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Abstract—The paper presents an automated tool for individu-
alised skeletal model creation and identification of specific bone
structures from computed tomography (CT) images. Contrary
to the classical segmentation methods, the presented one is
aimed at exact recognition of the bone joints. It takes advantage
of a reference skeletal model. The developed procedure relies
on the neural network detection of the bounding boxes to
select single bones from CT slices. In the subsequent steps
the reference model elements are matched to the detections
by means of affine transformation and next, by morphing
algorithm. The method incorporates various image processing
algorithms including swarm intelligence heuristic algorithm—
Artificial Ant Colony (enriched with an original pheromone
deposition function). Three-dimensional models of bones created
by the procedure can be used in the task of automatic delineation
of bone structures, positioning of the patient for radiotherapy or
in planning of orthopaedic medical procedure. They can also
serve as a visual help in diseases detection.

Index Terms—Coherent Point Drift (CPD), deep learning,
image segmentation, individualised model, morphing, You Only
Look Once (YOLO)

I. INTRODUCTION

Individualised models of bone structures find wide applica-
tion in the medical field including virtual bone representation
in Computer-Assisted Orthopaedic Surgeries [1], creation of
individualised templates [2] or implants [3]. Another interest-
ing application is human motion analysis and its influence on
the development of disorders [4], [5]. Individualised models
are also useful in automatic delineation of critical organs [6]
in radiotherapy planning or in Dynamic Adaptive Radiother-
apy which employs advanced imaging techniques and patient
positioning methods in order to modify the treatment plan in
the real-time [7].

The traditional way of creation of individualised bone
models out of the computed tomography (CT) data is based
on manual or semi-manual segmentation of skeletal structures.
It is a time-consuming process and has to be performed by
qualified personnel. Automation of this process is not a trivial
task due to numerous reasons: the differences in structure
between trabecular and cortical bone are observable differently
in imaging data, which makes the choice of one arbitrary seg-
mentation method difficult. In particular, the border between
the bones within joints is often unclear or invisible (see Fig. 1).

Moreover, the same type of the bone can have a different
shape depending on the age, sex or health condition of the
examined person. Imaging data can be collected with numer-
ous equipment having different capabilities. Patient position
during examination may also vary. Thus, the transition from a
set of two-dimensional images to three-dimensional structure
is usually not offered by the imaging system providers.

Figure 1. Examples of CT images representing cross-sections of the same
femur bone taken on different heights. Points marked with red cross have the
value of 1363 HU and 325 HU in images a) and c) respectively. The areas
surrounded with blue ellipse in cross-sections b) and c) illustrate the region
where femur head and pelvic bone are close to each other which makes them
difficult to distinguish. Moreover in cross-sections b) and c) the boundaries
of bone structure are unclear in contrast to cross-section a).

The paper introduces an automated method of creating
individualised three-dimensional skeleton models out of CT
data sets. The task is performed by extracting bones one by
one and thus, for simplification, the method will be described
here on the basis of the pelvis area with focus on the femur
bone.

The presented approach makes use of the reference skeleton
model (kept in form of the triangular surface mesh) which
is transformed in a series of steps into the target individual
model. In the first step the You Only Look Once (YOLO)
neural network is employed to gain the knowledge about the
correct shape of the bone structures and mutual position of
the bones. It allows to extract the 3D image (in form of 2D
pieces) of the processed bone from the CT data. Then a series
of transformations of the reference model is used to fit it to
the bone image extracted from CT series.

The paper is organised as follows: in the first chapter
we review different earlier approaches to creation of indi-
vidualised bones models; in the second chapter we present
the details of our method and algorithms used; the third
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chapter presents the results obtained and discusses the choice
of method parameters. The last chapter is focused on the
conclusions and prospects for the further work.

II. LITERATURE REVIEW

Individualised bones models creation, out of medical data, is
a non-trivial problem widely discussed in scientific papers. We
can distinguish two approaches toward bones models creation.
In the first approach, the model is created only using image
processing methods, in the second one, the external knowledge
database or reference model of the structures is employed.

The method proposed in [8], is an example of the first
approach and presents automatic bone segmentation method
based on operations of image filtering, wavelet analysis, his-
togram equalisation and region growing, but it is applied only
to 2D series of data and does not include 3D model creation
step. In [9] adaptive threshold algorithm is used in order to
perform bone structure segmentation. In both papers, various
bones are not distinguished. On the other hand, authors of
[10] use pressure analogy to segment and distinguished two
adjacent bones from each other. The method is a combination
of various image processing algorithms, especially morpho-
logical operations. The method gives interesting results but in
some cases, the created models are corrupted with defects in
femoral head or parts of pelvis or veins are over-segmented
and wrongly classified as a part of the model.

The methods falling in the second category often take use
of a set of bones structures model called atlas. Such methods
are more robust towards local artefacts than methods purely
based on image processing. A good example of the automatic
segmentation method based on adjustment of the atlas model
to the bone structures visible on X-ray images is [11]. It is
however constrained to 2D images. In [12] an atlas-based
method aimed at pre-clinical planning in pelvic region is
presented. It incorporates non-affine image transformation, but
the results are still not satisfactory. The authors stress that
separation of femur bone from the pelvis is a problem which
needs further research.

Another widely used approach are Statistical Shape Models
(SSM). Several papers describes their application to segmen-
tation of femur and pelvic bones out of CT or MRI data
[13]–[16]. SSMs are parametrised models created on the
basis of a training set consisting of multiple shapes. They
represent the normal shape variation of the training set. SSMs
address the problem of wide variability of shapes of biological
structures. Main drawback of the solutions based on SSMs is
the cumbersome process of their creation. It consists of manual
segmentation of training data set, creation of landmarks in the
data and generation of the averaged model.

Recently convolutional neural networks (CNN) are more
and more widely used in the field of digital imaging and
visualisation. They also find application in medical data
processing. In [17], [18] the usage of U-net network for
segmentation and classification of bone structures to certain
groups is shown. The analysis of various CNN architectures
applied to segmentation of upper extremity of the femur bone

is presented in [19]. The [20] shows the segmentation of 49
bones out of CT scans performed by another CNN network.
All of the results are promising but in order to be effective
the training of CNN networks performing segmentation task
requires a large amount of medical data, which are not easily
obtained.

III. METHOD

The method developed by the authors combines the atlas
based-approach with the usage of CNN, what increases the
level of automation. The reference skeletal model is a tri-
angular surface mesh of a simplified male skeleton, which
consists of 96 bones and of 123306 triangles in total. The
bones within the skeleton are labelled. The whole skeleton is
used to position the individualised model with respect to CT
data, whereas individual bone meshes are being transformed
to create the final model.

The algorithm consists of three main steps:
1) Detection of the bone structures on the CT data

series: 2D bounding boxes are created around bone
structures, on each CT slice on which femur bones are
present. The dimensions of the bounding box correspond
to the maximum dimensions of the structure they sur-
round. The detection of the bounding boxes is performed
by YOLO network.

2) Affine transformation of the reference model mesh
to fit it to CT based data: The bounding cuboid
surrounding the ordered series of bounding boxes of a
given bone is created. Reference model of the femur is
scaled to the dimensions of the cuboid and afterwards
translated to the cuboid position.

3) Non-affine transformation of the reference mesh to
real bone structure characteristic: In the last step
the cross-sections of the previously prepositioned model
mesh, positioned on the level of individual CT slices
are created. Then, the cross-sections are scaled to di-
mensions of corresponding bounding boxes. The CT
data are constrained to the size of the bounding boxes
as well. After that, the edges of the bone structures
are detected by the fusion of various edge detection
and segmentation methods. In the following step the
representational points, lying on the bone edges are
chosen. The reference mesh is transformed by non-affine
morphing algorithm to fit those points.

A. Detection of the bone structures in CT data

In the first step of the method, the detection of the bone
structures on the series of CT data is performed. Femur and
pelvis bones are marked with 2D bounding boxes. In order to
automate this procedure, the YOLO (You Only Look Once)
[21] neural network is used to detect the structures.

The training set consisted of 320 monochrome images, taken
from two CT series of pelvis and its surrounding. One CT
was registered for female and the second for a male patient.
All of the images represent body sections in the transverse
plane. Some of images represented full cross-section of patient



abdomen and some only a single bone structure. The contrast
of images was diverse. The training set contained also negative
samples without desired bone structures. 10% of the images
were randomly chosen as the validation set. The network was
trained for 1000 epochs. Sample results of detection are shown
in the Fig. 2. The details of the network training and its
parameters are presented in [22].

Figure 2. The sample detection of the femur and pelvis bone structures
performed with YOLO. The pelvis is detected with 87.62% confidence and
both femurs with over 90% confidence.

B. Affine transformation of the reference model

The bounding boxes detected by the YOLO network around
the individual bone structures in the series of CT data are fur-
ther used for the initial affine transformation of the reference
model. For each previously defined and detected class of a
bone structure, a 3-dimensional bounding contour is created.
The bounding contour is a rectangular grid corresponding to
the shape of the series of bounding boxes detected by the
neural network for a given CT data series. Bounding contour
is created on the basis of series of CT images and informations
written in DICOM format such as: position of the CT slices,
spacing between slices or image dimensions. In order to create
bounding contour the following steps are performed:

1) The class of the bone for which the bounding contour
is created is chosen.

2) The images from CT series are sorted along the longi-
tudinal axis of the patient.

3) For each CT slice in series, if there is a corresponding
bounding box (or bounding boxes of particular bone),
a layer of mesh is created with length and width of
bounding box and height equal to spacing between
slices.

In the following step the bounding cuboid CTK is created
for the bounding contour of the pelvis bone (see Fig. 3).
Analogues cuboid is created for the reference mesh of the
pelvis bone CRef . The examples of both bounding contour
and cuboid are presented in Fig 3. Individual bones of the
reference model are scaled and translated so that position of
cuboids CRef and CCT is the same. Next, the cross-sections
of transformed reference mesh models is created in the plane
of each CT slice from the series. The dimensions of the cross-
sections are scaled to match the dimensions of the appropriate
bounding boxes. Each CT slice in data series is cut to the
dimensions of the bounding contour as well.

Figure 3. a) Bounding contours of pelvic bone and both femur bones with
bounding cuboid CCT of pelvis (red colour); b) Cross-sections of reference
mesh model after scaling operation.

C. Non-affine transformation

In the final step the reference mesh is further adjusted by the
morphing algorithm. In order to perform the transformation,
the cloud of points PC lying on the surface of the patient bone
structure has to be created. The fusion of several methods is
used for that purpose.

In the first stage three different edge detection operations
are independently applied to the image I representing a bone
structure:

• Canny edge detection algorithm,
• Laplacian of Gaussian (LoG) detection algorithm,
• modified Artificial Ant Colony (AAC) algorithm.

The above mentioned algorithms are based on different ap-
proaches each: Canny edge detection algorithm measures
strength of the edge in the image by computing first-order
derivative expression while LoG algorithm is looking for a
zero-crossing in second-order derivative expression. The AAC
algorithm is a heuristic swarm intelligence method, primarily
used in the shortest path problem. The version used in the
paper is adapted to image segmentation and edge detection as
described in [23]. The number of iterations of AAC algorithm
is set to 500 and the number of swarm agents (due to large
number of the pixels representing the bone structure in the
image) is set to 70% of the number of pixels in the image.
The rest of the AAC parameters is set as described in [24].

The results of edge detection algorithms applied to the same
image are slightly different which depends on the level of
sensitivity of the algorithm to the noise present in the image,
the type of smoothing filter used, the method of defining the
edges, or other details of the method implementation. The LoG
algorithm was chosen for the method because it creates thin,
continuous and if possible closed edges. Rounding the corners
in edges is the algorithm drawback. The Canny edge detection
is one of most commonly used edge detection algorithms
and it produces optimal results according to the conditions
created by its authors [25]. The AAC algorithm separates two
different bone structures more effective than Canny algorithm,
but the created edges are thicker than in case of Canny or LoG
algorithm. The application of three edge detection algorithms
to the image I results in three binary images BA, BB and BC
representing the same bone structure (see Fig. 4 and Fig. 5).



It is clear, that the images are different. Each of the edge
detection algorithms has some advantages and drawbacks. To
compensate those deficiencies the fusion of the results of three
above-mentioned image processing algorithms is performed:
this process consists of detecting points lying on the edges of
the bone structure for each of the applied image processing
algorithms, followed by the selection of points common for
at least 2 of the 3 used algorithms. Additionally, the point
detection is performed by two different methods applied to
each binary image.

The first method of points detection uses a set of rays
starting radially from the center of binary image towards
the image boundary. The rays are arranged in equal angular
distances with respect to each other, in the range from 0◦ to
360◦. For each ray the method finds the white pixel with the
furthest distance to the image center. The coordinates of the
pixel are added to the set of points PR potentially located on
the surface of bone structure.

The second method of points detection uses horizontal and
vertical segments connecting opposite borders of an image.
The segments are arranged with the equal step w along the
image border. For each segment the coordinates of first and last
white pixel are added to the set of points PL and considered
as potentially located on the bone surface.

As a result of this step of the procedure 6 sets of points are
created: three PR sets are generated by the first point detection
method and another three PL sets are generated by second
point detection method respectively.

In the following step the PR sets are merged into one. Only
the points detected by at least two of three binary images
are promoted. The PL sets are processed analogically, giving
another set. Finally the two resulted sets are combined into
the final one, by averaging points positions. Example of points
detection performed by first method and final point set detected
for CT slice is shown in the Fig. 4.

Figure 4. Example of result of edge detection methods with points selected
by the first method marked with red colour: a) Canny edge detection b) LoG
c) AAC algorithm d) input grey-scale image with final set of points.

The above procedure is performed for each image I from a
series of CT slices cut to the dimensions of bounding contour.
The points detected for all slices form 3-dimensional cloud of
points PC . The simplified scheme of the method is presented
in the Fig. 5.

Figure 5. Creation of cloud of points PC used to build the surface of the
bone structure: the outline of the procedure.

The reference mesh, roughly prepositioned to the affine CT
data, in general case, does not coincide with cloud of points
PC due to variety of positions of the patient during the medical
examination, individual differences in the shape of the bone
and simplified shape of the reference mesh. Hence, the need
of non-affine adjustment of the model mesh to PC point cloud.
The number of PC points is usually different than the number
of vertices of the model mesh. The non-affine transformation
has to find the approximation of the displacement of individual
nodes of the model mesh to PC . The problem is solved by the
morphing algorithm called Coherent Point Drift (CPD).

Coherent Point Drift algorithm is a probabilistic, iterative
point registration method described in [26]. In CPD algorithm
the alignment of two point clouds is defined as a probability
density estimation problem. The vertices of the reference mesh
PM are treated as Gaussian Mixture Model centroids and fit
to the set of observations (which in described problem is
the cloud of points PC). The fit is done by maximisation
of the likelihood function. The method imposes the coherent
movement of the mesh vertices to preserve the topology of
the set of points. It is done by Tikhonov regularization applied
to the transformation field. The result of CPD transformation,
represent the final bone model adjusted to the characteristic of
individual patient. The visualisation of the morphing process
is presented in the Fig. 6.

IV. RESULTS

A. Test data

In order to validate the described approach the developed
code was employed to creation of eight individualised models
of femur bones. Four series of CT images of prostate cancer
patients, representing the pelvic region were obtained due
to courtesy of Maria Sklodowska-Curie National Research



Figure 6. Subsequent stages of the morphing transformation (CPD algorithm)
of femur bone a) 10th b) 15th c) 50th iteration; point cloud PD – marked
with red colour; vertices of the reference mesh – marked with blue circle.

Institute of Oncology. The detailed parameters of each series
are presented in Table I. All of test cases were performed for
Head First-Supine patient position. Two individualised models
of femur bone, left and right, were created per each CT data
set.

Table I
PARAMETERS OF TEST CT SERIES

Series No. No. of CT
slices

No. of pixels
in slice

Voxel spacing

1 157 512x512 1.5625x15625x2.5
2 220 512x512 1.5625x15625x2.5
3 181 512x512 1.5625x15625x2.5
4 130 512x512 1.5625x15625x2.5

The eight exact expert models were created to compare them
with meshes obtained by the automated morphing method. The
CT data contained delineations of femurs upper extremities
(most complex part of the bone by means of its shape), per-
formed by an experienced professional. The delineation of the
lower part of femur was created manually or semi-manually
with the use of level-tracing method in 3D Slicer program.
Further the two-dimensional delineations were connected into
three-dimensional triangular mesh.

The expert model to which the created mesh is compared is
burdened with errors—the resolution of the CT data does not
allow to determine the exact boundary of the bone structure,
and the identification it is the task of an expert. For some
of the model cross-sections, it is unclear whether the contour
created by the expert or detected automatically by the mor-
phing algorithm more accurately represents the bone border.
Therefore, the value of the measure of similarity between the
expert mesh and the mesh created with the morphing method
will never be equal to 100%.

B. Results of the method
The individualised models created by the method visually

match the data, what can be seen in the Fig. 7, where femur
meshes were imposed on simple segmentation of CT data
(threshold equal to 100 HU). To perform quantative assessment

Figure 7. CT series No. 1: Individualised femur models (pink colour), created
with the described method imposed on simple segmentation of CT data (blue
colour), with 100 HU threshold.

of the fit, result meshes were compared with expert model by
computing Jaccard index value:

J(Ve, Vm) =
Ve ∩ Vm
Ve ∪ Vm

, (1)

where Ve is the volume of expert mesh and Vm the volume of
mesh created with the use of described method. The Jaccard
similarity measure was also evaluated for affine fit described
in section III-B. The results of the similarity measure are
presented in Table II.

The examples of the fit of the expert and individualised
mesh can be seen in Fig. 8. Developed method creates femur
mesh models with the accuracy within the range from 77.24%
to 80.83%, which suggests good agreement of the model with
the real data. The value of similarity measure is higher than
in case of affine transformation. Moreover, due to use of the
reference mesh in the transformation process the created model
does not contain artefacts such as additional holes and islands,
it is smooth and manifold.



Table II
SIMILARITY MEASURE BETWEEN EXPERT MESH AND TRANSFORMED

REFERENCE MESH FOR LEFT (L) AND RIGHT (R) FEMUR BONE.

Series
No.

Bone
struc-
ture

Affine fit Method fit

1 L 20.99% 80.83%
R 27.54% 80.73%

2 L 14.60% 78.44%
R 12.48% 77.24%

3 L 29.08% 77.53%
R 23.75% 80.16%

4 L 21.01% 79.11%
R 21.24% 78.66%

Figure 8. Expert mesh (yellow colour) and transformed individualised mesh
(pink colour): a) left femur, CT series 1 b) right femur, CT series 2.

Further, the model created with the help of the morphing
algorithm was compared with a second model created only
with the combination of various image processing algorithms
described in [28]. Both models are depicted in Fig. 9.
The femoral head of the second model is under-segmented.
Medullary cavity and part of the pelvis above the femoral head
were also wrongly included in the model. The mesh model
created with the use of morphing algorithm does not have
those drawbacks.

In order to compare the method with another deep learning
approach the U-net network was trained with similar amount
of data as YOLO network. The results obtained with U-net
were not satisfactory, due to limited number of training data,
thus we do not publish them in the paper.

C. Adjustment of method parameters

The results of Canny and LoG detection algorithm are
dependent on the values of their input parameters. In case
of both algorithms, their values have an influence on the
sensitivity of edge detection. Only edges for which gradient

Figure 9. Transformed individualised mesh (pink colour) and mesh created
with the combination of image processing algorithms (blue colour), left femur,
CT series 1.

or LoG operator value is within the given threshold are
considered.

Canny algorithm accepts three parameters: lower T1 and
upper T2 threshold values and σ – the standard deviation of the
Gaussian filter. Value of σ allows to control image smoothing.
The bigger the σ the lesser the noise level in the image but
also the bigger the blur of the image.

The LoG algorithm accepts single threshold value.
The edges detected on CT images should as much as it is

possible represent the boundaries of the bone structures and
omit the rest of the edges. The parameters for edge detection
algorithms used in III-C were established in two ways. In case
of LoG method the threshold value is automatically computed
fot each input separately and it is equal to 75% of the mean
value of LoG operation applied to the image. In case of Canny
edge detection the global values of 3 method parameters are
set for the whole image series.

To find appropriate values of parameters the set of 26
images representing different cross-sections of femur bones
was selected. The images were prepared on the basis of not
previously used CT data. Then the binary masks were created
for the whole set, were white pixels represent the area of bone
structure and black pixels represent the background. Example
masks are shown in the Fig. 10.

Figure 10. Sample masks images (upper row) with the corresponding CT
images (bottom row).

For each of 26 mask images the set of points M , repre-
senting the boundary of the bone structure was detected with
the use of method I and II of point detection described in
section III-C. Then the set of points C was detected by the



Table III
RESULTS OF THE CANNY EDGE DETECTION PARAMETERS OPTIMIZATION

BY PSO ALGORITHM

No. Iterations
No.

Objective
function
value

σ T1 T2

1 63 2.401e04 1.4462 0.0672 0.1741

2 70 2.509e04 1.7142 0 0.1684

3 78 2.399e04 1.4463 0.0677 0.1687

same methods for images obtained with Canny edge detection
filter. The parameters of the Canny edge detection filters were
adjusted to minimize the distance between sets M an C
described by

F (T1, T2, σ) =

L∑
i=1

N∑
j=1

‖Mij − Cij‖, (2)

where L is the number of images, and N is a number of rays
(points) for each image.

The function F was minimized with the use of Particle
Swarm Optimization algorithm (PSO). PSO algorithm is a
global optimization heuristic swarm algorithm first described
in [27]. The PSO algorithm was launched 3 times, in each case
it ended the optimization after several dozens of iterations,
when the objective function (2) did not changed its value by 40
consecutive iterations. The values of the parameters, presented
in Table III were similar in all three cases. The lowest value of
the objective function was achieved in the third attempt of the
algorithm, thus those parameters were further used in general
method.

The examples of edge detection with the use of LoG and
Canny edge detection algorithms with the chosen parameters
are presented in the Fig. 11.

Figure 11. a) LoG edge detection b) Canny edge detection with optimized
parameters c) corresponding CT images.

The number of elements of the transformed reference mesh
and the number of CPD morphing algorithm iterations influ-
ence the accuracy of the transformation. In order to select
the values of these parameters, their analysis was performed
for left femur bone from the first data series. The algorithm
was run for 3 different reference mesh densities: coarse (292

points), intermediate (1163 points) and dense (4532 points)
meshes, respectively for 100, 500 and 1000 iterations of the
morphing algorithm. The model was only fitted to the most
challenging part of the bone — the femoral head.

The detailed results of the test are presented in Table IV,
where the time measured refers to the time of CPD algorithm,
similarity measure is the value of Jaccard index and dL
denotes the value of change of the distance between two set
of point clouds.

Table IV
THE ACCURACY OF THE LEFT FEMUR MESH FIT TO THE FIRST SERIES OF
CT DATA, WITH RESPECT TO THE REFERENCE MESH DENSITY AND CPD

ALGORITHM ITERATION NUMBER.

Iteration No. Similarity measure Measured time dL
Mesh 1: 292 points

100 0.708192 0 m 23.5 s 4.2072e-05
500 0.721835 1 min 59 s 1.044e-07
1000 0.722494 3 m 59 s 8.632e-10

Mesh 2: 1163 points
100 0.754821 1 m 3 s 8.0366e-05
500 0.765219 5 m 45 s 5.062e-06
1000 0.767193 11 m 13 s 8.4806e-10

Mesh 3: 4532 points
100 0.749425 7 m 46 s 7.1483e-05
500 0.776552 41 m 8 s 5.7644e-07
1000 0.777564 1 h 18 m 46 s 3.0411e-08

The results presented in Table II were obtained with the
medium density mesh and the version of CPD algorithm which
stopped after 500 iterations. Denser grid and higher number
of the iterations did not significantly improve the value of
similarity measure, but increased the computation time.

D. Implementation

The presented method was mainly implemented as a set of
Python scripts with the use of Visualization Toolkit library
with few exceptions: the YOLO network version 2 from C++
Darknet framework, created by the author of this network was
used. Moreover, the detection of points on the bone structure
edges and morphing algorithm were launched in MATLAB
environment, due to easily available CPD implementation [29].

V. CONCLUSION

The paper presents the novel method of automatic creation
of individualised bones models which incorporates the use
of YOLO deep neural network, image processing algorithms
and morphing procedure of the reference mesh. In order to
test the method eight models of femur bones were created
on the basis of four different CT datasets. The result meshes
are with agreement with the expert models within the range
from 77.24% to 80.83% (according to the Jaccard index).
Compared to the classical methods, based purely on the image
processing operations, the output model of the algorithm does
not contain artefacts such as islands and holes. Due to the
use of reference mesh as a base of the transformation, the
structure of the resulting model does not have stairs-like



structure characteristic for voxel models. Deep neural network
employed to the detection of the bone position greatly helps in
automation of the method. It also achieves satisfactory results
with a relatively small set (320 images) of training data.

The developed method can find application in automatic
delineation of bone structures during radiotherapy planning or
create a reference structure in patient positioning algorithms.
Another potential application is the use of individualised
models in the orthopaedic procedure planning. The model can
be also easily crafted on the 3D printer and used as a visual
help in bone defects recognition or to explain the idea of the
orthopaedic procedure to the patient.

In the future work the authors are planning to extend
the method by the use of U-net network to the task of
bones segmentation and test the method accuracy for different
bone structures. In case of promising results, segmentation
performed by U-net network can replace currently used edge
detection algorithms. It can benefit with better precision
and automation of the method. To speed up the non-affine
transformation step the use of fast version of CPD algorithm
described in [30] can be considered. Simultaneously, the
original morphing algorithm, based on [31] is being developed
by the authors. The first results are encouraging and the
original morphing algorithm is planned to be the default non-
affine transformation method. Nevertheless, the procedure in
its current shape produces potentially useful individualised
bone models.
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