
Automatic Policy Decomposition through Abstract
State Space Dynamic Specialization

Rene Sturgeon
Mathematics and Computer Science

Royal Military College of Canada
Kingston, Canada

rene.sturgeon@rmc.ca

Francois Rivest
Mathematics and Computer Science

Royal Military College of Canada
Kingston, Canada

francois.rivest@{rmc.ca, mail.mcgill.ca}

Abstract—Significant progress has been made recently in deep
reinforcement learning in the development of options. This idea
consists in learning policies (or macro of actions) for sub-goals.
An important bottleneck of this approach is that these options are
often available as actions everywhere in the state space, hence,
potentially enlarging the action space to search for the optimal
policy. In this paper, we propose to use the fact that the state
space is rarely fully connected, but instead has regions of highly
connected states with fewer links between those regions. Our
proposed model extends deep Q-Learning network (DQN) by
splitting the top layers into multiple heads each specializing in
learning the dynamics of a particular region of the state space
as well as the optimal policy for that region. The state prediction
quality of each head is used to determine which head is the local
expert, rating its contribution to the current state’s policy. We
show that this approach is able to learn something similar to
options and generalized value function, providing a promising
alternative to the current approach.

Index Terms—reinforcement learning, deep learning, option,
neural networks, model learning, video games

I. INTRODUCTION

Since the success of deep Q-learning (DQN) on Atari video
games [1], the deep reinforcement learning (DRL) approach
produced key algorithms allowing end-to-end development of
AI algorithms with little human expertise (e.g., [1]–[3]). In
DRL, the agent attempts to learn an optimal policy to maxi-
mize the rewards it will receive achieving tasks or sub-goals.
While DQN and similar deep network approaches allow such
system to learn a better state representation (or abstraction),
some recent work in DRL focused on temporally extended
actions, or options [4]. These are like sub-policies or macro
actions, that can be selected like regular actions, but which
cover multiple time steps. Options have only recently been
successfully integrated in DRL in a fully automated fashion
with the option-critic (OC) architecture [5]. But since these
approaches assume an option can be taken from anywhere in
the state space, this potentially increases the number of valid
actions, and hence, the overall size of the search space. For
options to speed up learning, the system must learn and restrict
when they should be available in the state space. How to do
this remains an open question [5].

This project was supported in part by a CDARP grant to F.R.

In this paper, we build upon DRL, which can be seen as
generating an abstract state space in the top layers, and we
train the network to learn the environment dynamics similarly
to [6], [7]. But instead of using it to regularize or to plan, we
use it to divide the abstract state space into slightly overlapping
regions thereby loosely partitioning the state space. Thus, at
any given time step, the agent will be within only one or two
regions of the state space. The top layers of the deep network
are split into multiple heads, each head specializing for a
particular region. A region is defined by the set of states for
which the head is a better predictor of the abstract state space
dynamic. Although each head has all the primitive actions, the
overall policy is more about choosing the right head than the
specific primitive action (similar to [5]). The main difference
is that each head or sub-policy (resembling an option in a
loose sense), is only used when the agent is in a state within
its area of expertise. Outside such region, there is no need to
learn what that sub-policy (or head) does. Instead of learning
which policy or option to follow (as in [5]), our system uses
the current level of abstract state prediction of each head to
determine their contribution to the global policy, in a way
similar to a mixture of experts.

We will first review related DRL work in Section II. Then
we will briefly describe DQN and our basic extension for
comparison purposes in Section III-A. Section III-B will
describe our policy decomposition algorithm. Finally we will
compare our new algorithm to our baseline on ATARI games
in the Arcade Learning Environment (ALE) [8]. Section IV
will show that some of the network heads are specializing for
different game situations and thus specialized in a way similar
to options, but available only within a limited set of states.

II. RELATED WORK

The work on temporal abstractions (or options) in RL, is
now more than 20 years old [4]. It is only recently that it has
been fully integrated in its original form in DRL in the OC
architecture [5]. The objective in RL is to learn a policy that
will maximize the discounted sum of future rewards. An option
is defined as a macro-action or sub-policy, which consists
of an initialization set (set of states from which it can be
selected), the option policy itself, and a termination function
(indicating when the option is over, returning the control to

978-1-7281-6926-2/20/$31.00 ©2020 Crown

the main policy). The optimal policy can then be thought of
as a combination of primitive actions and options. In [5], the
network must learn an optimal policy made solely of options,
as well as each option’s policy and its exit function. There
are three main limitations in this work: 1) It tends to learn
very short options (a problem that is solved by penalizing
switching between options in [9]). 2) Each option is available
at every state, requiring exploration of each option over the
whole state space in order to learn each option’s optimal policy
and exit function. 3) In their setup, the options represent an
over-representation of the problem, as a single option would
be sufficient to learn the whole task. In contrast, in this paper,
we focus on loosely partitioning the state space and the top
part of the network such that each head (or option) specializes
for different regions of the state space. We are not learning
which head to use or when to exit it directly; instead, we
are using each head prediction performance to weight their
contributions to current policy.

Other work in hierarchical DRL also looked at how to create
temporal abstractions. For example, [10] has two levels of
controllers (similarly to OC [5]). The top (or meta) controller
receives the external rewards and learns a policy in which the
actions can be seen as selecting sub-goals or desired states. For
each sub-goal, there is a sub-controller intrinsically rewarded
when reaching the sub-goal state. Another approach is the
hybrid reward function [11]. Like in our approach, they break
the top layer of the network into distinct components of the
value function, each associated to different types of rewards (or
goals). In both of these approaches, goal states or reward types
must be manually determined. How to do this automatically
remains an open question. In contrast, we propose an end-
to-end approach that specializes its heads toward state space
regions of similar dynamics rather than per goal states or
reward types.

The idea that learning the environment dynamics could help
learning the value function has also been studied by [6] and
was useful in learning the optimal policy. In [7], they learn the
abstract state space dynamics to allow the system to plan in
abstract space. Here, we will divide the network abstract space
representation and value function into multiple heads, where
each head will learn its own abstract representation dynamic.
The heads’ ability to predict their own abstract state space
dynamics will be use to automatically determine their region
of expertise and to weight their final contribution to the value
function.

The only work we are aware that focuses strictly on re-
ducing options’ initialization set is the work of [12]. In this
work, they focus on separating the state space using adaptive
hyper-planes and associating specialized skills (or policies) to
each so-define sub-regions of the state-space. In this paper,
we are not restricting the regions of expertise of each head to
be defined by sets of hyper-planes. Instead, we are separating
region of the abstract state space by their internal dynamics.
Those sharing the same dynamics gets associated to the same
head. When a head is good at predicting its own abstract space
dynamic, it means it is in its region of expertise and should

play a role locally in the policy. Similarly. when it cannot
predict its own dynamic, then it should not contribute to the
output value function of the network.

III. MODEL

The model is based on a variation of DQN [1], and double-
DQN [13] which we adapted for smaller memory. However,
the proposed method is not restricted to DQN DRL architec-
ture. The first subsection describes the baseline regularized
to learn the abstract state space dynamic without specialized
heads, followed by the description of the full model.

A. Baseline

In RL, the objective is to find a policy π : S → A mapping
each state s ∈ S to an action a ∈ A that maximizes the sum
of discounted future rewards r ∈ R. DQN uses Q-Learning
which works by learning an approximation of Q : S×A→ R
of the sum of future rewards from state s given action a. The
final policy consists of always selecting the action a with the
largest Q-value, given state s.

Similarly to [1], our Q-Value network receives the state as
input and has one output per primitive action. For Atari games,
it has three convolution layers followed by two fully connected
layers, each followed by a rectified linear activation unit (relu),
with the exception of the output layer, as follows:
• Convolution layer 1: 32 8x8 filters with stride of 4
• Convolution layer 2: 64 4x4 filters with stride of 2
• Convolution layer 3: 64 3x3 filters with stride of 1
• Fully connected hidden layer 1: 512 units
• Fully connected output layer 2: Number of actions
To remain close to DQN architecture we did not use

dropouts, pooling, or batch normalization. To maintain good
decorrelation of samples with a smaller replay memory, and
inspired by the A3C algorithm [14], we used four worker
threads to play games and generate training samples and one
thread to train the network. We also implement double DQN
[13], which consists in using a stable target network in the
training process, and which was shown to avoid overestimation
of Q-values.

There are therefore multiple copies of the network at differ-
ent training stages. Let Qvar be the network under training,
Qwork be the one generating samples (st, at, rt+1, st+1) for
the replay memory, and Qtar be the target network used to
generate target values for training.

The network weights are randomly initialized using Xavier
initialisation [15] and then copied to the other networks.
Then the worker network is used to generate samples which
are saved to replay memory while playing games using an
ε-Greedy policy on their Q-Values:

at =

arg max
a∈A

{Qwork(st, a)} with prob 1− ε

random action a ∈ A with prob ε
(1)

Once enough samples are in the replay memory, the training
of the network begins using mini-batches of 32 samples from
the replay memory per update, using loss (7) and Adam

Fig. 1. Baseline Network. As in DQN, the network receives the input state
st (an image), and produces a Q-value Q(st, a) for each possible action a.
Once an action is selected, that action at, combined with the top hidden layer
activity h(st), generates a prediction ĥ(st, at) of the hidden layer activity
(abstract state) h(st+1) at the next time step.

optimizer [16]. Its weights are copied back to the the worker
threads every 100 updates, and to the target network every
2,500 updates. The complete list of hyper-parameters is given
in Table I.

As in previous work, gradient and rewards are clipped.
Given a sample (s, a, r, s′), the constant target value is

target =

sign(r) if end of episode, otherwise
sign(r) + γQtar(s

′, arg max
a′∈A

{Qvar(s′, a′)})

(2)
where γ is the discount factor and the loss on Q is

LQ = huber(Qvar(s, a)− target), (3)

and where the Huber loss is used to clipped the gradient:

huber(error) =

{
0.5× error2 if |error| ≤ 1

|error| − 0.5 otherwise.
(4)

In order to make it comparable to our proposed architecture,
and similarly to [6] and [7], we added an extra output layer to
the network, parallel to the Q-value output layer, and of the
same size as the top hidden layer (see Fig. 1). This layer also
receives the selected action and generates a prediction ĥ(st)
of the hidden layer activity h(st+1) at the next time step.

Given a sample (s, a, r, s′), the loss function on this ad-
ditional output layer is simply the mean Huber loss of each
component

LP =
1

n

n∑
j=1

huber(ĥvar(s, a)j − htar(s′)j), (5)

where n is the number of units of the hidden layer. The Huber
loss is used instead of the squared error to clip the gradient.

To ensure that the magnitude of the predictive error remains
within a reasonable scale and that the hidden state representa-
tion does not collapse, we further constrain the hidden layer to
an hypersphere of radius 1 by adding the regularization term

LR = huber(‖hvar(s)‖2 − 1). (6)

Fig. 2. Abstract State Space Dynamic Specialization Network. The hidden
layer from Fig. 1 is split into N distinct heads, each feeding its own Q-values
as well as a prediction of its own next state. The Q-values are then weighted
by each head’s current performance Γ at predicting its own next state (ĥ).
These Q-values are then added together to form the global policy. Note that
the number of weights between the top hidden layer h and the output Q-values
is the same as in the baseline network (or DQN).

The final network loss is therefore given by

LQPR = LQ + ζ1LP + ζ2LR, (7)

where ζ1 = 0.5 and ζ2 = 0.25 are the weight factors given
to the predictive loss LP and the regularization loss LR
respectively.

B. Abstract State Space Dynamic Specialization

In this paper, we use the fact that in practice, Markov
environments are often not fully connected. Instead, they may
have more connected regions with specific dynamics, with
some connections linking one highly connected region to
another. We further assume that in some situations, different
regions may share similar dynamics along some dimensions,
therefore, potentially sharing similar good policies.

First, the top hidden layer h and its two output layers Q and
ĥ are split into N equal-size heads as showed in Fig. 2. For
example, in Atari, the DQN top hidden layer h has n = 512
units. If we create N = 16 heads, each will have a hidden
layer h and a hidden state prediction output layer ĥ of size
512/16 = 32. Although each head has now its own policy Q,
since these will be added together to form the global policy,
the number of weights between h and Q remains the same.
On the other hand, there are fewer weights between h and ĥ,
i.e. n2/N instead of n2. This is an important difference with
OC which has more weights than its non-option equivalent.

The important factor is to determine which head best
understands the region of the state space. The head that is
better at predicting its next state in a given region of the
environment is more likely to be able to learn a good policy for
it. Therefore, the head sub-policy should be weighted more,
locally, in the overall policy. To do this, we devised a measure
of the quality of each head’s predictions of the hidden state
transitions over the last few time steps.

Let gi(st) be the moving average of the prediction error of
head i at time t such that

gi(st) = (1− ω)gi(st−1) + ωe−β‖ĥi(st−1)−hi(st)‖22/h̄(τ), (8)

where β plays the role of a temperature parameter allowing to
control the level of separation between the heads based on their
error, and ω determines the temporal window of interest, and
h̄(τ) is a global moving average of workers’ heads prediction
error. Smaller values of ω will encourage specializing over
longer temporal windows, but will reduce the ability to react
quickly to changes in the environment. The terms are then
normalized to give the specialization factors

Γi(st) =
gi(st)
N∑
j=1

gj(st)

. (9)

Note that the
∑N
i=1 Γi(st) = 1 and that 0 < Γi(st) < 1 ∀i.

For the trainer to compute Γi(s
′), the replay memory must

be extended to include g(st) = (g1(s), . . . , gN (st)). It will
also save the expert i∗t with the highest weighted Q-value

i∗t = arg max
i∈{1,...,N}

{
max
a∈A
{Γi(st)Qwork,i(s, a)}

}
. (10)

Thus, the worker now saves in replay memory, the tuples
(st, g(st), i

∗
t , at, rt+1, st+1).

Given replay memory samples (s, g, i∗, a, r, s′), the trainer
can then compute Γi(s

′) using (8) and (9) for each head.
The loss on Q is computed individually for each head as

LQi = huber(Qvar,i(s, a)− targeti), (11)

where the target Q-value for each head is defined by

targeti =

sign(r) if end of episode, otherwise
sign(r) + γQtar,i(s

′, a′) if i 6= i∗

sign(r) + γ max
j∈{1,...,N}

{Qtar,j(s′, a′)} if i = i∗

(12)
and where a′ = arg maxa′′∈A{

∑
Qvar,i(s

′, a′′)}.
Each head also has its own prediction loss

LPi =
1

m

m∑
j=1

huber(ĥvar,i(s, a)j − htar,i(s′)j) (13)

where m = n/N .
Finally, in (6) we regularized h(s) on a hypersphere of

radius 1. In order to keep the same hyper-parameters across the
two models, we need to maintain the loss scales. But hyper-
spheres of fewer dimensions have different component scales
when keeping the radius constant. Therefore, we need to find
the radius y that will keep the component scale and such that

N∑
i=1

(‖hi‖2 − y)2 ≈ (‖h‖2 − 1)2. (14)

Let ∆h be the expected value of one component of the vector
in both models. Expanding (14) we get

∑
N

√∑
m

∆h2 − y

2

≈

√∑
n

∆h2 − 1

2

∑
N

∑
m

∆h
2 − 2y

√∑
m

∆h2 + y
2

 ≈∑
n

∆h
2 − 2

√∑
n

∆h2 + 1.

(15)

Assuming that all ∆h are approximately equal then∑
N

(
m∆h

2 − 2y
√
m∆h2 + y

2
)
≈ n∆h

2 − 2
√
n∆h2 + 1

Nm∆h
2 − 2Ny

√
m∆h2 +Ny

2 ≈ n∆h
2 − 2

√
n∆h2 + 1

−2Ny
√
m∆h2 +Ny

2 ≈ −2
√
n∆h2 + 1

−2
√
Ny
√
Nm∆h2 +

(√
Ny
)2
≈ −2

√
n∆h2 + 1

(16)

which gives y = 1/
√
N . Therefore the new regularization loss

for each head becomes

LRi
= N huber(‖hi(s)‖2 − 1/

√
N). (17)

With the three losses, LQi , LPi , and LRi for each head i,
and having the specialization factor Γi(s) for each head, we
can now calculate the total loss LQPR

LQPR =

N∑
i=1

Γi(s)[LQi
+ ζ1LPi

+ ζ2LRi
], (18)

where ζ1 and ζ2 can remain as in the baseline model. Note that
Γi(s) can be seen as a weighted learning rate for each head,
being higher for the head that has little error on its hidden
state prediction, and lower for the irrelevant heads.

IV. EXPERIMENTS AND RESULTS

A. Methods

To test our algorithm, we use the Arcade Learning Envi-
ronment (ALE) [8] as in [1], that simulates numerous Atari
2600 video games. The variety of games present different
problems to a general agent such as sparse rewards requiring a
large amount of exploration or a wide variance in the rewards
within the game. Its design makes it simple to interface with
algorithms. The video output is 160x210 2-d array of pixels
(128 color pallet) which is read one frame at a time and
reduce to 84x84 black and white images. The input to the
network is made of 4 consecutive frames, and each action is
repeated four times. The output also includes a reward signal,
that correspond to the score in the game, an end game signal,
and a loss of life signal. The input to a game has a maximum
of 18 actions (game dependent) and a reset game command.
On current hardware, the games can be simulated many times
faster than real time allowing for quicker training.

Our model was written in Python and Tensorflow, a
CPU/GPU neural networks API. Most of our simulations were
done on a 20-core Xeon processor with 16GB of memory
and a Nvidia GeForce 1080Ti graphics card. Some of our
nodes had exactly twice that capacity, running two simulations
concurrently.

0

0.25

0.5

0.75

1.0

iQ
i

Enduro Head No 16

0 200 400 600 800 1000 1200 1400 1600

Game Time (sec)

0

0.25

0.5

075

1

iQ
i

Centipede 16 Heads

0 20 40 60 80 100 120

Game Time (sec)

0

0.25

0.5

0.75

1

iQ
i

SpaceInvaders 16 Heads

0 20 40 60 80 100 120 140 160 180 200

Game Time (sec)

0

0.25

0.5

0.75

iQ
i

Breakout 16 Heads

20 40 60 80 100 120 140 160 180 200

Game Time (sec)

a)

b)

c)

d)

Fig. 3. Plots of leading head’s scores Si(st, at) = Γi(st)Qi(st, at) colored by leading head during four different ATARI games. The leading head is
defined as the head with highest score selecting action at at time step t. A low value on this graph usually means that all heads are almost equally contributing
to the selected action. Black rectangles surround areas of interest from which screenshots were taken and showed above. See text for details. a) Breakout:
Third screenshot, we added approximate colored path representing leading edges (in red and green). Last screenshot, we surrounded in purple the top area
of interest. b) SpaceInvaders: There are 3 screenshots related to the fourth rectangles. c) Centipedes: Screenshots elements were to small to be visible. d)
Enduro: Only head #16 is displayed. Screenshots are right after the corresponding rectangles.

B. Results

Table II shows the performance of DQN, our baseline, our
multi-head model, and OC. The number of heads (h) or options
(o) used is given in parenthesis. The number of training steps
is 10M across all papers. This is the same number of steps we
used in Breakout, Centipede, Enduro, and SpaceInvaders. To
see if there was any significant difference in longer training we
used 14M steps for Asterix, MsPacman, Seaquest, and Zaxxon.
But there was no significant changes. The objective here is not
to beat the state of the art in terms of asymptotic performance,
but simply to show that our algorithm is at least reaching
similar performances. The important contribution is the ability
to have various parts of the network specializing themselves
in different aspects of the games.

In order to analyze if the specialization was successful,
we extracted the scores Si(st, at) = Γi(st)Qi(st, at) and

extracted the maximal head and its score for each time step.
The head with the highest score on the selected action is
considered to be the leading head for that time step. Fig. 3
shows the leading head score and color plot from four different
games. A low value on this graph usually means that all heads
are almost equally contributing to the action selection.

In Breakout (Fig. 3, plot a), we can see a change in leading
heads around the second screenshot. This is where the ball’s
speed increases after the first 12 hits. Then, there is a long
period of oscillation with one head leading repetitively (in
green). As showed in the third screenshot, right after hitting
the ball, there is not much to do or to predict (red arrow), but
quickly after the leading head takes over until it hits the ball
again (green arrow). The fourth screenshot occurs right after
a loss of life and the ball speed returns to its slow speed. The
ball quickly returns to its fast speed because this occurs when

TABLE I
LIST OF HYPERPARAMETERS

Hyperparameter Value Description
γ 0.99 Discount factor for future rewards
α 0.000625 Overall learning rate in the opti-

mizer
Mini-batch size 32 Size of the mini-batches

Initial ε 1.00 Starting value of the ε-Greedy ex-
ploration

Final ε 0.10 Final value of the ε-Greedy explo-
ration

Decay steps 1 × 106 Number of steps to decay ε to its
final value

Evaluator ε 0.05 Fixed exploration value used by the
evaluator for all evaluations

No op steps 30 Maximum number of no-operation
steps that agent will do at the be-
ginning of game

Replay memory size 256,000 Number of samples that can be
stored in memory

Initial replay size 32,000 Number of samples to be stored be-
fore the trainer begins its updates.

Frame dimensions 84x84 Size of the frame dimensions input
to the network

Evaluator net update 50,000 Number of updates before the
trainer transfers current network
parameters to the evaluator net-
work

Worker net update 100 Number of updates before the
trainer transfers current network
parameters to the worker networks

Target net update 2,500 Number of updates before the
trainer transfers current network
parameters to the target network

ζ1 0.50 Weight factor for predictive loss
ζ2 0.25 Weight factor for regularization

loss
ω 0.9 or 0.5 Moving average weight factor in

gi()
β 0-30 Temperature parameter in gi(), an-

nealed up to final value over 3M
updates (few had β = 1 constant)

the ball hits any brick in the top three rows. Immediately we
see the agent return to the previously leading head (in green).
The last screenshot shows that when the ball gets behind the
seen (purple rectangle), no head is leading. During this period,
the controller has no impact on the score and all actions have
the same value.

In SpaceInvaders (Fig. 3, plot b), we can see by the
coloring that different heads are leading at different stage of
the game. The beginning of the plot and box 5 corresponds
to the beginning of a new level. Both regions are followed
by a region with the same leading head (boxes 1 and 6).
Box 2 is when the player dies. Boxes 3 and 8 corresponds
to the moment the red walls disappears. Box 4 (with three
screenshots) shows a section where the game dynamic is faster.

In Centipede (Fig. 3, c), again, we can see by the coloring
that different heads are leading at different stage of the game.

In Enduro (Fig. 3, plot d), we are showing that one head
has specialized in the end of the one day race period when four
green flags are displayed and the player can log more miles as
the obstacles are not as difficult to avoid. In the game shown

TABLE II
SCORE COMPARISON SUMMARY

Game DQNa Baseline Multi-head OCb

Asterix 6,012 n/a 7,900 (8h) 8,000 (8o)
Breakout 401 350 385 (16h) n/a
Centipede 8,309 1,900 3,140 (16h) n/a
Enduro 1,002 800 541 (16h) n/a
MsPacman 2,311 2,800 2,500 (8h) 2,100 (8o)
Seaquest 5,286 n/a 6,000 (8h) 8,000 (8o)
SpaceInvaders 1,976 2,200 1,100 (16h) n/a-
Zaxxon 4,977 n/a 8,000 (2h) 6,100 (8o)
aDQN results are reported from [1].
bOC results are estimated from graphs in [5].

the agent has successfully completed three days of racing and
did not finish the fourth.

The percentage of lead time for each head in a game is
showed in Table III. In each game, different heads can be
leading at different points in the game. But not all the heads
may end-up leading. For example, in Breakout, 8 heads are
leading between 5% to 25% of the time each, while 4 heads
are leading for less than 1% of the time each. Similarly, in
Centipedes, 6 heads are leading most of the time, while 7
others basically never lead. In contrast, in Enduro, all heads
seems to be equally leading. Note that as opposed to options,
multiple heads can be equally contributing at some points
to the action selection process. For example, if one head is
specialized in predicting obstacles dynamic, while another is
specialized at predicting left curve dynamic, then the two could
be very well sharing the lead when there is an obstacle in
a left curve. It is not clear how to analyze those situations,
but by definition, is not something options can do. You are
either following one option, or the other, but you cannot follow
two options at the same time. In contrast, our multi-head
approach allows mixture of sub-policies based on head’s local
specialization.

Finally, Table IV and Table V report the averaged leading
duration and maximal leading duration for each head in a
game. This is roughly similar to option-length in number of
time steps. A big problem in the original OC architecture
was that options tended to be short (one time step) [5], a
problem they later resolved by penalizing option switching [9].
In contrast, our algorithm does not learn which head to choose
or when to switch. Instead, it weights each head using the
specialization factor that continuously evaluates how each head
understands or predicts the current (local) dynamics. While
the average leading duration may seem short in Table IV, it
must be understood that there are regions where the heads
do not specialize much, as at the beginning of the levels, or
when the controller is useless (for example, when the ball is
stuck behind in Breakout, Fig. 3, plot a, last screenshot). These
regions significantly lower the average. Table V the longest
leading duration in time steps, showing many options leading
sometimes for 10 to 30 time steps.

TABLE III
PERCENTAGE OF TIME EACH HEAD IS THE LEADING HEAD IN ONE GAME

Game H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16
Breakout 2.2 15.5 24.8 5.1 6.0 2.6 11.2 1.2 6.4 2.6 7.2 0.0 0.3 13.9 0.8 0.1
Centipede 3.3 9.3 9.9 0.0 21.4 14.3 0.5 0.0 0.0 2.7 2.2 0.5 17.0 18.7 0.0 0.0
Enduro 4.8 7.0 7.7 3.4 9.9 5.8 5.1 5.8 5.8 5.0 6.2 4.9 8.2 7.5 6.0 6.9
SpaceInvaders 3.3 1.7 6.7 14.0 1.2 2.1 8.6 7.6 14.3 7.4 11.6 2.9 3.1 0.5 11.9 3.3

TABLE IV
AVERAGE NUMBER OF CONSECUTIVE ACTIONS SELECTED FROM LEADING HEAD

Game H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16
Breakout 1.4 3.6 6.7 2.1 2.3 2.4 1.9 1.7 1.7 2.9 2.4 0.0 1.0 2.2 2.3 3.0
Centipede 1.2 2.8 7.4 0.0 6.0 2.1 1.0 0.0 0.0 3.2 1.0 5.0 6.9 5.9 0.0 0.0
Enduro 1.5 1.5 1.5 1.6 1.7 1.6 1.5 1.5 1.6 1.5 1.7 1.4 1.6 1.6 1.6 1.9
SpaceInvaders 3.2 3.1 3.3 2.4 2.0 2.3 2.8 2.9 3.2 7.7 5.4 4.7 2.7 1.0 4.4 3.6

TABLE V
MAXIMUM CONSECUTIVE ACTIONS SELECTED FROM LEADING HEAD

Game H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16
Breakout 4 13 32 9 13 6 5 3 6 8 9 0 1 8 5 3
Centipede 2 18 22 0 34 8 1 0 0 11 1 5 91 32 0 0
Enduro 7 8 7 6 11 9 6 7 7 7 8 6 8 8 8 30
SpaceInvaders 15 8 17 11 4 5 17 11 24 117 123 21 7 1 29 30

V. CONCLUSION

In this paper, we developed a new DRL technique to allow
a deep network to automatically decompose its policy based
on the environment dynamic components. When compared
to options, the proposed algorithm solves the initialization
set problem and the termination function problem. By au-
tomatically evaluating each head’s level of expertise for the
local environment dynamics, each head (or sub-policy) may
significantly contribute to the action selection process only for
states where it is relevant. Unlike options, multiple heads can
contribute together at anytime in the action selection process.
Moreover, two sub-policies don’t have to begin and terminate
in a synchronous manner either. Finally, compared to sub-
goals and generalized value functions algorithms, the proposed
algorithm learns fully end-to-end without requiring human
assigned sub-goals.

ACKNOWLEDGMENT

A significant portion of the results in this paper comes from
R.S. PhD thesis [17].

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare,
A. Graves, M. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen,
C. Beattie, and Sa, “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[2] H. A. Pierson and M. S. Gashler, “Deep learning in robotics: a review
of recent research,” Advanced Robotics, vol. 31, no. 16, pp. 821–835,
2017.

[3] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep reinforcement
learning framework for autonomous driving,” Electronic Imaging, vol.
2017, no. 19, pp. 70–76, 2017.

[4] R. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps: A
framework for temporal abstraction in reinforcement learning,” Artificial
Intelligence, vol. 112, no. 1–2, pp. 181–211, 1999.

[5] P.-L. Bacon, J. Harb, and D. Precup, “The option-critic architecture,” in
Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[6] T. D. Bruin, J. Kober, K. Tuyls, and R. Babuška, “Integrating state
representation learning into deep reinforcement learning,” IEEE Robotics
and Automation Letters, vol. 3, no. 3, pp. 1394–1401, 2018.

[7] V. François-Lavet, Y. Bengio, D. Precup, and J. Pineau, “Combined
reinforcement learning via abstract representations,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 3582–
3589.

[8] M. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade learn-
ing environment: An evaluation platform for general agents,” Journal of
Artificial Intelligence Research, vol. 47, pp. 253–279, 2013.

[9] J. Harb, P.-L. Bacon, M. Klissarov, and D. Precup, “When waiting is not
an option: Learning options with a deliberation cost,” in Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

[10] T. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum, Hierarchical
Deep Reinforcement Learning: Integrating Temporal Abstraction and
Intrinsic Motivation. Curran Associates, Inc., 2016, pp. 3675–3683.

[11] H. Van Seijen, M. Fatemi, J. Romoff, R. Laroche, T. Barnes, and
J. Tsang, “Hybrid reward architecture for reinforcement learning,” in
Advances in NIPS, 2017, pp. 5392–5402.

[12] D. Mankowitz, T. Mann, and S. Mannor, Adaptive Skills Adaptive
Partitions (ASAP). Curran Associates, Inc., 2016, pp. 1588–1596.

[13] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in
Proceedings of The 33rd International Conference on Machine Learning,
M. Balcan and K. Weinberger, Eds. PMLR, 2016, pp. 1995–2003.

[14] V. Mnih, A. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Sil-
ver, and K. Kavukcuoglu, “Asynchronous methods for deep reinforce-
ment learning,” in Proceedings of The 33rd International Conference on
Machine Learning, M. Balcan and K. Weinberger, Eds. PMLR, 2016,
pp. 1928–1937.

[15] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in In Proceedings of the International
Conference on Artificial Intelligence and Statistics (AISTATS’10). Soci-
ety for Artificial Intelligence and Statistics, 2010.

[16] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
International Conference on Learning Representations, 12 2014.

[17] R. Sturgeon, “Automatic option discovery within non-stationary envi-
ronments,” PhD, Royal Military College of Canada, 2018.

