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Abstract—In recent years, several techniques have been made
available to automatically discover declarative process models
from event logs. These techniques are useful to provide a
comprehensible picture of the process as opposed to full spec-
ifications of process behavior provided by procedural modeling
languages. Since many modern systems produce “big data” from
business process executions, in previous work, a framework for
the discovery of LTL-based declarative process models from
streaming event data has been proposed. This framework can
be used to process events online, as they occur, as a way to
deal with large and complex collections of datasets that are
impossible to store and process altogether. However, the proposed
framework does not take into account data attributes associated
with events in the log, which can otherwise provide valuable
insights into the rules that govern the process. This paper makes
the first proposal to close this gap by presenting a technique for
discovering declarative process models from event streams that
incorporates both control-flow dependencies and data conditions.
Specifically, we use Hoeffding trees to incrementally discover
data-aware declarative process models, which are represented
as conjunctions of first-order temporal logic expressions. The
proposed technique has been validated on a synthetic event log,
and on a real-life log of a cancer treatment process.

Index Terms—online process discovery, data-aware process
model, declarative process models

I. INTRODUCTION

Nowadays, in most companies, information systems gener-
ate high volumes of data every day, which is eventually stored
in event logs. Process mining techniques [1] allow for the
extraction of relevant business information from these logs for
supporting different types of process analysis such as process
discovery, conformance checking, bottleneck detection, or
performance monitoring.

However, analyzing event logs offline might become, in
some cases, very challenging due to the high volume and
velocity of the data generated. To address this problem, event
streams coming from process executions can be processed
online as they occur.

Therefore, dealing with streaming data is recognized as a
relevant challenge for process mining in the Process Mining
Manifesto [2]. Our contribution focuses on the main branch
of techniques of the process mining family, i.e., process
discovery. Standard process discovery algorithms are functions
mapping an event log to a process model such that the
model is representative of the behavior seen in the event
log [1]. In addition, we discover declarative process models.
A declarative model consists of a set of business rules, i.e.,
constraints defining the boundaries of the allowed behaviors
of the process. In such a paradigm, an open-world assumption
is typically employed: everything that is not constrained by
the model is allowed. These models can be very effective
to express process behaviors characterized by high variability
and multiple alternatives [3]. Indeed, in these scenarios, the
open-world assumption allows process models to represent all
possible process behaviors in a compact way.

In [4], [5], an approach to automatically discover declarative
processes models from streams of data is presented. This
approach, however, does not take into account data attributes
attached to events. Hence, the resulting models lack insights
into the role of data in the execution of the process. However,
the role that data plays in business processes, particularly the
ones involving several alternative paths, is crucial as it is often
data that drives the decisions that participants make. In these
processes, the fact that tasks are executed in a certain order
often tells us little about the future behavior of the process. It
is only when considering the data produced by the tasks that
we can state that something must or must not happen later.

This paper starts to address the above gap by presenting a
technique for the online discovery of data-aware declarative
process models, represented using an extension of the De-
clare notation [6]. Declare is a declarative process modeling
language that combines a formal semantics grounded in Lin-
ear Temporal Logic on finite traces (LTL) with a graphical
representation. Declare itself is not designed to capture data
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aspects of a process. Therefore, we use an extension of the
language with the ability to define data conditions presented in
[7]. The extended (data-aware) Declare notation is defined in
terms of LTL-FO (First-Order LTL) rules, each one capturing
an association between a task, a condition and another task.
An example of such rules is that if a task is executed and
a certain data condition holds on the data produced by the
task after its execution, some other task must eventually be
performed afterward.

The proposed approach relies on the notion of constraint
activation [8]. For example, for the constraint “every request
is eventually acknowledged” each request is an activation.
This activation becomes a fulfillment or a violation depending
on whether the request is followed by an acknowledgement
or not. In our approach, we apply a set of algorithms to
analyze streaming data and classify activations (with their
data snapshots) into fulfillments and violations. Given the
resulting classification problem, we use Hoeffding trees to
incrementally identify the data conditions that should hold
for a constraint activation to be fulfilled. The approximate
frequency counting algorithm Lossy Counting is integrated into
the discovery algorithms so that outdated information can be
“forgotten” thus keeping the data structures needed for the
discovery compact.

The remainder of this paper is structured as follows: Sec-
tion II introduces the background definitions needed through
the rest of the text. Section III reports the formal problem
we solve in this paper. Section IV presents the solution we
propose and Section V reports the experimental sessions we
conducted to validate it. Section VI describes the state of
the art of the approaches tackling similar problems. Finally,
Section VII concludes the paper and sketches some possible
future work and research directions.

II. BACKGROUND

This section contains the preliminary notions required to
properly understand the rest of the paper.

A. Declare

Declare is a declarative process modeling language first
introduced by Pesic and van der Aalst in [9]. A Declare model
is a set of constraints that must hold in conjunction during
the process execution. A constraint is an instantiation of a
parameterized constraint type (a.k.a. template) on a set of real
activities. Declare constraints are equipped with a graphical
notation and an LTL semantics. An example of Declare con-
straint is response(A,B) (formally: �(A→ ♦B)). We refer
the reader to [10] for a complete overview of the language.
Constraint response(A,B) indicates that if A occurs, B must
eventually follow. Therefore, this constraint is satisfied for
traces such as t1 = 〈A,A,B,C〉, t2 = 〈B,B,C,D〉 and
t3 = 〈A,B,C,B〉, but not for t4 = 〈A,B,A,C〉 because, in
this case, the second A is not followed by a B. Note that, in t2,
response(A,B) is satisfied in a trivial way because A never
occurs. In this case, we say that the constraint is vacuously
satisfied [11]. In [8], the authors introduce the notion of

TABLE I
LTL-FO SEMANTICS AND GRAPHICAL REPRESENTATION FOR SOME

DECLARE CONSTRAINTS EXTENDED WITH DATA CONDITIONS.

Template Description Formalization Notation

responded existence
(A,B,Cond)

if A occurs and Cond
holds, B must occur be-
fore or after A

♦(A ∧ Cond)→ ♦B A
Cond•−−−− B

response (A,B,Cond) if A occurs and Cond
holds, B must occur after-
wards

�((A ∧ Cond)→ ♦B) A
Cond
•−−−I B

precedence
(A,B,Cond)

if B occurs and Cond
holds, A must have oc-
curred before

(¬(B ∧ Cond) t A) ∨
�(¬(B ∧ Cond))

A
Cond
−−−I• B

alternate response
(A,B,Cond)

if A occurs and Cond
holds, B must occur after-
wards, without further As
in between

�((A ∧ Cond) →
©(¬A tB))

A
Cond
•===I B

alternate precedence
(A,B,Cond)

if B occurs and Cond
holds, A must have
occurred before, without
other Bs in between

((¬(B ∧ Cond) t A) ∨
�(¬(B ∧ Cond)))
∧�((B ∧ Cond) →
©(¬B tA))

A
Cond
===I• B

chain response
(A,B,Cond)

if A occurs and Cond
holds, B must occur next

�((A ∧ Cond)→©B) A
Cond
•=−=−=−I B

chain precedence
(A,B,Cond)

if B occurs and Cond
holds, A must have oc-
curred immediately before

�(©(B ∧ Cond)→ A) A
Cond
=−=−=−I• B

not resp. exis-
tence(A,B,Cond)

if A occurs and Cond
holds, B can never occur

♦(A ∧ Cond)→ ¬♦B A
Cond•−−−−‖ B

not response
(A,B,Cond)

if A occurs and Cond
holds, B cannot occur af-
terwards

�((A∧Cond)→ ¬♦B) A
Cond
•−−−I‖ B

not precedence
(A,B,Cond)

if B occurs and Cond
holds, A cannot have oc-
curred before

�(A→ ¬♦(B∧Cond)) A
Cond
−−−I•‖ B

not chain response
(A,B,Cond)

if A occurs and Cond
holds, B cannot be exe-
cuted next

�((A ∧ Cond) → ¬ ©
B)

A
Cond
•=−=−=−I‖ B

not chain precedence
(A,B,Cond)

if B occurs and Cond
holds, A cannot have oc-
curred immediately before

�(©(B ∧ Cond) →
¬A)

A
Cond
=−=−=−I•‖ B

behavioral vacuity detection according to which a constraint
is non-vacuously satisfied in a trace when it is activated in
that trace. A constraint activation in a trace is an event
whose occurrence imposes, because of that constraint, some
obligations on other events in the same trace. For example, A
is an activation for response(A,B) because the execution of
A forces B to be executed eventually.

A constraint activation can be classified as a fulfillment or
a violation. When a trace is perfectly compliant with respect
to a constraint, every constraint activation in the trace leads to
a fulfillment. Consider, again, constraint response(A,B). In
trace t1, the constraint is activated and fulfilled twice, whereas,
in trace t3, the same constraint is activated and fulfilled only
once. On the other hand, when a trace is not compliant with
respect to a constraint, a constraint activation in the trace
can lead to a fulfillment but also to a violation (and at least
one activation leads to a violation). In trace t4, for example,
response(A,B) is activated twice, but the first activation
leads to a fulfillment (eventually B occurs) and the second
activation leads to a violation (the target B does not occur
eventually). In [8], the authors define two metrics to measure
the conformance of an event log with respect to a constraint
in terms of violations and fulfillments, called violation ratio
and fulfillment ratio of the constraint in the log, defined as the
percentage of violations and fulfillments of the constraint over
the total number of activations.

In [7], the authors define a semantics to extend the standard
Declare constraints with data conditions. To do this, they



use First-Order Linear Temporal Logic (LTL-FO), which is
the first-order extension of propositional LTL. While many
reasoning tasks are clearly undecidable for LTL-FO, this
logic is appropriate to unambiguously describe the seman-
tics of the data-aware Declare constraints we can generate
by using our algorithms. The defined semantics (shown in
TABLE I) is quite straightforward. In particular, the origi-
nal LTL semantics of a Declare constraint is extended by
requiring an additional condition on data, Cond, to hold
when the constraint is activated. Cond is a closed first-
order formula with the following structure: ∃x1, . . . , xn.
curState(x1, . . . , xn) ∧ Φ(x1, . . . , xn), where curState/n
is a relation storing the current values of the n data at-
tributes available in the system (modified by events) and
Φ/n is a first-order formula constraining such data by means
of conjunctions, disjunctions and relational operators. For
example, response(A,B,Cond) specifies that whenever A
occurs and condition Cond holds true after the occurrence
of A, then a corresponding occurrence of B is expected to
eventually happen. Constraint precedence(A,B,Cond) indi-
cates that whenever B occurs and Cond, then an occurrence
of A must have been executed beforehand. The semantics
for negative relations is also very intuitive. For example,
not responded existence(A,B,Cond) indicates that if an
instance of A occurs and Cond holds, then no occurrence of
B can happen before or after A. Based on this semantics, the
notion of constraint activation changes. Activations of data-
aware Declare constraints are all those constraint activations
(according to the standard definition) for which Cond is
true. For example, response(A,B,Cond) is activated when
A occurs and, also, Cond is valid. On the other hand,
precedence(A,B,Cond) is activated when B occurs and
Cond is valid. The definitions of fulfillments and violations
are also adapted accordingly.

B. Event Streams

In the data mining literature, there are few definitions of
an event stream. In this work, we consider an event stream
as an unbounded, sequence of data items, observed at a high
speed [12], [13]. Stream mining approaches can be divided
into two main categories: data-based and task-based [14].
Data-based mining algorithms reduce the stream into finite
datasets, which are supposed to be representatives of the
complete stream; task-based algorithms are modified (or new)
approaches, specifically designed for streams, in order to
minimize time and space complexity. The algorithms presented
here fall into this latter category.

As typically reported in the literature, we assume that: (i)
the data that constitutes the stream (i.e., the events) have a
small and fixed amount of attributes; (ii) a mining approach
should be able to analyze an infinite amount of data; (iii) a
mining approach should use a finite amount of memory that
is considerably smaller with respect to the data observed in
a reasonable span of time; (iv) there is an upper bound on
the time allowed to analyze an event, typically the mining
approach is required to linearly scale with the number of

processed items (e.g., the algorithm works with one pass of
the data [15]); (v) the “concepts” generating the event stream
may be stationary or evolving [16], [17].

We assume that each event in an event stream is associated
with an activity (i.e., a well-defined step in the process), is
related to a particular case (i.e., a process instance), is executed
at a certain point in time specified through a timestamp and
is associated with a set of attribute-value pairs. In particular,
an event ev is a 5-tuple: ev = (C, c, t, A, te) where: C is the
name of the activity that ev is referring to (i.e., which task
was executed); c is the “case-id”: an identifier that groups
event referring to the same process instance; t is a timestamp,
which indicates the execution time of the specific action; A
is a set of attribute-value pairs associated with the execution
of event ev. te is a boolean variable that indicates if an event
is the last one of its trace. We use a projection operator π
to extract specific elements of an event. Specifically, given an
event ev = (C, c, t, A), we define πC(ev) = C, πc(ev) = c,
πt(ev) = t, πA(ev) = A, and πte(ev) = te. It is reasonable to
assume that events in the stream comply with the time order of
events, i.e., ∀i ∈ N+, evi, evi+1 ∈ S we assume that πt(evi) ≤
πt(evi+1).

C. Lossy Counting

Lossy Counting [18] is an algorithm for computing the
approximated frequency counts of events in a data stream,
with guarantees on the approximation error. The idea behind
this approach is to conceptually divide the stream into buckets
of width w =

⌈
1
ε

⌉
, where ε ∈ (0, 1) is an error parameter.

The current bucket (i.e., the bucket of the latest seen event)
is identified as bcurr =

⌈
N
w

⌉
, where N is a progressive event

counter.
The basic data structure that Lossy Counting requires is a

set T of entries of the form (e, f,∆) where:

• e is an event of the stream;
• f is the estimated frequency of event e; and
• ∆ is the maximum number of times e can occur.

Every time a new event e is observed, the algorithm verifies if
the data structure already contains an entry for it. If such an
entry exists, then its frequency is incremented by one, other-
wise a new tuple (e, 1, bcurr − 1) is added. In this latter case,
the new tuple has a frequency value set to 1. Every time N
mod w = 0 (i.e., every w events), the algorithm cleans up the
data structure by removing entries with maximal approximate
frequency (i.e., the sum of frequency and maximum number of
occurrences) less than the current bucket id, i.e., the algorithm
removes the entries that satisfy the inequality f + ∆ ≤ bcurr .

In this paper, we will exploit the principles behind the Lossy
Counting algorithm in order to count the events in an event
stream, and also to keep the most frequent rules that are
mined from the stream. Note that Lossy Counting does not
give guarantees on the maximum memory occupation (even if
in real cases this is relatively small). An implementation of
our algorithm adopting the Lossy Counting version with fixed
budget [19] will be future work.



D. Hoeffding Trees

The Hoeffding tree [20] algorithm introduces an efficient
method for incremental decision tree generation from a data
stream. Hoeffding trees generate the decision tree incremen-
tally. The main differences with respect to standard decision
tree learning algorithms (e.g., C4.5) is that learning in Ho-
effding tree is constant time per example (instance) making
it suitable for mining data streaming. Moreover, the resulting
trees are nearly identical with trees built by conventional batch
learners, if enough training examples are available. Hoeffding
trees employ the Hoeffding (or additive Chernoff [21]) bound
to select the attribute for the split. The Hoeffding bound
states that, with probability 1− δ, the true mean of a random
variable of range R (the difference between its largest and
smallest values), will not differ from the estimated mean after

n independent observations, by more than ε =

√
R2 ln( 1

δ )

2n . The
Hoeffding bound is used to estimate the information gain for
each attribute. Then, the split is performed on the attribute
with higher information gain. In order to compute the bound,
it is not necessary to store all the examples seen so far, but
just some statistics over their attributes.

III. PROBLEM STATEMENT

In this paper, we address the problem of extracting data-
aware declarative rules [7] in the setting where events come
from a data stream [22], i.e., there exists an event source
which emits a possibly infinite sequence of events at a certain
(possibly high) rate.

This setting is more constrained with respect to a batch
one since: (i) the processing has to be very fast because, if an
event arrives and the system is still processing the last one, the
new event cannot be memorized and it is lost; for this reason,
typically, a constant time complexity should be allowed for
processing each event; (ii) the memory occupation has to be
bounded, even in the case of an infinite stream, otherwise the
physical available memory at a certain time would fill up; (iii)
since the stream is supposed to be infinite, sooner or later
concept drifts will occur, i.e., the model generating the logs
may change (slowly or suddenly) over time.

Each event in the data stream belongs to a process instance,
namely a trace. Each trace, in turn, represents the sequence of
events characterizing a specific execution of the process. Ad-
ditionally, we need to consider data attributes associated with
such a process instance. For this purpose, we consider data
attributes to be attached to the trace under examination and
their values to be manipulated by the corresponding events.
In particular, we follow the classical common-sense law of
inertia: given a data attribute, its value remains constant until
it is explicitly overridden by an event which provides a new
value for it. Once a trace is over, the corresponding attributes
are assumed to be removed. In this work, we assume to have
knowledge regarding the termination of a trace. Although in
many contexts this is a reasonable assumption, we plan to drop
it in a future extension of this work.

IV. PROPOSED SOLUTION

In this section, we detail how we tackled the problem
presented in Section III. The intuition is to maintain a sketch,
in the form of a Lossy Counting, of the Declare rules extracted
from the stream so far. For each of these rules, following [7],
we associate a Hoeffding tree structure, which is fed with the
events (and the data attributes associated with them) that sat-
isfy the Declare rule (Fulfillment) or violate it (Violation). The
aim of the classifier is to learn conditions on the data attributes
able to discriminate between fulfillments and violations.

From the learned tree, it is easy to extract data conditions:
each path starting from the root and ending in a node labeled
as Fulfillment is a condition on the data. All those paths can
be merged with or clauses, obtaining a single condition over
the considered Declare constraint.

To illustrate our idea, assume we have collected these three
traces from the data stream:

t1=〈(A,1,1,{x=1,y=1},0),(B,1,5,{x=2,y=2},0),(C,1,8,{x=3,y=3},1)〉;

t2=〈(A,2,1,{x=1,y=2},0),(B,2,3,{x=1,y=2},0)〉;

t3=〈(A,3,1,{x=2,y=1},0),(C,3,7,{x=2,y=4},0)〉.

These traces report three activities: A, B and C. All
possible pairs of these activities need to be considered to
create a list of candidate constraints (that can be discovered)
using each template. For example, considering the response
template, the candidates are:

A•−−−IB, A•−−−IC, B•−−−IA, B•−−−IC, C•−−−IA,
C•−−−IB.

Starting from this list, only the “frequent” constraints are
kept. In order to find the frequent constraints, we count
the number of activations, which, in the case of response,
corresponds to the number of occurrences of the source
activity [7]. Note that, differently from [4], [5], we propose
to adopt Lossy Counting also as an approximated frequency
counter on the frequency of the extracted constraints. In
particular, a constraint is added to the model when we see its
first activation. Then, the model follows the standard Lossy
Counting rule, i.e., every 1

ε insertions, rare constraints (i.e.,
constraints with a low number of activations) are removed
from the model. Note that, whereas in [7] a user-defined
support threshold was needed in order to filter out irrelevant
constraints, in this paper, we adopt Lossy Counting as an
implicit thresholder, i.e., only those constraints that are stored
in the Lossy Counting structure are considered.

Algorithm 1 reports the pseudo-code of the main procedure
of our stream discovery algorithm. We apply, when necessary,
relational algebra to the sets and, in particular, the projection
operator π (already introduced in Section II-B) and the selec-
tion operator σ that selects from a set of tuples the ones that
satisfy a selection condition.

In this algorithm, DE = {(c, ev, f,∆)} is a set of events
(ev) grouped by trace (c), where f is the observed frequency



Algorithm 1: Main discovery procedure
Data: ε: Lossy Counting approximation parameter
stream: a stream of events.
Result: DM : set of discovered data-aware constraints.

1 Initialize set DE = {(c, ev, f,∆)};
2 Initialize set S = {(a, v)};
3 Initialize set DM = {(r, C1, C2, HT, f,∆)};
4 N ← 1, Nr ← 1, w ← d 1

ε e;
5 for e in stream do
6 bcurr = dNw e, S ← S ∪ πA(e);
7 if (πc(e), e) 6∈ πc,ev(DE) then
8 DE ← DE ∪ {(πc(e), e, 1, bcurr − 1)};
9 else

10 f ′ ← πfσc=πc(e),ev=e(DE);
11 ∆′ ← π∆σc=πc(e),ev=e(DE);
12 DE ← (DE \ {(πc(e), e, f ′,∆′)}) ∪

{(πc(e), e, f ′ + 1,∆′)};
13 DF= Discover(DM , σc=πc(e)(DE), e, S);
14 forall (r′, C ′1, C

′
2,S ′) ∈ DF do

15 br = dNrw e
16 f ′ ← max(0, πf (σr=r′,C1=C′

1,C2=C′
2
(DM )));

17 ∆′ ← min(br, π∆(σr=r′,C1=C′
1,C2=C′

2
(DM )));

18 HT ← πHT (σr=r′,C1=C′
1,C2=C′

2
(DM ));

19 HT .addObservation(S’,“fulfillment”);
20 DM ← (DM \ {(r′, C ′1, C ′2, HT, f ′,∆′)}) ∪

{(r′, C ′1, C ′2, HT, f ′ + 1,∆′)};
/* Lossy Counting cleaning

procedure */
21 if Nr = 0 mod w then
22 forall (r, C1, C2, HT, f,∆) ∈ DM s.t.

f + ∆ ≤ br do
23 DE ← DE \ {(r, C1, C2, HT, f,∆)}

24 Nr ← Nr + 1;

25 DV =DiscoverViolations(DM , σc=πc(e)(DE), e, S);
26 forall (r′, C ′1, C

′
2,S ′) ∈ DV do

27 br = dNrw e
28 f ′ ← max(0, πf (σr=r′,C1=C′

1,C2=C′
2
(DM )));

29 ∆′ ← min(br, π∆(σr=r′,C1=C′
1,C2=C′

2
(DM )));

30 HT ← πHT (σr=r′,C1=C′
1,C2=C′

2
(DM ));

31 HT .addObservation(S’,“violation”);
32 DM ← (DM \ {(r′, C ′1, C ′2, HT, f ′,∆′)}) ∪

{(r′, C ′1, C ′2, HT, f ′ + 1,∆′)};
/* Lossy Counting cleaning */

33 if Nr = 0 mod w then
34 forall (r, C1, C2, HT, f,∆) ∈ DM s.t.

f + ∆ ≤ br do
35 DE ← DE \ {(r, C1, C2, HT, f,∆)}

36 Nr ← Nr + 1;

/* Lossy Counting cleaning */
37 if N = 0 mod w then
38 forall (a, f,∆) ∈ DE s.t. f + ∆ ≤ bcurr do
39 DE ← DE \ {(a, f,∆)}

40 N ← N + 1

Algorithm 2: Auxiliary functions (dispatchers)

1 Function Discover
Data: DM : the model
DE : the set of events in the trace πc(e)
e: an event
S: the system state.
Result: DF : a set of discovered fulfillments.

2 Initialize data structure DF = (r, C1, C2,S);
3 forall RULE ∈ implemented Declare discovery

procedures do
4 fulfillments←

Discover_RULE(DM ,DE , e,S);
5 DF ← DF ∪ fulfillments;

6 Function DiscoverViolations
Data: DM : the model
DE : the set of events in the trace πc(e)
e: an event
S: the system state.
Result: DV : set of discovered violations

7 Initialize data structure DF = (r, C1, C2,S);
8 forall RULE ∈ Declare discovery procedures do
9 violations←

DiscoverV iolations_RULE(DM ,DE , e,S);
10 DV ← DV ∪ violations;

of the event and ∆ its frequency bound (according to the
Lossy Counting rule). DM = {(r, C1, C2, HT, f,∆)} is the
set of discovered constraints (the model), where r is a string
representing the template (e.g., "response"), C1 and C2 are
the first and second activity, HT is a Hoeffding tree structure
(used for the generation of the data-aware constraints), f is
the observed frequency of the constraint, and ∆ its frequency
bound (according to the Lossy Counting rule). S = {(a, v)}
is the set of all the attributes seen so far in the stream (system
state), where a is the identifier of an attribute and v its value.
These sets implement the Lossy Counting policy, according to
which the less frequent items are deleted if necessary (lines
21-23, 33-35, and 37-39 of Algorithm 1).

The logic of Algorithm 1 is the following. It analyzes
the events from the stream, one at a time. It updates the
data structures and variables (lines 1-12). Then, it calls the
Discover procedure (see Algorithm 2), which is a dispatcher
invoking all the implemented Discover procedures, one for
each considered Declare template. This procedure is used to
identify the fulfillments triggered by the processed event. The
fulfillments are finally injected into the Hoeffding trees (lines
14-24). The same process is repeated for violations (lines 25-
36).

A. Online discovery of Declare constraints

In the current version of our implementation, we are only
able to discover precedence and response constraints. Note
that, as stated in Section II-B, we assume the last event



Algorithm 3: Auxiliary functions for Precedence
constraint

1 Function Discover_precedence
Data: DM : the model
DE : the set of events in the trace πc(e)
e: an event
S: the system state.
Result: DF : a set of discovered fulfillments for

some precedence rules.
2 Initialize set DF = {(r, C1, C2,S)};
3 for C ′1 in DE do
4 DF ← DF ∪ {(“precedence”, C ′1, e,S)};

5 Function DiscoverViolations_precedence
Data: DM : the model
DE : the set of events in the trace πc(e)
e: an event
S: the system state.
Result: DV : a set of discovered violations for

some precedence rules.
6 Initialize set DV = {(r, C1, C2,S)};
7 forall C ′1 ∈ πC1

(σr=“precedence”,C2=e(DM )) do
8 if C ′1 6∈ DE then
9 DV ← DV ∪ {(“precedence”, C ′1, e,S)};

in every trace to be tagged. This assumption simplifies the
discovery algorithms and is not costly to implement in real-
world systems.

Algorithm 3 reports the pseudo-code we developed for the
online discovery of data-aware precedence constraints. The
logic for discovering the fulfillments of precedence constraints
is the following. For each event e that belongs to a certain trace
c, a precedence constraint is satisfied for the activity πC(e) and
all the activities of the events that occurred in c before e. As
for the discovery of violations, we check the model for all the
precedence rules that have as second element the activity of
the current event πC(e). If the corresponding first activity is
not present in any event of the trace πc(e) (i.e., the trace e
belongs to), a violation for that rule just happened.

The logic for implementing the discovery of response
constraints is more complex and we omit it for lack of
space. The main difference with respect to the discovery of
precedence constraints is that, here, two more data structures
are needed. DP = {(c, C1, C2, f)}, where c is the trace,
C1 and C2 are two activities, and f is the frequency, is a
structure containing pending constraints, i.e., constraints that
will eventually become fulfillments or violations, depending
on the continuation of the trace c. The second data structure
is DS = {(c, C,S, t)} represents a (multi-) set of snapshots
(S), each one with the associated trace c, activity C, and
a timestamp t (or an increasing integer) that keeps track of
the order in which the snapshots are inserted in the set. A
prototype implementing both algorithms is publicly available
at https://github.com/MCambiaso/ODADD.

Fig. 1. Evolution of F1 score of our proposed algorithm on a synthetic data
stream.

V. EXPERIMENTAL EVALUATION

We evaluated our approach in two experimental settings.
In our first experiment, we validated our approach on a toy
data stream, to study its behavior in a controlled setting. The
stream is composed of 5, 000 traces, generated starting from
a relatively simple BPMN model for a total of approximately
31, 000 events.

The gold standard (manually extracted) is composed of 21
response constraints, 6 of which are associated with a data
condition. The batch data-aware Declare miner algorithm [7]
(as expected) was able to correctly extract all the rules (F1
score 1.0). As for our online approach, in Figure 1, we report
the evolution of the F1-score over the stream (we compute
the F1 every 1, 000 events), with respect to the gold standard
rules. We report the results for different budget values. For low
budget values (25 and 50), some important rules get deleted
from the model, so that the F1 scores are low. Note, however,
that the quality of the model tends to increase with the number
of events. When the budget is large enough (250 and 500) we
see that the F1 score achieves the value of 1.0, thus extracting
the same set of rules as the batch data-aware Declare miner.

In our second experiment, we compare the fulfillment ratio
of the rules extracted with our approach from a real-life log
with the fulfillment ratio of the same rules without considering
the data conditions. We validated the approach with the event
log used in the BPI challenge 2011 [23] that records the
treatment of patients diagnosed with cancer from a large
Dutch hospital. The event log contains 1143 cases and 150,291
events distributed across 623 activities. Moreover, the event
log contains a total of 13 domain-specific attributes, e.g.,
Age, Diagnosis Code, Treatment code, in addition to the stan-
dard XES attributes, i.e., concept:name, lifecycle:transition,
time:timestamp and org:group.

We report in Tables II and III some examples of precedence
and response rules discovered by the proposed algorithms.



TABLE II
EXAMPLE OF 8 DISCOVERED precedence CONSTRAINTS.

Constr.
ID

Activations
no data

Ful. ratio
no data

Activations
data-aware

Ful. ratio
data-aware

1 15298 0.778 13381 0.860
2 15298 0.744 12614 0.860
3 15296 0.830 14110 0.882
4 15257 0.758 13388 0.834
5 15243 0.764 13114 0.856
6 15243 0.779 13518 0.853
7 15243 0.787 13671 0.853
8 15243 0.774 13478 0.852

TABLE III
EXAMPLE OF 8 DISCOVERED response CONSTRAINTS.

Constr.
ID

Activations
no data

Ful. ratio
no data

Activations
data-aware

Ful. ratio
data-aware

1 4476 0.723 3241 0.999
2 3444 0.999 3444 0.999
3 1802 0.699 1227 0.931
4 1004 0.389 351 1
5 873 0.176 187 0.759
6 749 0.166 101 1
7 627 0.575 292 1
8 578 0.349 266 0.751

As expected, the fulfillment ratio of the data-aware rules
discovered by the proposed algorithms is grater or equal
compared to that of the corresponding standard Declare rules
(i.e., the rules obtained by dropping the data conditions).

VI. RELATED WORK

Several approaches have been proposed in the literature
for the discovery of declarative process models. In [24],
the authors present the first approach for the discovery of
Declare rules from event logs. Several approaches to improve
the performance of the discovery task and the richness of
its outcome are presented in [25]–[31]. Additionally, there
are post-processing approaches that aim at simplifying the
resulting Declare models in terms of inconsistency/redundancy
elimination [32]–[34] and disambiguation [35].

In [36], the authors introduce for the first time a data-aware
semantics for Declare and [7] first covered the data perspective
in declarative process discovery. In [37], the authors propose
a mining technique for discovering Multi-Perspective De-
clare (MP-Declare) [38] models that support the definition of
complex constraints that integrate activation, correlation, and
temporal dependencies. The approach is implemented starting
from the SQL-based process mining approach described in
[30], relying on RXES, a standardized architecture for storing
event log data in relational databases [39]. Differently from
[37] where the models are identified based on user-specified
queries, in [40], [41], the discovery of MP-Declare models is
fully automated.

Process stream mining consists of the extraction of process
structures from continuous and rapid process data records.

Even if, in the last years, dozens of process discovery tech-
niques have been proposed [1], these techniques all work on
static event logs and not on streaming data. Only a few works
in process mining aim at analyzing event streams. In [42],
[43], the authors focus on incremental workflow mining and
task mining. The basic idea is to mine cases as soon as they are
observed; each new model is then merged with the previous
one to refine the global process representation. The approach
described is thought to deal with the incremental process
refinement based on logs generated from version management
systems.

In [44], [45], the authors propose an adaptation of the
Heuristics Miner (a control-flow discovery algorithm) to data
streams. The aim of these works is to extract a procedural
control-flow from an event stream. In [46], an incremental
approach for translating transition systems into Petri nets
is described. In [47], an approach to automatically discover
directly-follows graphs from streams of data is presented.
In [48] declarative rules are used in an online analysis of
streams of events targeted at a security-oriented classification.
None of the above works provides an online approach for
the discovery of data-aware declarative process models as
proposed in this paper.

VII. CONCLUSION

In this paper, we proposed the first prototype of an on-
line approach to extract data-aware Declare constraints from
possibly unbounded streams of events, with a limited mem-
ory consumption and fast processing time. We implemented
two sample algorithms for the discovery of precedence and
response constraints.

As future work, we plan to implement other Declare rules
in our software. Moreover, we plan to use the alternative
definition of Lossy Counting fixing the budget instead of
the error, as proposed in [19]. Finally, the approach will be
integrated into an operational support system [49], [50] in the
same vein as the one implemented in [51].
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