
Feature Visualization for 3D Point Cloud
Autoencoders

Thiago Rios∗, Bas van Stein†, Stefan Menzel∗, Thomas Bäck†, Bernhard Sendhoff∗ and Patricia Wollstadt∗
∗Honda Research Institute Europe GmbH, Carl-Legien-Str. 30, 63073 Offenbach, Germany

†Leiden Institute of Advanced Computer Science (LIACS), Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
Email: {thiago.rios, stefan.menzel, bernhard.sendhoff, patricia.wollstadt}@honda-ri.de,

{b.van.stein, t.h.w.baeck}@liacs.leidenuniv.nl

Abstract—In order to reduce the dimensionality of 3D point
cloud representations, autoencoder architectures generate in-
creasingly abstract, compressed features of the input data.
Visualizing these features is central to understanding the learning
process, however, while successful visualization techniques exist
for neural networks applied to computer vision tasks, similar
methods for geometric, especially non-Euclidean, input data are
currently lacking. Hence, we propose a first-of-kind method to
project the features learned by point cloud autoencoders into
a 3D-space augmented with color maps. Our proposal explores
the properties of 1D-convolutions, used in state-of-the art point
cloud autoencoder architectures to handle the input data, which
leads to an intuitive interpretation of the visualized features.
Furthermore, we tackle the search for relevant co-activations in
the feature space by clustering the input data in the latent space,
where we explore the correspondence between network features
and geometric characteristics of typical shapes of the clusters.
We tested our approach with experiments on a benchmark data
set, and with three different configurations of a point cloud
autoencoder, where we show that the features learned by the
autoencoder correlate with the occupancy of the input space by
the training data.

Index Terms—autoencoder, deep learning, feature visualization

I. INTRODUCTION

Training deep learning models on point clouds is a challeng-
ing task: point clouds are defined on a non-Euclidean domain,
require permutation-invariant network architectures, and lack
explicit large-scale information, e.g., point adjacency. Existing
work handles these challenges through preprocessing [1], [2],
permutation-invariant operations such as maximum pooling
[3], or combinations of point clouds with different resolutions
[4]. Using these approaches has led to promising accuracy in
classification tasks and enabled complex shape transformations
that are valuable to different engineering tasks using learned
latent variables [5], [6].

In particular, 1D-convolutions provide an elegant solution
to the required permutation-invariance (e.g., [3], [4]). The
operator handles points individually and yields independent
features that can be processed further with global operators,
e.g. maximum pooling, at deeper layers of the network.
Even though one would expect 1D-convolutions to diminish

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement number 766186.

a network’s capability to encode large scale geometric char-
acteristics, existing work on point cloud autoencoders shows
that learned latent features can not only be used for operations
like data compression and classification, but also for complex
tasks such as shape generation in engineering [3], [6].

Although results are visually impressive, most models re-
main black boxes such that a deeper understanding of how
models succesfully represent high-dimensional input data is
still widely missing. This lack of understanding hinders the im-
provement of deep learning architectures and tuning of hyper-
parameters. These tasks already involve high-dimensional,
multi-modal and mixed-integer domains, where an exhaustive
search is practically infeasible and the behavior of the model
is usually described only by the loss value.

In such cases, feature visualization techniques help to better
understand complex model architectures by projecting network
features into a human-comprehensible space. In the computer
vision field, various feature visualization techniques exist [7]–
[9], which enable downstream tasks, for example, transfer
of artistic styles [10]. For geometric deep learning models,
however, similar techniques are lacking and methods used in
the 2D-domain cannot be immediately transferred to geometric
input data, due to its high-dimensionality and non-Euclidean
nature.

In this paper, we present a novel feature visualization
technique for geometric deep learning models. We introduce
a formal approach to visualizing and interpreting features in
a 3D point cloud autoencoder, which exploits the properties
of the 1D-convolutions. 1D-convolutions are point-wise oper-
ations that allow to map layer activations back onto the input
point clouds, and visualize them as color maps in a series
of 3D-scatter plots. Furthermore, we investigate multivariate
representations of network features by clustering the input data
based on their respective latent representations, such that we
can infer on correspondences between geometric characteris-
tics and co-activated units. We demonstrate the ability of the
proposed technique to reveal footprints of how the network
processes point clouds in order to learn abstract representations
by applying our method on a model trained on the car class
of ShapeNet core [11]. Then, we compared the geometric
characteristics identified by the network to components of the
vehicle, e.g., wheel mounts and windshields. In addition, our
analysis of the convolution operation provides insights into

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

the challenges of transferring features through gradient-based
operation using point cloud autoencoders, e.g., as proposed in
[12] for 3D neural style transfer.

The remainder of this paper is organized as follows: In
Section II we present a literature review with emphasis on
point cloud autoencoder architectures and methods for visu-
alizing features of deep neural networks (DNNs). Then, we
introduce in Section III the mathematical concepts necessary
in visualizing features learned by the proposed point cloud
autoencoder. In Section IV, we present the experiments on
three configurations of the point cloud autoencoder trained on
the car class of ShapeNet core [11], exploring the visualization
of features learned by the models. Finally, we present our
conclusion and outlook in Section V.

II. LITERATURE REVIEW

A. Point Cloud Autoencoders

The development of increasingly powerful graphic process-
ing units (GPUs) and storage technology in the past few
years has boosted the research on deep learning models. It
allowed for an increase in size and complexity of the models,
achieved through the development of new nonlinear activation
functions and sophisticated architectures [13]. These advances
led to super-human performance in machine learning tasks for
a variety of fields. This development made it also possible
to handle high-dimensional 3D geometries as input data,
which has become increasingly available through novel data-
acquisition and 3D scanning technologies, e.g., in computer
vision, robotics, or autonomous driving [14], [15].

There exists no canonical representation for 3D data. Fre-
quently used representations include point clouds, voxels, or
polygon meshes [14], [16], among which point clouds are a
simple and efficient choice for representing 3D data in many
tasks [1], [12]. They require less pre-processing effort than
voxels, are memory-efficient, and are sampled either directly
from real-world objects through 3D scanning or computer
aided engineering (CAE) models, and preserve sufficient geo-
metric detail for most applications. Furthermore, deep learning
models that process point clouds do not require any topological
compatibility between samples in the data set, as expected for
meshes [17], widening their range of applications. In real-
world scenarios, point clouds are frequently used in computer
vision tasks, e.g., in autonomous driving [18]–[20].

Yet, learning on unorganized point clouds can be surpris-
ingly challenging, since operations have to be permutation-
invariant, i.e., geometric characteristics have to be learned
independently of changes in the ordering of the points. In
[1], the authors proposed an autoencoder that contained only
fully-connected layers combined with a pre-processing oper-
ation that yielded a representation of the input that was less
sensitive to permutations. The work was later extended in [2],
where the authors used a hierarchical structure that recursively
applied the previous architecture to partitions of the input data,
enabling the abstraction of larger-scale information, which was
not achieved in the previous model.

Yang et al. [21] also proposed an architecture with fully-
connected layers, but with a decoder that was fundamen-
tally different: it emulated the folding of a 2D grid into
the 3D shape. The main advantage of their approach was
the severe reduction in the number of parameters, requiring
less computational effort for model training and improving
the scalability to larger point clouds [22]. The presented
work pioneered the use of point clouds in geometric deep
learning. However, it was shown that these architectures were
still sensitive to noise, ordering of the points and performed
poorly in input optimization tasks [12]. The latter property is
crucial for feature visualization in the 2D domain and thus
precludes the application of such techniques in point cloud-
based architectures, as we will further discuss in the next
section.

In more recent work, authors replaced the fully-connected
layers by 1D-convolutions: The architecture proposed in [3]
contained an encoder with five 1D-convolution layers, each
activated by a rectified linear unit (ReLU), followed by a max-
imum pooling operator and a decoder composed of three fully-
connected layers. Since the points were handled individually
and the pooling was performed over all points, but feature-
independently, the permutation of the points did neither affect
the calculated features, nor the values of the latent variables.
Even though the convolutions operated only on local properties
of the point clouds, the authors showed that their architecture
enabled both classical machine learning tasks—data compres-
sion and classification—and large-scale geometric operations
in the latent space, such as shape interpolation and generation.

To overcome the limitations of receptive fields with fixed
size, Gadelha et al. [4] proposed an autoencoder that required
as input three representations of the point clouds sampled
at different resolutions. The underlying motivation was that,
while the high-resolution representations allowed the model
to learn details of shapes, the low-resolution ones pushed the
network to abstract large scale properties. Hence, the model
proposed by the authors contained three main streams that
operated on each representation, with intermediate resampling
and concatenation operators that combined the results obtained
in each stream. The proposed architecture was considerably
more complex than the proposal of [3], yet it achieved com-
parable performance to the state-of-the-art models in classifi-
cation tasks on benchmark data sets.

B. Feature Visualization Techniques for Deep Neural Net-
works

Understanding how deep neural networks process data is
central to guiding architecture optimization and hyperparam-
eter tuning [7]. Feature visualization techniques facilitate this
understanding by mapping activations in the trained model to
characteristics of the input data, and thus visualize information
represented by the models. Literature on visualization of fea-
tures learned by convolutional neural networks started with the
work of Zeiler & Fergus [7]. In [23]–[25] the authors present a
comprehensive survey on the methods for feature visualization

and divide them into three main classes: input modification,
deconvolutional methods and input reconstruction methods.

Input modification methods, similar to sensitivity analyses,
quantify changes in the activation values in a feature map of a
specific layer due do local changes in the input data. In [26],
the authors adopted the occlusion technique, which belongs to
this class, as a data driven approach to determine the receptive
fields of a convolutional neural network (CNN). The approach
presented to a trained CNN several replications of an input
image, where for each image a different region was occluded
by a 3 × 3 patch of random pixels. Then, the difference in
the feature map between the original and occluded image
was calculated. The underlying assumption was that occluding
the most important pixel to a feature map should yield the
highest differences in the activations; hence, differences with
the highest magnitude would reveal the features encoded by
the network at the layer of interest. The approach was found
to be effective for 2D data, but extending the method for 3D
non-Euclidean data is nontrivial and it is expected to scale
poorly to high-dimensional CAE data.

The methods in the deconvolutional class compute the
contribution of each input value to the activations obtained in a
feature map of interest. The common ground of the techniques
in this class is that the values that best characterize the
input data for the network task, e.g. classification, contribute
more to the output of a layer than uncorrelated ones. The
first approach was proposed in [7], where the authors used
deconvolution networks to reverse the path of activations back
to the input space, revealing which patterns of pixels in the
input image were responsible for the calculated activations.
Later, in [27], the authors adopted the assumption that the
input that contributed the most to the output of a layer was
the one that yielded higher derivative values; assuming that the
higher the sensitivity of a layer output to a pixel in the input,
the higher the relevance of the latter to the network results.
Although this assumption is arguable—it neglects gradients
with zero magnitude, which may indicate pixels that yield
local maxima and, therefore, that drive the network to a certain
behavior—the authors handled the nonlinearity of the layers
with Taylor-series expansions, which simplifies the calculation
of the derivatives and can be extended to other architectures.

Lastly, input reconstruction methods iteratively modify the
input data as in an optimization problem, driving the activa-
tions in a feature map towards a certain objective. However,
selecting the right objectives for the input reconstruction in
order to reveal features of the network is not a straightforward
task, because the activation space enables numerous com-
binations of activated units to represent a single feature in
the input space. In [28], the authors proposed a multifaceted
feature visualization approach, also based on a computer vision
problem, where they first identified which activations fire
more frequently when specific classes of their input data were
presented to the network. Then, for a given random input, they
iteratively modified the input data to recover some of the pre-
viously identified co-activations and, thus, revealing features
in the input space. Differently, [9], [29] used random search in

the activation space to determine which co-activations could
be used as targets in the optimization of the input to reveal
features learned by the network.

Similar to the identification of co-activated units for feature
visualization, in [30] the authors clustered the input data, using
the information in the input space, and compared the patterns
of activations with the clustering results. Even though this task
was not central to the topic of the paper, clustering the input
data based on its representation in the activation space is a
potential solution to identify co-activations that are relevant
to the network. Furthermore, clustering avoids an exhaustive
search in a high-dimensional space, it can be extrapolated to
multiple machine learning algorithms and, if the input data
set is labeled, the comparison of the labeling might reveal
important information on how the network abstracted the input
data.

III. METHODS

The visualization techniques reviewed in the previous sec-
tion focus on images as input data. Extending the approaches
to geometric deep learning is not straightforward, since the
representations are often non-Euclidean and the architectures
vary according to the type of input data. In this study, we
propose a method usable in architectures employing 1D-
convolutions, such as point cloud autoencoders and, therefore,
we first provide the necessary mathematical background on
the operations performed by the deep neural network.

A. Point Cloud Autoencoder

In this paper, we use an autoencoder that is based on the
proposal in [3], with an encoder comprising convolutional
layers followed by a maximum pooling operation, as detailed
in Table I. In comparison to the original architecture, we
changed the activation function in the layers immediately
before the maximum pooling to hyperbolic tangent and the
activation functions in the output layer to sigmoid. For further
details and a validation of the model used, see [6].

TABLE I
BASELINE ARCHITECTURE OF THE POINT CLOUD AUTOENCODER.

Layer Type Activation Features Output dimensions
1 1D-Ca ReLU 64 [Nb×64]
2 1D-C ReLU 128 [N×128]
3 1D-C ReLU 128 [N×128]
4 1D-C ReLU 256 [N×256]
5 1D-C tanh Lc [N×L]
6 maxPool - L [1×L]
7 FCd ReLU 256×3 [256×3]
8 FC ReLU 256×3 [256×3]
9 FC sigmoid N×3 [N×3]

a1D-C: 1D-convolution cL: Number of latent variables
bN: Size of the point cloud dFC: Fully connected

The 1D-convolution operates point-wise over the Cartesian
coordinates of the input point clouds, such that the size of the
point cloud is preserved throughout the layers of the encoder.
Mathematically, consider an input point cloud G ⊂ R3, from
which we sample a point pi = (xi, yi, zi). The F` activations

yi,` at a given layer ` are recursively calculated according to
the following equation:

yi,` = ϕ

(
yi,`−1 ×W` + b`

)
, (1)

where ϕ is the activation function, yi,`−1[1 × F`−1] are the
activations of the previous layer and the coordinates of the
input point if ` = 1, W`[F`−1×F`] is the matrix of weights,
and b`[1 × F`] is the bias vector. Repeating the operations
for the remaining N − 1 points in G, we obtain a matrix of
activations Y`[N × F`].

In CNNs, the output of a layer contains multiple 2D ma-
trices, where each matrix represents a feature detected by the
network. In the case of 1D-convolutions, instead of matrices,
a layer returns vectors, which correspond to the columns of
Y`. Hence, we here consider a network feature j to be a set
of activations F j

` [N × 1] ⊆ Y`, i.e., the j-th column of the
matrix of activations.

The architecture used has implications for possible ap-
proaches to visualizing network features. First, the 1D-
convolution operates similarly to a multi-layer perceptron
(MLP) that is blindly shared over the points in the input shape
(Fig. 1). Hence, following the chain rule, the gradient vector
for an activation yj,` in a layer ` with respect to an input point
pi is given by the following equation:

∂y`,j

∂pi
=
∂ϕ(u`,j)

∂u`

∂u`
∂ϕ(u`−1)

...
∂ϕ(u1)

∂u1

∂u1
∂pi

, (2)

where u` is the linear operation performed in the layer `. Since
the weights do not depend on the input points, maximizing
the activations of F j

` potentially drives the points to singular
regions of the input space. These regions correspond to local
maxima of the MLP, such that the formed clusters of points
do note relate to human-interpretable geometric structures.

x0
y0z0

xN
yNzN

W1

W1

Wℓ

Wℓ

y0,ℓ

yN,ℓ

Fig. 1. Schematic of the 1D-convolutions interpreted as operations in an MLP.

If the layer of interest contains rectified linear units (ReLU)
as activations, ∇y`,j = ~0, ∀ u`,j < 0. Hence, input recon-
struction methods based on gradient optimization algorithms
might fail to reveal any geometric structure, because the
points that satisfy this condition would remain static during
the optimization process. A possible solution to overcome
the stagnation of the points is to use gradient optimization
algorithms with stochastic components, such as the Adam

optimizer [31]. Such an approach increases the chances to
modify points that led to zero activation, however without any
guarantee of converging to an interpretable shape.

Second, since the features are calculated independently for
each point, mapping the activations to the samples in the
point cloud is a straightforward task. Although deconvolutions
and input modification methods are applicable, it is not nec-
essary to perform any additional mathematical manipulation
to associate the activations with the input data, which avoids
the issues related to the scalability and inversion of complex
nonlinear functions.

In sum, visualizing network features in point cloud-based
architectures employing 1D-convoltuions can be solved using
a simpler, and potentially more efficient, solution than an
extension of the methods available in the literature. Differently
from the encoder, relating the activations of the decoder to the
input coordinates is a much harder task due to the maximum
pooling operator and operations with fully-connected layers,
which prevent a direct mapping between activations and input
points. Also, the decoder’s task is the generation of shapes
rather than dimensionality reduction, which is not our focus
in this study. Therefore, we will constrain our analyses in this
paper to the features learned by the encoder.

B. Projecting Features onto Point Cloud Representations

Our method is based on two aspects revealed by the previous
analyses: first, the direct correspondence between individual
points in the input and activations matrices, second, our
definition of network features. Hence, in order to visualize
a feature F j

` , we propose to project the activations in the j-th
column of Y` as a color map onto the 3D-scatter plot that
represents the input point cloud, as depicted in Fig. 2.

Fig. 2. Example of plot for feature visualization, where the red marker
identifies the maximum activation value. Left: original point cloud. Center:
feature visualization with colors. Right: enhanced visualization with changes
in the markers size.

As presented in the literature review, the analysis of co-
activated units can also reveal features learned by the autoen-
coder [9], [28], [29]. Exploring all possible combinations in
an exhaustive fashion, however, is infeasible due to the high-
dimensionality of the activation space. Therefore, more effi-
ciently than pure random exploration, we tackle the selection
of co-activated units with unsupervised clustering based on the
latent representations of the input data. The clustering orga-
nizes the data according to their characteristics in the latent
space only. Thus, it provides evidence on how the network
differentiates the input samples by revealing characteristic co-
activations from the feature space.

In order to reduce misclassification, we remove shapes that
yield extreme loss values prior to the clustering. In other
words, we aim to remove samples that have a very high or
low loss value, indicating an under- or overfitting of the model
to these samples. We use kernel density estimation (KDE) to
describe the distribution of losses in the data and exclude sam-
ples that fall below a minimum density, τ . This filtering of the
data set selects shapes that are predominantly represented by
the features learned by the autoencoder, reducing the noise for
clustering the representations and avoiding a misinterpretation
of the network features.

After applying the clustering algorithm, the results are
verified by calculating silhouette scores for each shape, which
indicates the degree of similarity between the individuals in
a cluster and provides an overview of the clustering quality.
Then, in an additional step, we calculated the mean represen-
tation of each cluster and the respective deviations of the latent
variables. We explored how geometric properties correspond
to large differences between cluster means to find a geometric
interpretation of the features learned by the network.

Finally, our approach is summarized in the workflow de-
picted in Figure 3. The tasks were described for a general
case, however the method can be adapted according to the
objectives of the analysis of the network features.

Fig. 3. Worflow with the procedures to visualize and compare network
features obtained from different shapes.

IV. EXPERIMENTS AND DISCUSSIONS

In this section we present a sequence of experiments that
illustrate possible approaches to interpret the network activa-
tions using the proposed feature visualization method.

A. Training the Autoencoder

For our experiments, we trained three versions of the
autoencoder described in Table I, varying only the number
of latent variables: 2 (model LR2), 10 (model LR10) and
20 (model LR20). The data set used for training the model
contained uniformly sampled shapes from the car class of
ShapeNetCore [11], following the implementation in [3]. We

used the data partitioning tree algorithm [4] for pre-processing
the point clouds, which does not affect calculating the features,
but supports the identification and labeling of the points. We
split the data into 90 % samples for training and 10 % for
testing the autoencoder.

We trained the models using the Adam optimizer [31], with
learning rate η = 5E-04, β1 = 0.99 and β2 = 0.9. The
termination criteria were defined as 700 epochs or an average
loss function (Chamfer Distance [32]) below 3.0E-04 for the
training set. Unless specified otherwise, we adopted a batch
size of 50 and did not apply any data augmentation to the
input or layer results.

B. Evaluation and Clustering of the Models

In the first step of the analysis, we randomly selected 7400
models from the data set and evaluated their reconstruction
using the models LR2, LR10 and LR20. To generate the cor-
responding KDE models, we used the algorithm implemented
in [33] with Gaussian kernels and a bandwidth corresponding
to 10 % of the standard deviation of the data set losses.
We defined the density threshold τ (Fig. 4) for filtering the
geometries as 10 % of the maximum density evaluated (chosen
experimentally, results not shown). This setting led to subsets
for clustering with 6927 (93.61 %), 7127 (96.31 %) and 7165
(96.82 %) shapes.

10 4 10 3 10 2

Loss value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

KD
E

De
ns

ity

Model LR2, KDE model
Model LR10, KDE model
Model LR20, KDE model
Model LR2, selection window
Model LR10, selection window
Model LR20, selection window

Fig. 4. Selected windows for filtering the designs before clustering the latent
representations.

We clustered the latent representations of the filtered set of
shapes using Hierarchical Density-Based Spatial Clustering of
Applications with Noise (HDBSCAN) [34], with Euclidean
distance as metric to evaluate similarity in the data. In our
experiments, we adjusted the hyper-parameters of minimum
neighborhood and samples per cluster, such that the three mod-
els yielded the same number of clusters. We observed that our
selection of hyper-parameters was nonconservative, leading, in
all cases, to a larger cluster 7 with several outliers (e.g. Fig. 5).
For our analyses, we did not optimize the hyper-parameters of
the clustering algorithm, since clustering performance was not
central to the visualization of features. We excluded cluster 7
from our analyses to avoid misinterpretation of the results.

In the following step, we performed a preliminary, visual
analysis of the clusters by analyzing correspondences between

Fig. 5. Evaluation of the silhouette scores for the clustered latent represen-
tations. At the bottom, the complete results obtained with model LR20, for
comparison.

shape characteristics and mean latent variables. In this prelim-
inary analysis, we observed that the latent variables correlated
with the occupancy of the input space. When inspecting the
results obtained for the model LR2 (Fig. 6), for example,
latent variable 0 yields higher values whenever the input
shape occupies the top-rear region of the domain (red boxes).
Although visual inspection hints at the features represented by
individual latent variables, we can neither confirm to which
extend the feature 0 are affected by the input shape, nor
identify if the points in the highlighted region caused the
highest activations.

C. Feature visualization

In order to verify the relation between the latent variables
and distribution of points in the input space, we projected the
activations of the last convolutional layer onto the point clouds
as illustrated in Fig. 7. Since the last convolutional layer is the
lowest-dimensional and is expected to encode the most abstract
features, we constrained our analyses to the features in this
layer. Nevertheless, the method is valid for any convolutional
layer of the decoder.

Fig. 6. Comparison of the latent variables and shapes from four different
clusters obtained with model LR2.

Cluster 0

Cluster 1

Cluster 2

Cluster 3

Point Cloud Feature 0 Feature 1

Fig. 7. Comparison of the latent variables and shapes sampled from four
different clusters obtained with model LR2.

By visualizing the features, it becomes clear that the points
closer to the top corners of the input domain yield the highest
activations. Furthermore, we also observed that the features
map similar regions in the input space rather than similar
geometric characteristics, e.g., shape primitives. We further
investigated this hypothesis in the experiments presented in
the following.

1) Response to shift and rotation of the input data: If
autoencoder features represented the occupancy of regions,
shifting the input points would also move the activated regions
with respect to the shape. In order to test this hypothesis, we
calculated and visualized the features for a shape of cluster 1,

obtained with model LR2, with different degrees of shift in
the x-direction (Fig. 8) and rotation around the vertical axis
(Fig. 9).

+0.00 +0.05 +0.10 +0.15 +0.20

Feature 0

Feature 1

Fig. 8. Visualization of the features obtained for a car shape shifted with
different forward steps in the x-direction as input and using model LR2.

0.00° 6.25° 12.50° 18.75° 25.00°

Feature 0

Feature 1

Fig. 9. Visualization of the features obtained for a car shape with different
alignments in the (xy)-plane as input and using model LR2.

As can be seen from the feature visualization, when we
moved the points, different parts of the geometry were high-
lighted when mapping the activations onto the point cloud. In
other words, the region of activated points remains static with
respect to the input space, supporting our hypothesis that the
autoencoder learns occupancy in the input space.

2) Transfer of Network Features: As a second test of our
hypothesis, we transferred a single network feature, from a
geometry that belongs to a cluster, to an initial shape, sampled
from a different cluster. More specifically, we substituted the
activations of the feature that encodes the region in the under-
body of a passenger car of cluster 4, by the corresponding
feature obtained from a truck of cluster 0. Here, we used
the clusters calculated from the latent representations obtained
with model LR10. If our hypothesis holds, reconstructing the
shape with transferred features should yield a point cloud with
points in the region of the underbody, but without geometric
properties that are characteristic to the truck underbody.

As shown in Fig. 10, transferring the network feature added
an underbody to the car shape, however, without any specific
geometric characteristic of the truck. Although the results
apparently match our expectation, a few additional aspects
should be highlighted: First, we transferred a single network
feature, while describing the underbody might require multiple
features and, therefore, the resulting shape did not present
any structure that is characteristic of the truck. Second, the
maximum pooling layer preceding the decoder operates as a
filter, such that only changes in the maximum activation of
each feature interferes with the reconstruction of the shape.
Hence, transferring only the maximum activation value of the
same feature used in the experiment would be sufficient to
obtain the same results. Third, we neglected the influence of

the decoder on the reconstruction, which in a general case,
could have a different architecture and potentially lead to
different results.

Initial shape Transferred feature Reconstruction

Fig. 10. Interpolation of features between shapes from different clusters and
obtained with model LR10.

Nevertheless, the results of the previous experiment also
highlight the differences between the tasks of the encoder
and decoder. While the encoder learns the occupancy of
regions in the input space, the decoder has to reconstruct the
coordinates of the points from the combination of occupied
spaces. This reconstruction is a much harder task, mirrored by
the difference in the number of parameters of both structures—
the decoder contains about 10 times more parameters to be
trained. We investigated this observation further in a second
experiment using a transfer of network features.

In this second experiment, we transferred the features
between two pairs of shapes, where the initial geometry is
common to both pairs, but in one pair the shapes have more
geometric characteristics in common than in the other pair. If
our hypotheses were correct, we would expect that the feature
transfer led to a smoother interpolation for the geometric more
similar pair of shapes than for the more dissimilar.

Initial shape Transferred feature Reconstruction

Fig. 11. Transfer of network features between pairs of shapes with different
degrees of similarity and reconstruction using the trained decoder.

As shown in Fig. 11, the transfer between the two car shapes
yielded a recognizable car shape (bottom), while transferring
the feature from the bus yielded a fuzzy point cloud. Along
the lines of our previous experiments, many of the car shapes
in the training set share common geometric properties and
hence, occupy similar portions of the input space. In fact,
the more similar pair was closer to the ”average car shape”
contained in the data set (see next section). Therefore, for
feature transfer between common car shapes, the decoder
is still capable of generating a plausible shape from the
combination of occupancies. In the case of the transfer from
the bus, the data set lacks shapes with geometric characteristics
common to cars and buses. As a result, the combination
of features is not meaningful for the decoder and it fails
to generate an intermediate shape. This further supports the
observation that the encoder learns an occupancy of the input
space instead of human-interpretable geometric characteristics,

e.g., the ”sportiveness” of the car design, which could be
transferred to fundamentally different shapes such as the bus.

3) Linear Combination of Features: In this last experiment,
we compared the regions most frequently occupied by the
training data to the linear combinations of the features cal-
culated using a dense uniform lattice as input. We expected
that the visualization of the network features on a lattice would
potentially highlight the same regions as the most frequently
occupied regions in the input space.

In order to find the regions most frequently occupied by
the input, we generated a KDE model over the points in
the training data. The kernel was defined as Gaussian with
a bandwidth of 6.3 × 10−3, which corresponds to 10 %
of the minimal standard deviation calculated from the point
coordinates. Then, we evaluated the KDE model on a uniform
lattice with 643 samples in the domain [0.1, 0.9]3, which is
the input space of the three variations of the autoencoder. To
combine the features, we linearly transformed the activation
values from the image of the hyperbolic tangent function,
[−1, 1], to [0, 1], such that we could sum the activations for all
the features and for each point of the lattice without canceling
contributions.

In Fig. 12, we superposed the visualization of the density
values, obtained with the KDE model, and combined features
calculated on the uniform lattice. Differently from our expec-
tations, the highest activations were not restricted to the points
with high KDE scores. In fact, for the model LR2, the activated
points of the lattice nearly followed the contour of the KDE
car shape, and the activations increased for points further away
from the car shape. For the models with higher-dimensional
latent spaces, however, large portions of the lattice became
activated and even from different perspectives of the domain,
we could not observe any boundary following the average car
shape, as for LR2.

Our interpretation of the results is that the autoencoder
learns how to differentiate the shapes from the training set
as a priority. When the data is excessively compressed, as in
LR2, the activations describe roughly the boundaries between
the most typical shape in the training set and adverse ones,
such that it can drive the decoder to fair approximations of
the coordinates. As the dimensionality of the latent space
grows, the autoencoder has more features available to describe
geometric details and, therefore, the activated region of the
input space grows and no longer describes a clear boundary.
Furthermore, our interpretation explains the number of outliers
and poor similarity between shapes of cluster 7 obtained with
models LR10 and LR20, when compared to LR2 (Fig. 5).
Since the autoencoders can describe the shapes with more
detail, we would need more clusters to separate the data in
more homogeneous classes.

V. CONCLUSION AND OUTLOOK

In this paper we proposed a novel method to visualize and
interpret features learned by a 3D point cloud autoencoder.
The core of the method exploits the properties of the 1D-
convolution operator, used in the architecture, which allows

Fig. 12. Visualization of the KDE score and combined features of a dense
uniform lattice in the input space. For visualization purposes, the size of the
markers varied with the value of the metrics, redundant to the colors. In the
representations, the lightest color indicates the highest values for both metrics.

for an intuitive mapping between activations and input data.
Furthermore, we tackled the search for co-activations in the
learned latent space by clustering the input data based on their
respective latent representations, in order to identify features
represented by the activation of combinations of units. This
clustering approach is more efficient than pure random search
in the activation space.

We demonstrated, that visualizing the activations of the au-
toencoder with intuitive representations plays an important role
in understanding which kind of information the autoencoder
learns, and provides a footprint of the operations performed
by the network. From our interpretation of the extracted
features, we conclude that the encoder preferably learns how to
differentiate the shapes based on the occupancy of the input
space. This property became particularly evident, when we
visualized the activated regions for a single point cloud at
different regions in the input space and the combined features
calculated from the uniform lattice. In summary, the point
cloud autoencoder represents various shapes through encoding
of spatial occupancy opposed to, for example, geometric
properties related to the stylistic features. However, spatial
occupancy and geometric features may coincide for some
cases, e.g., for a van versus a pick-up truck, where we may
still use the learned latent representation for downstream tasks
such as shape classification.

Our analyses leave a wide range of research questions
unanswered. First, our approach is limited to features cal-
culated with 1D-convolutions. It thus does not allow for
the analysis of models using different operators, such as for
example, the decoder, which uses fully connected layers and
may learn more high-level features. Visualizing the features
of the decoder is hence subject to future work. Also, for the
sake of clarity, we analyzed latent spaces that were much
lower in dimensionality than latent spaces typically used in the
literature [3]. In general, the method is limited to lower number
of latent variables as the interpretability of higher numbers
of features becomes difficult. Finally, we demonstrated that
the 1D-convolutions and ReLU activations have an impact
on input optimization tasks, which is not only relevant for
selecting training hyper-parameters, but also could be explored
in more detail in the field of 3D neural style transfer.

REFERENCES

[1] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep learning
on point sets for 3D classification and segmentation,” 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp.
77–85, 2017.

[2] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” in Proceedings of
the 31st International Conference on Neural Information Processing
Systems, ser. NIPS’17. Red Hook, NY, USA: Curran Associates Inc.,
2017, p. 5105–5114.

[3] P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. Guibas, “Learning
representations and generative models for 3D point clouds,” in Proceed-
ings of the 35th International Conference on Machine Learning (ICML),
vol. 80. Stockholmsmässan, Stockholm Sweden: PMLR, 2018, pp. 40–
49.

[4] M. Gadelha, R. Wang, and S. Maji, “Multiresolution tree networks for
3D point cloud processing,” in Computer Vision – ECCV 2018. Springer
International Publishing, 2018, pp. 105–122.

[5] N. Umetani, “Exploring generative 3D shapes using autoencoder net-
works,” in SIGGRAPH Asia 2017 Technical Briefs. New York, NY,
USA: ACM, 2017, pp. 24:1–24:4.

[6] T. Rios, B. Sendhoff, S. Menzel, T. Bäck, and B. van Stein, “On the
efficiency of a point cloud autoencoder as a geometric representation for
shape optimization,” in 2019 IEEE Symposium Series on Computational
Intelligence (SSCI), 2019, pp. 791–798.

[7] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in Computer Vision – ECCV 2014, D. Fleet, T. Pajdla,
B. Schiele, and T. Tuytelaars, Eds. Cham: Springer International
Publishing, 2014, pp. 818–833.

[8] A. Mahendran and A. Vedaldi, “Understanding deep image represen-
tations by inverting them,” Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, vol. 07-12-
June, pp. 5188–5196, 2015.

[9] D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba, “Network
dissection: Quantifying interpretability of deep visual representations,”
in 2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017. IEEE Computer
Society, 2017, pp. 3319–3327. [Online]. Available: https://doi.org/10.
1109/CVPR.2017.354

[10] Y. Jing, Y. Yang, Z. Feng, J. Ye, Y. Yu, and M. Song, “Neural style
transfer: A review,” IEEE Transactions on Visualization and Computer
Graphics, pp. 1–1, 2019.

[11] A. X. Chang, T. A. Funkhouser, L. J. Guibas, P. Hanrahan, Q. Huang,
Z. Li, S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu,
“ShapeNet: An information-rich 3D model repository,” arXiv preprint
arXiv:1512.03012v1 [cs.GR], 2015.

[12] T. Friedrich, N. Aulig, and S. Menzel, “On the potential and challenges
of neural style transfer for three-dimensional shape data,” in Interna-
tional Conference on Engineering Optimization. Springer International
Publishing, 2019, pp. 581–592.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” Pro-
ceedings of the IEEE International Conference on Computer Vision, vol.
2015 Inter, pp. 1026–1034, 2015.

[14] A. Ioannidou, E. Chatzilari, S. Nikolopoulos, and I. Kompatsiaris, “Deep
learning advances in computer vision with 3D data,” ACM Computing
Surveys, vol. 50, no. 2, pp. 1–38, 2017.

[15] Z. Cai, J. Han, L. Liu, and L. Shao, “RGB-D datasets using microsoft
kinect or similar sensors: a survey,” Multimedia Tools and Applications,
vol. 76, no. 3, pp. 4313–4355, 2017.

[16] E. Ahmed, A. Saint, A. E. R. Shabayek, K. Cherenkova, R. Das, G. Gu-
sev, D. Aouada, and B. Ottersten, “Deep learning advances on different
3D data representations: a survey,” arXiv preprint arXiv:1808.01462v1
[cs.CV], 2018.

[17] O. Sorkine, “Laplacian Mesh Processing,” Eurographics - State of the
Art Reports, no. Section 4, pp. 53–70, 2005.

[18] Y. Zhong, S. Wang, S. Xie, Z. Cao, K. Jiang, and D. Yang, “3D scene
reconstruction with sparse LiDAR data and monocular image in single
frame,” SAE Int. J. Passeng. Cars Electron. Electr. Syst., vol. 11, pp.
48–56, Sep. 2017.

[19] Z. Ouyang, Y. Liu, C. Zhang, and J. Niu, “A cGANs-based scene recon-
struction model using LiDAR point cloud,” in 2017 IEEE International
Symposium on Parallel and Distributed Processing with Applications

and 2017 IEEE International Conference on Ubiquitous Computing and
Communications (ISPA/IUCC), Dec. 2017, pp. 1107–1114.

[20] H. F. Murcia, M. F. Monroy, and L. F. Mora, “3D scene reconstruction
based on a 2D moving LiDAR,” in Applied Informatics, H. Florez,
C. Diaz, and J. Chavarriaga, Eds. Springer International Publishing,
2018, pp. 295–308.

[21] Y. Yang, C. Feng, Y. Shen, and D. Tian, “FoldingNet: Point cloud auto-
encoder via deep grid deformation,” 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 206–215, 2018.

[22] P. Mandikal and R. V. Babu, “Dense 3D point cloud reconstruction using
a deep pyramid network,” 2019 IEEE Winter Conference on Applications
of Computer Vision (WACV), pp. 1052–1060, 2019.

[23] Q. Zhang and S.-C. Zhu, “Visual interpretability for deep learning: a sur-
vey,” Frontiers of Information Technology and Electronic Engineering,
vol. 19, no. 1, pp. 27–39, 2018.

[24] C. Olah, A. Mordvinstev, and L. Schubert, “Feature visualization: How
neural networks build up their understanding of images,” Distill, 2017.
[Online]. Available: https://distill.pub/2017/feature-visualization/

[25] F. Grün, C. Rupprecht, N. Navab, and F. Tombari, “A taxonomy and
library for visualizing learned features in convolutional neural networks,”
arXiv preprint arXiv:1606.07757 [cs.CV], 2016.

[26] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Object
detectors emerge in deep scene CNNs,” 3rd International Conference on
Learning Representations, ICLR 2015 - Conference Track Proceedings,
2015.

[27] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional
networks: Visualising image classification models and saliency maps,”
2nd International Conference on Learning Representations, ICLR 2014
- Workshop Track Proceedings, pp. 1–8, 2014.

[28] A. Nguyen, J. Yosinski, and J. Clune, “Multifaceted feature visualiza-
tion: Uncovering the different types of features learned by each neuron in
deep neural networks,” arXiv preprint arXiv:1602.03616 [cs.NE], 2016.

[29] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” 2nd Interna-
tional Conference on Learning Representations, ICLR 2014 - Conference
Track Proceedings, pp. 1–10, 2014.

[30] D. Wei, B. Zhou, A. Torrabla, and W. Freeman, “Understanding intra-
class knowledge inside CNN,” arXiv preprint arXiv:1507.02379 [cs.CV],
2015.

[31] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015.

[32] H. Fan, H. Su, and L. Guibas, “A point set generation network for 3D
object reconstruction from a single image,” in 30th IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017-
Januar, 2017, pp. 2463–2471.

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[34] R. J. G. B. Campello, D. Moulavi, and J. Sander, “Density-based
clustering based on hierarchical density estimates,” in Advances in
Knowledge Discovery and Data Mining. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 160–172.

