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Abstract—With ever more data becoming available, there has
been a recent drive to develop modelling tools for heterogeneous
data sets such as electronic healthcare records. Therein appears
both Bayesian non-parametric latent feature models, as well as
methods for automatically determining the statistical data type
(e.g. ordinal or categorical) of the attributes present in the data.
We present a model which combines both of these attractive fea-
tures in an end-to-end framework. By jointly learning the model
complexity and statistical type of the data, we demonstrate that
redundant information can be discarded while higher accuracy
statistical type estimates are produced on real experimental data.

I. INTRODUCTION

The research area of automatic machine learning (AutoML)

targets the progressive automation of machine learning methods,

aiming to make effective methods available to everyone. At its

core AutoML seeks to progressively augment human machine

learning experts, to enable them to focus on data analysis,

whilst leaving more mundane tasks, such as data ingestion,

to an automatic transformation and identification system. One

such mundane task is the identification of statistical type i.e.

if a sample of data is e.g. ordinal, categorical, nominal or

real-valued (too mention but a few types).

Whilst it is trivial to construct simple heuristics to distinguish

between major types of data (e.g. continuous vs. discrete), it is

much harder to reason about sub-types. For example, suppose

we are presented with this univariate data-sample: { , , }.

Have we been presented with a sample from a traffic light or

a data sample from a bag of M&M sweets? The former has

order, the latter does not. Without further semantic knowledge,

heuristically, this is an almost impossible inference task, but

one which can be addressed by stochastic data modelling and

which would have high utility in an AutoML framework.

A. On the importance of type

One of the primary assumptions in data analysis is that

we can describe a data set of objects (examples), using a

common set of attributes. Typically though, for further analysis

to proceed, the attributes need to be assigned a type (categorical,

ordinal, real, Boolean etc.). The type informs the inference,

hence its importance. [15] explains that prediction tasks differ

depending on the kind of data we are considering. If it is an

ordinal type, we employ ordinal regression. If it is a real type,

we may employ linear regression. The type instance also has

implications for the resultant pre-processing. For example, one-

hot-encoding transforms categorical attributes to a format that

works better with many classification and regression algorithms.

But many times we cannot encode attributes nominally, because

this would impose a non-existent order on the data. Hence, for

statistical machine learning, the statistical type is paramount.

This amounts to an assumption of “known and fixed” [15]

likelihood model – where the Gaussian is a particularly popular

choice. But few methods exist for performing automatic model

selection – commensurate with finding the statistical type of

the columns {xd ∈ X | d = 1, . . . , D} in data set X. For

high-dimensional heterogeneous data sets there exists a clear

need for automating this process, particularly when the data

sets in question are large (examples are shown in table I).

TABLE I: High-dimensional heterogeneous data sets. Unless

otherwise specified, all can be found in the UCI repository [1].

The last two rows are electronic healthcare records (EHR).

Data set N D

Internet Advertisements 3, 279 1, 558
Arrhythmia 452 276
KDD Cup 191, 779 481
UJIIndoorLoc 21, 048 529

EHR A [6] 64, 819 1, 865
EHR B [8] 40, 736 4, 894

B. Type is not all

Heterogeneous data sets make modelling more complex

as discussed, hence the need to identify the statistical types

(i.e. identify their likelihood model) of the attributes present.

Supposing this can be accomplished, then one prominent way

of in-painting missing data is to employ latent features, which

are computed from the observations using matrix factorisation.

While a few select methods exist for heterogeneous latent

feature modelling and type inference, to our knowledge, there

exists no end-to-end model which can do both. This is a difficult

task because we are asking the framework to model likelihoods

which may change during run-time. But at the same time, by

also jointly modelling the model complexity, we can quickly
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infer good estimates of the column data types. And so, to add

to the current coterie of heterogeneous data modelling, our

contributions are as follows:

1) We combine Bayesian non-parametric heterogeneous data

modelling with automatic type detection. The general

latent type and feature model (GLTFM) overcomes the

current limitation where the user has to pre-specify a set

of column types for heterogeneous data modelling.

2) Our method in (1) is unsupervised and non-parametrically

learns column types conditioned on the inferred model

complexity from (1). Because we employ a latent feature

model paradigm, redundant information present in the

columns can be disregarded, and a compact representation

used instead.

The paper is structured as follows: a technical problem

description is presented in §II, the model is presented in

§III, accompanying inference protocols in §IV and finally

experimental results are presented in §V.

II. PROBLEM STATEMENT

Posit that our observations (data) are stored in design

matrix X of size N × D. We denote object n on the rows,

as xn , [x1
n, x

2
n, . . . , x

d
n, . . . , x

D
n ] and the attribute/column

location is dictated by index d. In probabilistic low-rank

matrix factorisation we assume that X can be approximated

by the matrix product, denoted by ⊙, between a binary feature

matrix Z ∈ {0, 1}N×K (binary by choice, it can also be

e.g. Gaussian distributed) and a weight matrix B ∈ R
K×D.

Under this model, the rows in Z , [z1, z2, . . . , zN ]T are

exchangeable. Consequently it follows that each column k

of Z corresponds to a latent feature, where znk = 1 if

feature k contributes to observation n. Should feature k not

contribute, then znk = 0. The weighting vector bd weighs the

contribution of the kth latent feature, to the dth dimension

of X, s.t. ∪D
d bd = B. Like the rows in Z, note that

bi ⊥⊥ bj , ∀i 6= j ∈ {1, . . . , D}, yielding an approximation

X ≈ Z ⊙ B + ǫ. Where ǫ is white Gaussian noise with

distribution ǫ ∼ N (0,Σ). Noise is independent of Z and B

and is uncorrelated across observations.

Database modelling typically assumes that column likelihood

models (types) ld ∀d ∈ {1, . . . , D} are known a priori. For

example in the linear-Gaussian latent feature model (LG-LFM)

[3] the set of column types is given by L , {ld | d = 1, . . . , D}
where all {ld}Dd=1 are assumed to be Gaussian. This is a form

of probabilistic low-rank matrix factorisation which can also be

seen as latent feature modelling [3]. The Indian buffet process

(IBP) operator in the LG-LFM, imposes binary latent features

on X. The LG-LFM, like many models, assumes that X is type-

homogeneous (Gaussian) across dimensions. Another LFM,

infinite sparse factor analysis [5], makes the same assumptions

about X. Indeed, most LFMs assume homogeneity in X – being

either real [7], [11], [14] or categorical [9], [10], [14]. There

are some studies which do consider heterogeneous data such

as [4], [12]. In particular, [13] presented a novel general LFM

(GLFM) capable of dealing with heterogeneous observations,

but with the proviso that {ld}Dd=1 are known a priori. This is

a prohibitive requirement since this information is not always

available and as noted earlier, can be prohibitively expensive

to ascertain.
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Fig. 1: Different data types. From top-to-bottom, continuous:

real and positive real; discrete: categorical, ordinal and count.

Type inference typically employs heuristics to determine

whether xd
n is continuous or discrete. These are adequate to

determine if variables are e.g. Boolean or integers. Finding

the sub-types, as shown in fig. 1 is much harder. The reason

being that, first, we only have access to finite data sample –

hence we do not know what we have not observed. Second, we

cannot distinguish between ordinal data and count data (defined

on an infinite ordered space with equidistant values) – recall

the example given in §I. But without complete information

we do not know if samples are equidistant. In the context

of information entropy, our measure of uncertainty of each

variable is only approximate as our sample will always be finite,

and we require infinite samples to exactly determine type. To

address this problem, [15] proposed a Bayesian method which

accurately discovers statistical data types (of the flavours shown

in fig. 1), by imposing a likelihood-model prior, where the

possible set of types is a priori unknown so that the type

set becomes a set of sets L = {l ∈ Ld | d = 1 . . . , D}
where Ld , {ld1 , . . . , l

d
J} specifies a set of potential likelihood

models, of size |Ld| = J , for column d (naturally we do not

need specify exactly J candidates per column). [15]’s method

concerns finding likelihood-weights wd , [wd
1 , . . . , w

d
J ] for

each d, which captures the probability of type ldj , in attribute

xd ∈ X. Consequently when the prior likelihood-models are

unknown, then

L =






{l11, . . . , l

1
J}

︸ ︷︷ ︸

=L1

, . . . , {ld1 , . . . , l
d
J}

︸ ︷︷ ︸

=Ld

, . . . , {lD1 , . . . , lDJ }
︸ ︷︷ ︸

=LD







but when known, as in the case of the GLFM, then simply

L = {l1, . . . , lD}. In §III-C we present a general Bayesian

non-parametric latent feature model suitable for heterogeneous

data sets, which infers the model complexity and the statistical

types from the data.

III. METHODS

This section describes a model capable of complete1 au-

tomatic heterogeneous latent feature modelling by virtue

1By ‘complete’ we mean: data infusion, latent variable modelling and type
prediction.



y
d
n

b
d

x
d
n

Ψ
d

HdLd

α

σ
2

b

σ
2

y

zn

n = 1; : : : ; N

d = 1; : : : ; D

(a) General latent feature model [13].

y
d

nl

b
d

l

x
d

n

Ψ
d

Hd

l 2 Ld

α

σ
2

b

σ
2

y

zn s
d

n

w
d

d = 1; : : : ; D
n = 1; : : : ; N

(b) General latent type and feature model.

Fig. 2: Probabilistic graphical models. The above models describe the generative process behind the models under discussion.

They are presented on a per-observation level to emphasise the full generative process, per data point. Note the extension

inherent in fig. 2b: it provides for a mechanism to learn the likelihood model for each dimension of X.

of automatic type inference. This is achieved, broadly, by

wrapping a type inference mechanism (we refer to this as the

‘inner’ model), with latent feature modelling (‘outer’ model). By

interleaving non-parametric inference over model complexity

K, evaluating the inner model at this K, and then updating

the posterior estimate of the types L, we propose a form of

global optimisation over K and L.

A. Latent feature modelling

We begin by giving a brief synopsis of the GLFM (see

fig. 2a), enough to lead us into the GLTFM. For more incisive

commentary on the GLFM we refer the reader to [14]. And so,

the outer model consists of a non-parametric LFM. Therein

we seek to find the posterior distribution of Z and B, where

independence is assumed a priori for Z and B, and where the

likelihood model p(X | Z,B) is determined by the application

[2] and so too the feature prior p(B). Our interest is that of

latent feature modelling so the likelihood can be factorised as

p (X | Z,B,L) =

D∏

d=1

N∏

n=1

p
(
xd
n | zn,b

d, ld
)
. (1)

The density p(Z) requires a flexible prior [3] and because Z

is an indicator matrix which tells us if a particular feature

in B is present in object n, we want to determine K at run-

time but also leave it unbounded – achieved using an Indian

buffet process (IBP) matrix prior. When we allow X to include

heterogeneous data types, we can capture the latent structure

using the GLFM. Under this model the type set L is assumed

known. By that we mean that the user has to manually specify

the type of each and every column in X before the GLFM can

be used. This might be feasible for a low-dimensional data

sets, but becomes highly impractical once we start to consider

high-dimensional data sets as those found in table I.

This is one of the drawbacks that we address by including

automatic type inference, which allows L to be determined

during run-time. We discuss in §III-C how posterior type

estimates are produced. But first, let

p(bd | σB) , N (0, σ2
B
I), p(Z | α) , IBP(α),

p(X | Z⊙B, σX) , N (Z⊙B, σ2
X
I) (2)

where Z follows an IBP prior with concentration parameter α,

with hyperpriors (not shown in fig. 2 to avoid clutter):

p(α) , G(aα, bα), p(σX) , G(ay, by),

p(σB) , G(aB , bB). (3)

The model in eq. (1) extends the LG-LFM in [3] and [13]

extended one of the central tenets of that model, the IBP, to

account for heterogeneous data while maintaining the model

complexity of conjugate models. The IBP places a prior on

binary matrices where the number of columns, corresponding

to latent features K, is potentially infinite and its utility rests on

two foundations. First, we can learn the model complexity from

the data. Second, [13] argues that binary-valued latent features

have been shown to provide more interpretable results in data

exploration than standard real-valued latent feature models [9],

[10]. As interpretability is a key feature of e.g. EHR data,

this is something which we wish to promote. But, as far as

the GLFM is concerned, it is silent on the inference of type.

Alas, what we practically seek is to make the observed {L}Dd=1

node in fig. 2a, inferable. This will result in an estimate of

L which means that our posterior estimate of X incorporates

our uncertainty about the type itself. This is important because

it may provide further insight into the generative process of

a particular column, e.g. regarding its ordinal (or not) nature.

As we saw in the example in §I this is not a trivial exercise,

and one which warrants automation for large data sets wherein

data exploration is required or desired. Indeed, we can easily

demonstrate how the LFM paradigm breaks down when the

wrong statistical type is imposed.



B. The wrong type and model complexity

One of the primary contentions of this paper is that there

is utility in sharing the number of latent features K with a

type-inference mechanism. Before we move onto experiments

in §V, we will here empirically demonstrate the impact of

inferring an appropriate K and L.

We apply the GLFM to a simulated data set consisting of

100 6× 6, each generated by randomly assigning a feature to

each image to a class with probability of 20%, and taking a

linear combination of the weights associated with features to

which the images were assigned. We add isotropic Gaussian

noise (σ2 = 0.5). The 100 images were generated as binary

linear combinations of four (K = 4) sets of class weights,

shown in fig. 3.

Fig. 3: Four (K = 4) sets of binary class-weights, where each

feature is of size 6× 6.

Fig. 4: Example of inferred weights B after 1000 simulations

using the GLFM. The order has been altered to match the true

classes. Attributes in X take values on the real line R.

We compare our generating matrix Z0 to the posterior

estimate Z, by measuring the structure error [17], which is

equivalent to

ǫSE =
∑

i,j

∣
∣
∣Z0Z0

T − E

[

ZZT

]∣
∣
∣
i,j

(4)

where the difference is measured between the upper triangular

portions of the matrix products. For four values of α (higher

means more exploration in K–space, lower the opposite), we

ran ten independent simulations for each value. The results are

summarised in table II. We truncated the model to a maximum

of ten features (Kmax = 10) and initialised each experiment

with K = 2. The resulting expected model complexity and

structure error per α are shown in table II.

TABLE II: 1000 MCMC simulations were used for each of

the ten independent experiments. Attributes in X take values

on the real line R.

α 1 2 4 8

E[K] 3.0 4.4 5.2 5.1
E[ǫSE] 3389.6 3099.3 4581.7 4007.3

These results trivially demonstrate that finding the correct

number of features is important for posterior parameter estima-

tion. This is intuitively obvious, however, we also show that

using the wrong number of features has detrimental effect to

the estimation task. We practically demonstrate the importance

of this in §V, where it is shown that using the wrong number

of latent features can results in erroneous type prediction.

Having weighed upon the importance of K, where we issued

the model with the correct type, with manifested observations

taking values on the real line i.e. L = {ld = R | d = 1, . . . , 36}.

We continue by prescribing the wrong type R+ to measure the

effect in the structure error. Results are shown in table III. The

same experimental setup was employed.

TABLE III: 1000 MCMC simulations were used for each of

the ten independent experiments. Values in X take values on

the positive real line.

α 1 2 4 8

E[K] 8.0 8.0 8.0 8.0
E[ǫSE] 8948.2 7922.9 8733.3 7195.6

As demonstrated in table III, using the wrong likelihood

model has a large effect on the inference mechanism’s ability to

produce accurate posterior estimates of the model parameters.

C. Latent feature and type modelling

In §III-B we showed two failure modes of the GLFM, which

we now proceed to address by introducing the GL(T)FM – a

GLFM with type inference. In [15] the authors demonstrate

that their type-inferential model (from hereon referred to as

the general latent type model (GLTM) for ease of discussion)

requires the number of latent features K to be set a priori.

However, type prediction is intimately linked to the model

complexity K as shown in §III-B. By a similar token, model

complexity in the GLFM is intimately linked to the statistical

column types as shown in §III-B.

We have sought to maintain notation commonality between

this work and [14], [15], to enable ease of comparison between

all studies. Alas, in the inner model, our interest lies in

capturing the generative distribution of each attribute xd ∈ X.

We can entertain this problem using the main idea from [15],

where we assume that the likelihood model of xd ∈ X, is a

mixture of likelihood models

p
(
xd | Z, {bd

l }l∈Ld ,K
)
=

∑

l∈Ld

wd
l · pl

(
xd | Z,bd

l ,K
)

with likelihood-specific mixture weights given by wd
l , with

likelihood-specific density/mass function given by pl(·) and

model complexity K passed from the outer model. By explicitly

conditioning on the posterior estimate of the binary feature

matrix from the outer model (via K), we do not need to perform

inference over the model complexity. Hence K is fixed from the

outset but, crucially, it is an inferred parameter unlike in [15].

The usual provisos hold for this mixture:
∑

l∈Ld w
d
l = 1 and

all densities pl(·) are normalised. Moreover, to avoid clutter, we



have omitted Ψd and Hd from the density. Where the former

denotes the set of random variables necessary to define the

distribution of the d-th attribute and Hd contains the hyper-

parameters associated with the random variables in Ψd. Further,

let for the inner model:

p(bd
l | µd

l ,Σb) , N (µd
l ,Σb),

p(zn | µd
Z
,ΣZ) , N (µd

Z
,ΣZ),

p(X | Z⊙B, σX) , N (Z⊙B, σ2
X
I) (5)

In addition, as noted earlier, one of the goals with the GLTFM

is automatic type inference. This means assigning one of the

supported statistical types in fig. 1. But to do so, we first need

to ascertain whether a column is continuous or discrete and

then once that has been established, use MCMC inference to

find the correct sub-type (e.g. categorical or ordinal). We do

this using simple heuristics such as counting the number of

unique values in a column, amongst other tests.

1) Pseudo-observations: At the core of heterogeneous

database modelling is the innovation by [14] which enables

X to contain the multiple statistical types found in fig. 1, as

well as efficient inference [15]. In that model representation,

for each observation xd
n, an auxiliary Gaussian variable ydn

(a “pseudo-observation”) is introduced. In and of itself, this

allows for the development of efficient inference algorithms

[14]. For further details, see [13, §2]. Pseudo-observations are

simulated as ydnl ∼ N (znb
d
l , σ

d
y), and when the latent variables

are conditioned on the pseudo-observations, the latent variables

model behaves as a standard conjugate Gaussian model, with

the associated efficient inference for the latent feature matrix

and the weight vectors. Under this construction, the real line

R is mapped to the support Ωl of the dth attribute in X. The

pseudo-observation paradigm holds for both the outer and inner

model.

Following [15], we introduce latent variable sdn which

indicates which likelihood model observation xd
n belongs to,

s.t. sdn ∼ Multinomial(wd). Hence, the transformation and

pseudo-observation are found as

xd
n = fsd

n

(

ydnsd
n

+ ud
n

)

(6)

where ud
n ∼ N (0, σ2

u) is a noise variable s.t. that the support

of fsd
n

is Ωl for likelihood model l. For further information

see [15, §3.1].

IV. INFERENCE

The GLTFM consists of a non-parametric LFM as the ‘outer’

model, responsible for model complexity, and a parametric

LFM as the ‘inner’ model, responsible for the statistical type(s).

This means we are interleaving two ways of describing X,

using two different inference mechanisms to do so. For details

on these inference schemes see [13] and [15] respectively. The

main parameter updates are outlined hereafter.

A. Outer model: binary latent features

Our approach is similar to that by [13] with the addendum

that we condition on L. The probability of each element in Z

is given by

p
(
znk = 1 | {y}Dd=1,Z−nk,L

)
∝ (7)

m−nk

M

D∏

d=1

Sd∏

r=1

∫

bd
r

p
(
ydnr | zn,b

d
r

)
p
(
bd
r | yd

−nr Z−n

)
dbd

r

where Sd is the number of columns in matrices Y and B which

contain categorical types (note also the explicit conditioning

on L). All other types render Sd = 1 i.e. when a column is

not categorical. Further Z−n is Z with the nth row removed.

Where yd
−nr is the rth column of matrix Y (r = 1 if the

type is not categorical), without element ydnr. Finally, p(bd
r |

yd
−nr Z−n) = N (bd

r | P−1
−nλ

d
−nr,P

−1
−n) is the posterior of the

feature weight without taking the nth observation into account

[13]. Here P−n = ZT

−n Z+σ−2

b
I and λd

−nr = ZT

−nry
d
−nr are

the natural parameters of the Gaussian distribution.

B. Inner model: statistical types

The updates for the inner model (fig. 2b) are easier

since there are no non-parametric mechanisms, and fea-

ture vectors can be efficiently sampled. Again we take our

cue from [15] but note that in these equations our latent

state number K has been inferred from the outer model

– see §IV-A. Thus, feature zn of Z is simulated from

zn ∼ N
(
µd

Z
,ΣZ

)
, with µ

Z
= ΣZ

(
∑N

n

∑

l∈Ld b
d
l y

d
nl

)

and Σz =
(
∑D

d=1

∑

l∈Ld b
d
l

(
bd
l

)⊤
+ σ−2

Z
I
)

. Feature weight

bd
l ∼ N

(
µd

l ,Σb

)
, with µd

l = Σb

(
∑N

n z⊤n y
d
nl

)

and Σb =
(
σ−2
y Z⊤Z+ σ−2

b
I
)
.

p
(
sdn = l | wd,Z, {bd

l },K
)
=

wd
l pl

(
xd
n | zn,a

d
l

)

∑

l′∈Ld wd
l′pl′

(
xd
n | zn,adl′

) (8)

Finally, we place a prior on the likelihood weight vector wd

for dimension d, using a Dirichlet distribution parametrised by

{αl}m∈Ld . Then using the likelihood assignments in eq. (8),

we exploit conjugacy for updates to the parameters using the

counts. A pseudo-inference algorithm is described in alg. 1

(outlining the main inference operations).

As one of our goals is interpretability, the output which

we ultimately seek is the binary feature matrix of the outer

model. Moreover, in alg. 1 we are implicitly passing all

parameters to the GLTFM but have omitted them to emphasise

the interleaving of (and inference over) K and L.

V. EXPERIMENTS

In this section we compare the GLTFM to the GLTM

on several real datasets described in table IV. To provide

commonality and easy of comparison with [15], we have

selected five data sets which can also be found in the

aforementioned study. Further, the experimental parameters

in table V were used. Finally, due to space constraints, we only

show results for ‘interesting’ findings i.e. where the GLTFM

and the GLTM deviate from ground-truth or where they differ

in their outcome.



Algorithm 1: GLTFM pseudo-inference

Input : Raw observations XN×D, t, F,G,H

1. Initialise all GLTFM parameters

2. Get canonical statistical column types

3. Map observations X to pseudo-observations Y

for i = 1, . . . , H do

for j = 1, . . . , F do

⊲ Update all outer GLTFM parameters

Infer K given L

if i mod t = 0 then

for m = 1, . . . , G do

⊲ Update all inner GLTFM parameters

Infer L given K

Output : Z, {b}Dd=1, {Ψ}Dd=1,L

TABLE IV: Heterogeneous real data used for experiments,

where #Discrete is the number of discrete columns.

Dataset N D #Discrete

German 1,000 21 16

Breast 681 10 9

Abalone 4, 177 9 2

Wine 177 14 2

Dermatology 366 35 35

TABLE V: Experimental parameter sets (two in total) used

for experiments. The first and second row denote how many

simulations we used for the outer and inner models respectively,

where we used an equivalent number for each repeated GLTM

run (third row). The K row denotes the model complexity

of the GLTM (one of several values used by [15]), where

Kinit is the start value for the GLTFM. Where the number of

iterations (H) notes how many independent runs we used for

either model.

Parameter #1 #2

F (outer) 100 250
G (inner) 250 250
GLTM 250 500
Kinit (GLTFM) 2 2

K (GLTM) 10 15

H (GLTFM) 20 20

α 4 4

A. Type inference on real data

To evaluate our model, we first consider a simple task, akin

to the one tackled by [15, §4], wherein we seek to infer the

statistical type of the columns in the German and Breast

data sets described in table IV. In this exercise we are only

considering the discrete columns with discrete statistical types

as these are typically more difficult to infer. Specifically we

seek to infer if an attribute takes values in a finite unordered set

(categorical) e.g. {‘white’, ‘black’, ‘yellow’}; takes values in a

finite ordered set (ordinal) e.g. {‘small’, ‘average’, ‘large’} or

if it takes values in the natural numbers (count) i.e. {0, . . . ,∞}.

Furthermore, we use the same preprocessing steps as [16] and

hence remove binary features (again because these are easy to

infer). Results are shown in fig. 5.
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(a) German.
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(b) Breast.

Fig. 5: Distribution of the inferred likelihood weights wd when

the GLTFM is applied to two real data sets.

The GLTFM correctly identifies the statistical type of the

attributes in the Breast data set. The results in fig. 5a are

more interesting since the inferred discrete variables are a mix

of ordinal and categorical types. For example {d = i | i =
7, 13, 14, 15} in fig. 5a are found to be of ordinal type. This

is commensurate with what was found by [15, table 2].

B. Comparing the GLTM to the GLTFM

We apply the GLTFM and the GLTM to the Wine, Abalone

and Dermatology data sets. Herein, we demonstrate, over the

course of the model iterations, how the GLFTM (typically)

produces a better posterior estimate of the statistical type.

a) Wine: The red wine data set results from chemical

analysis of wines grown in the same region in Italy but derived

from three different cultivars. The data set has 14 attributes,

mixed continuous and discrete. For our below experiments

we used set 1 in table V, with results shown in fig. 7. The

GLTFM is exploring the model complexity as shown in fig. 7a

and fig. 7c. In the case of the ‘Cultivar’ attribute, both models

infer the wrong type, where the true type is count. This can

be explained by the small (finite) number of values that the

attribute takes, are not enough for a accurate type inference.

Clearly model complexity exploration does not help with
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(a) Attribute: ‘Rings/Age’
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(b) Attribute: ‘Rings/Age’

Fig. 6: Results of running the GLTFM (top) and the GLTM

(bottom) on the abalone dataset using experimental set 1.

Shown are results for one discrete variable.

this attribute. The GLTFM fares better with the ‘Magnesium’

attribute which it correctly identifies as a count type, but which

the GLTM maintains holds a categorical statistical type.

b) Dermatology: In this data set we also compare the

average test log-likelihood per observation evaluated on a held-

out set containing 10% of the observations. This study was

conducted both with experimental set 1 and 2 defined in table V.

We again consider discrete variables. This time, both models

are in broad agreement w.r.t. the inferred type of the attributes.

For both experimental sets, the GLTFM settles down on a

posterior estimate of K = 4, moreover the displays comparable

performance (see fig. 8c and fig. 8f) to the baseline GLTM,

whilst inferring both model complexity and statistical types.

Broadly both models achieve the same held-out log-likelihood,

but importantly the GLTFM does so whilst also maintaining a

lower model-complexity.

c) Abalone: Herein the GLTM has a model complexity

set to K = 10 (inspired by the discussion in [15, §4.1]) but

which renders an erroneous inference w.r.t. the ‘Rings/Age’

attribute – which, according to the dataset details, is expected

to be count data. The failure of the GLTM, for this type of

attribute, has previously been discussed in [15, §4.2]. The

GLTFM finds the correct type (albeit with a large likelihood

weight spread) but at the expense of a large model complexity

(K = 38, all experiments were truncated at Kmax = 40).

VI. CONCLUSION

In this paper we have presented a general model suitable

for the analysis of heterogeneous data. The GLTFM combines

the benefits of type inference and latent variable modelling,

to enable as few inference resources to be used as possible.

We overcome the limitations of the GLFM by learning column

types directly from the data. We overcome the limitations of the

GLTM by learning model complexity from the data, whilst also

maintaining a binary feature matrix, to promote interpretability

of the model.
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(a) Cultivar
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(b) Cultivar
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(c) Magnesium
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(d) Magnesium

Fig. 7: The GLTFM (left) and the GLTM (right) applied to the wine dataset [1] using experimental set 1. Results regard both

the discrete variables in the data set. Depicted is the expected values (--) for the latent number of features and the likelihood

weights for both discrete variables in the dataset, over the number of iterations H (see alg. 1).

0 2 4 6 8 10 12 14 16 18 20
Nested loops [#]

0

2

4

6

8

10

12

L
at
en
t
fe
at
u
re
s
[K

]

0.0

0.2

0.4

0.6

0.8

1.0

L
ik
el
ih
o
o
d
w
ei
g
h
ts

[w
d
]

Categorical Ordinal Count

(a) Polygonal papules
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(b) Polygonal papules
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(c) Experimental set 1
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(d) Elongation of the rete ridges
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(e) Elongation of the rete ridges
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(f) Experimental set 2

Fig. 8: The GLTFM (left) and the GLTM (centre) applied to the Dermatology dataset using experimental set 1. Shown are the

results from inference over some of the discrete variables in the dataset. On the right we show a comparison of the average test

log-likelihood per observation evaluated on a held-out set containing the 10% of the observations.




