values (connections from MSTe to both LIP areas), only
excitatory weights were changed while in case of only negative
values (connections from MSTc to both LIP areas) changes
were more significant for inhibitory connections from MSTc
to the left LIP area and less for those from MSTc to the right
LIP area.

Tables II and III represent mean and variance of connection
weights that were changed.

TABLE II
CONNECTION WEIGHTS MEAN VALUES.

Age Group
Connections Young Middle Old

MSTe to LIPleft positive 0.9225 0.9293 0.9138
MSTe to LIPright positive 0.9298 0.9237 0.9236
MSTc to LIPleft negative −0.9456 −0.9430 −0.9424

MSTc to LIPright negative −0.9999 −0.9998 −0.9746

TABLE III
CONNECTION WEIGHTS VARIANCES.

Age Group
Connections Young Middle Old

MSTe to LIPleft positive 6.18E−5 8.20E−5 3.22E−5

MSTe to LIPright positive 8.258E−5 1.41E−5 1.22E−5

MSTc to LIPleft negative 0.0052 0.0057 0.0058
MSTc to LIPright negative 1.80E−10 7.33E−8 0.00123

From figures 11 - 14 it is obvious that the biggest
differences in connection weights for different age groups are
observed for connections from MST area to left LIP area
(that corresponds to the correct response). Although mean
weight values are quite similar for the three groups of tested
subjects (see Table II), mean absolute values of connection

Fig. 8. Trained model parameters for young group.



Fig. 9. Trained model parameters for middle group. Fig. 10. Trained model parameters for old group.



Fig. 11. Normalized values of connection weights from MSTe to LIP left
area.

Fig. 12. Normalized values of connection weights from MSTe to LIP right
area.

Fig. 13. Normalized values of connection weights from MSTc to LIP left
area.

Fig. 14. Normalized values of connection weights from MSTc to LIP right
area.

weights for elderly group are smaller, while their variances
(see Table III) tend to be bigger for inhibitory connections and
smaller for the excitatory once. This effect is most significant
for inhibitory connections from contraction template MSTc
neurons to the LIP right area (corresponding to wrong decision
in considered case). Hence, our results led to conclusion that
aging decreases overall connectivity strength and provokes
diverse inhibitory connections. They also imply a change in
the balance between the weight of the excitatory and inhibitory
connections between the expansion and contraction layers of
MST and the LIP area with age. This change might induce
instability in the network relating these two brain structures
reducing the accuracy of the responses and increasing the
decision time. The lessened weight of the connections in the
two layers of MST could be considered as indicator of brain
re-organization with ageing. The results also imply that the
decision choice in LIP is determined not only by the changes in
the connection weights between the templates corresponding
to the correct response but by the changes in the weights
between all connections between MST and LIP.

V. CONCLUSIONS

These are our first results on STDP training of the devel-
oped hierarchical visual information processing model. They
concern only connectivity between last two layers of the model
(from MST to LIP area). Further improvement of the results
could be achieved by allowing dynamic (STDP) connectivity
between lower layers in the hierarchical structure as well.

Observed parameter differences are not so significant at this
stage since the training signal design was based on mean
latency of eye movements for each one of the tested age
groups. We hope that further enrichment of training signals
using individuals’ latency as well as the experimental results
from all four stimuli conditions will allow to refine the model
parameters in future.

Even these preliminary results demonstrated that STDP
plasticity in combination with behavioral experimental data
rather than with electro-physiological recordings directly from
the brain could simulate logical changes of synaptic strength
with aging.
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